Phase diagram of the Ashkin–Teller model

Moritz Dober

joint with Yacine Aoun and Alexander Glazman

Faculty of Mathematics University of Vienna

24th February 2023 Mathematical Physics In Les Diablerets

Outline

- 1. The Ashkin–Teller model:
 - Definition
 - ▶ Infinite-volume measures and phase transition(s)
 - Duality
- 2. Results: previous and new
 - ▶ Two distinct transitions in one 'half' of the phase diagram
 - Unique phase transition in the other 'half'
- 3. Tools and sketch of proof of main result
 - Connection to six-vertex
 - Graphical representation
 - Sketch of proof of main result
- 4. What next?

The Ashkin–Teller (AT) model

Introduced in '43 by Ashkin and Teller as generalisation of the Ising model. We introduce a representation due to Fan '72:

- ▶ G = (V, E) finite subgraph of \mathbb{Z}^d ,
- two spin configurations $(\tau, \tau') \in \{-1, 1\}^V \times \{-1, 1\}^V$,

The Ashkin–Teller (AT) model

Introduced in '43 by Ashkin and Teller as generalisation of the Ising model. We introduce a representation due to Fan '72:

- G = (V, E) finite subgraph of \mathbb{Z}^d ,
- ▶ two spin configurations $(\tau, \tau') \in \{-1, 1\}^V \times \{-1, 1\}^V$,

▶ given $J, U \ge 0$ (coupling constants), assign the energy

$$H(\tau,\tau') := -\sum_{xy\in E} J(\tau_x\tau_y + \tau'_x\tau'_y) + U\tau_x\tau'_x\tau_y\tau'_y,$$

The Ashkin–Teller (AT) model

Introduced in '43 by Ashkin and Teller as generalisation of the Ising model. We introduce a representation due to Fan '72:

- G = (V, E) finite subgraph of \mathbb{Z}^d ,
- ▶ two spin configurations $(\tau, \tau') \in \{-1, 1\}^V \times \{-1, 1\}^V$,
- ▶ given $J, U \ge 0$ (coupling constants), assign the energy

$$H(\tau,\tau') := -\sum_{xy\in E} J(\tau_x\tau_y + \tau'_x\tau'_y) + U\tau_x\tau'_x\tau_y\tau'_y,$$

▶ and define probability measures

$$\operatorname{AT}_{G}[\tau, \tau'] := \frac{1}{Z} \cdot \exp\left(-H(\tau, \tau')\right),$$

and

$$\operatorname{AT}_{G}^{+,+} := \operatorname{AT}_{G} \left[\cdot \mid \tau = \tau' = +1 \text{ on } \partial G \right].$$

Infinite-volume measures and phase transitions I

Correlation inequalities guarantee existence of weak limits:

 $\operatorname{AT}_G \Rightarrow \operatorname{AT}$ and $\operatorname{AT}_G^{+,+} \Rightarrow \operatorname{AT}^{+,+}$ as $G \nearrow \mathbb{Z}^d$.

Infinite-volume measures and phase transitions I

Correlation inequalities guarantee existence of weak limits:

$$\operatorname{AT}_G \Rightarrow \operatorname{AT}$$
 and $\operatorname{AT}_G^{+,+} \Rightarrow \operatorname{AT}^{+,+}$ as $G \nearrow \mathbb{Z}^d$.

Fix J, U > 0 and write AT_{β} for AT with parameters $\beta J, \beta U$. In dimension $d \geq 2$, there exist $\beta_c^{\tau}, \beta_c^{\tau \tau'} \in (0, \infty)$ such that

as well as

$$\operatorname{AT}_{\beta}(\tau_{0}\tau_{0}^{\prime}\tau_{x}\tau_{x}^{\prime})\begin{cases} \frac{|x|\to\infty}{0} & \text{if } \beta < \beta_{c}^{\tau\tau^{\prime}},\\ \geq C_{\beta} > 0 & \text{if } \beta > \beta_{c}^{\tau\tau^{\prime}}. \end{cases}$$

Infinite-volume measures and phase transitions I

Correlