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The Ashkin-Teller (AT) model

Introduced in ’43 by Ashkin and Teller as generalisation of the Ising
model. We introduce a representation due to Fan ’72:

» G = (V,E) finite subgraph of Z¢,
» two spin configurations (7,7') € {—1,1}V x {-1,1}V,
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» G = (V,E) finite subgraph of Z¢,
» two spin configurations (7,7') € {—1,1}V x {-1,1}V,
» given J,U > 0 (coupling constants), assign the energy

H(r, 7)== ) J(romy + 707,) + UraThry T,
zyel

» and define probability measures

ATg[r, 7] == — -exp (—H(7, 7)),

N =

and
ATET .= ATg [ |7 =7 = +1 on 9G]
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Infinite-volume measures and phase transitions I

Correlation inequalities guarantee existence of weak limits:

ATg = AT and ATST = AT™T as G 77
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Infinite-volume measures and phase transitions I

Correlation inequalities guarantee existence of weak limits:
ATg = AT and ATST = AT™T as G 77

Fix J,U > 0 and write ATy for AT with parameters 3.J, 3U.
In dimension d > 2, there exist ], BZT/ € (0,00) such that

|z|—o00 . - J N
>Cg>0 if B> p7, e
as well as 0 Al
|z|—00 . ! -
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Infinite-volume measures and phase transitions I

Correlation inequalities guarantee existence of weak limits:

ATg = AT and ATLT = ATHT as G 77

Fix J,U > 0 and write AT for AT with parameters 3J, BU.

In dimension d > 2, there exist 87, 37" € (0, 00) such that
C C

J
< efcﬁ'llj‘ lf < Ta 3 Q
ATp(107:) § . ’ ﬁi §
>Cg>0 if 8> 37, A '
as well as Y -
< e~cslrlif B < 7'7"7 B
ATs(rom72Ts) § ) p<be / b7
>C5>0 ifB>p7. | A

Sharpness via the OSSS approach (Duminil-Copin-Raoufi-Tassion ’19).
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Infinite-volume measures and phase transitions II

Heuristically: order in 7 and in 7/ = order in 77’.
This suggests

/
T BTT
c Z C )

which follows from correlation inequalities (Kelly-Sherman ’68).
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Infinite-volume measures and phase transitions II

Heuristically: order in 7 and in 7/ = order in 77’.
This suggests

TS 67’7’
c — C ?
which follows from correlation inequalities (Kelly-Sherman ’68).
Define the transition curves 7, and v, by
Yr:={(J,U): J,U >0 and 5] = 1},
Yo :={(J,U) : J,;U >0 and 877 =1}.
A\ J
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Duality

As for Ising and Potts:

Relate AT on some planar graph G to AT on its dual G* with (possibly)
different J, U and different boundary conditions.
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Duality

As for Ising and Potts:
Relate AT on some planar graph G to AT on its dual G* with (possibly)
different J, U and different boundary conditions.

The self-dual curve
sinh(2J) = e~ 2V

describes the invariant parameters.

For each J, U > 0, there exists a

unique fsq > 0 such that Byq - (J,U)
lies on this curve.
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Results for J < U

Main result: two distinct phase transitions for J < U in d = 2.
Theorem [Aoun-D.-Glazman 22
In dimension d = 2:

(i) For any 0 < J < U, we have 87 > fBq > 817,

(ii) =, and 7, are dual to each other.

[
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Results for J < U

Main result: two distinct phase transitions for J < U in d = 2.
Theorem [Aoun-D.-Glazman '22]

In dimension d = 2:
(i) For any 0 < J < U, we have ] > fsq > ﬁCTT/,

(ii) 7 and 7, are dual to each other.

Previous results:
L g7 >80
» conjectured by Wegner 72, Fan 72, and by Wu-Lin 74,
P> Pfister ’82: for 2J < U using correlation inequalities only,
» Pfister—Velenik 97 and Higgstrom '97: for J << U,

2. Intermediate behaviour on self-dual line (J < U): Glazman-Peled ’19
— starting point of our work; details later
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Results for J > U

» The graphical representation directly implies
Be =87 =B

in any dimension d > 2.
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Results for J > U

» The graphical representation directly implies
Be =87 =B
in any dimension d > 2.

» In dimension d = 2,
/Bc = 5sd

follows from duality, sharpness and the following lemma.
4
Lemma [Aoun-D.-Glazman ’22]

The set of J,U > 0 for which
AT # ATTT

has Lebesgue measure 0.




From AT to the six-vertex model |

Relation to eight-vertex already noticed by Fan '72 and Wegner '72.
Intuition:

Fix the product 77/ and apply duality to 7.

Fix a finite subgraph G = (V, E) of Z? and J,U > 0, and take
(1,7) ~ AT [-| 7= 7" on 9G] .
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From AT to the six-vertex model |

Relation to eight-vertex already noticed by Fan '72 and Wegner '72.

Intuition:

Fix the product 77/ and apply duality to 7.

Fix a finite subgraph G = (V, E) of Z? and J,U > 0, and take
(1,7) ~ AT [-| 7= 7" on 9G] .

» Consider the dual graph
G* = (V*, E).
» Define 0 = (0°,0°) € {£1}VVV":
> o*=77"onV,
> o° =7" on V* (FK-Ising duality).
» For any edge e € E:
o is constant on e, or o° is constant
on e* (— ice rule).

9/17



From AT to the six-vertex model I1

The law of o satisfies

P e 2V [l sinh 27\ 170!
[0'] X cosh 2.7 cosh 2 I[{ice—rule} I[{boundary conditions}>

where Eye = {zy € E : 0*(z) # 0°(y)}, and similarly for Eye.
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From AT to the six-vertex model I1

The law of o satisfies

o2 \ el rinn o7y 1Boel
P[U] X cosh 2.7 cosh 2.7 I[{ice—rule} I[{boundary conditions}>

where Eye = {zy € E : 0*(z) # 0°(y)}, and similarly for Eye.

Six-vertex spins induce edge orientations and a height function:

SO,
CRCECECNS)
© 00 o00bo
© OO0 000
CRCHCECNONONG
CRCECNCHNC)
®@ 0O
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From AT to the six-vertex model I1

The law of o satisfies

o2 \ el rinn o7y 1Boel
P[J] X cosh 2.7 cosh 2.7 I[{ice—rule} I[{boundary conditions}>

where Eye = {zy € E : 0*(z) # 0°(y)}, and similarly for Eye.

Six-vertex spins induce edge orientations and a height function:
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From AT to the six-vertex model I1

The law of o satisfies

o2 \ el rinn o7y 1Boel
P[J] X m m I[{ice—rule} I[{boundary conditions}>

where Eye = {zy € E : 0*(z) # 0°(y)}, and similarly for Eye.

Six-vertex spins induce edge orientations and a height function:

4+ 1Y 041l
L+ |+ + ]|+ LYoalyoql
Fl+ -+ LYO AL A2Y1Y041
+ |- + -+ 0pL142Y170Y-140
e + LY OALYORLYO4!L
+ |+ + 1Y 0Yy=14041
+ | 4 1yonsl
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From AT to the six-vertex model 111

N
+ +
+l+ |-+
=+ |+
+ + 1+
+ -+

+ |+

0

0

1

1

Note: the boundary conditions 7 = 7" in AT impose both a layer of 1s

and a layer of Os on the boundary for the height function.
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From AT to the six-vertex model 111

+ LYyoasl
+ + | + 1YOAalyospl
I+ =]+ 1yYyoa142Yy1Yy041
=+ ]+ |- OALTA2Y1TYOY-140
+ + | + + LYOALTYOANTYO4I
+ - | + 1YOY—14041
+ |+ 1yosl

Note: the boundary conditions 7 = 7" in AT impose both a layer of 1s
and a layer of Os on the boundary for the height function.

For J, U self-dual, the corresponding six-vertex model is not staggered
and reduces to the usual six-vertex model with weights

a=0b€(0,1), c=1,

anda<%ifandonlyifJ<U.
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Input from six-vertex

On the self-dual line, the corresponding six-vertex height function
» delocalizes for J > U (Duminil—Copianarrilananolescufoulamara 720,
CHazrnan—Lannners’22+),
» localizes for J < U (Duminil-CopinfGagnebianarelfManolescufTassion 16,
Cﬂamnaanebd’19)
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Input from six-vertex

On the self-dual line, the corresponding six-vertex height function
» delocalizes for J > U (Duminil—Copianarrilananolescufoulamara 720,
CHazrnan—Lannners’22+),
» localizes for J < U (Duminil-CopinfGagnebianarelfManolescufTassion 16,
Cﬂamnaanebd’19)

Localization of the height function implies long-range order in

/
c*=77" and o°=7"
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Intermediate behaviour on self-dual line

Building on that, the following was shown.
Theorem [Glazman-Peled '19]

For d = 2 and any self-dual J < U,
AT [-|7 =17 on 8G] = ATV as G 72,

and the limit satisfies

AT ror,) < el while AT [rorgrery] > C > 0.

— starting point of our work.
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Sketch of proof of main result

Key result:

Proposition [Aoun-D.-Glazman ’22]

For J < U self-dual, there exists ¢ > 0 such that, for any n > 1,
ATX:—[To] < e_‘m,

where A,, is induced by [—n,n]? N Z2.

P classical arguments in the graphical representation show that

lim —— log ATA IB[T()]

n—o0

exists and is right-continuous in J3; alternatively: ¢3(5)-argument
» duality, sharpness and the lemma (AT = AT™ " a.e.) imply the
theorem (87 > Bsq > B77 and duality of v, and ~,./)
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Graphical representation

Introduced by Chayes-Machta '97 and Pfister—Velenik '97.

Express correlations in AT in terms of connection probabilities in some
edge model:

» G = (V, E) finite subgraph of Z? and J,U > 0,

» configuration space: Q = {0,1}¥ x {0,1}#

» probability measure ATRC¢g on 2 (FKG, DMP, CBC)
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Graphical representation

Introduced by Chayes-Machta '97 and Pfister—Velenik '97.

Express correlations in AT in terms of connection probabilities in some

edge model:
» G = (V, E) finite subgraph of Z? and J,U > 0,
» configuration space: Q = {0,1}¥ x {0,1}#
» probability measure ATRC¢g on 2 (FKG, DMP, CBC)

J < U : pairs (wr,w;,) with w, C w, and
AT¢g[r,7y] = ATRCglz & yl,
ATg[r,7y7,] = ATRCg[z Ly y].

Boundary conditions relevant for the proof:

AT, [r,] = ATRCE [z <25 9G),

ATq 72| 7= 7" on 8G] = ATRCy" [z <5 0G.
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Steps and ingredients for proof of key result

Fix J < U on the self-dual curve.

Step 1. Prove the exponential decay in Glazman—Peled 19 in finite
volume: for any G O A,,,

ATRCE™ |0 €55 0A, | < e,
BKW coupling (Baxter-Kelland-~Wu ’73), and exponential relaxation for the critical

random-cluster model with cluster-weight ¢ > 4 and free boundary conditions

(Duminil-Copin-Gagnebin—Harel-Manolescu—Tassion ’16).
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BKW coupling (Baxter-Kelland-~Wu ’73), and exponential relaxation for the critical
random-cluster model with cluster-weight ¢ > 4 and free boundary conditions
(Duminil-Copin-Gagnebin—Harel-Manolescu—Tassion ’16).

Step 2. Show that ATRCY""[0 <% oo] = 0 (infinite volume).
Exploration argument in the corresponding six-vertex model (semi-free), and
non-coextistence thm. (Sheffield 05, Duminil-Copin—Raoufi-Tassion ’19).

Step 3. Given step 2, show that, for any § > 0, there exists a > 0 with

ATRCV[0 5 0A,) < e @ +e™ " pg - ATRCE[0 <5 9A,).
’ AnCGCAzp

Finding almost free w--circuits (Alexander '04, Campanino—loffe-Velenik ’08).
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What next?

» Delevop Ornstein—Zernike theory in AT
— transport via couplings to six-vertex and further to critical
random-cluster model with ¢ > 4
(with Alexander Glazman and Sébastien Ott)

» Sharpness when U < 0 (graphical representation partially available)
» Continuity of the phase transitions when J < U
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Thank you for your attention!
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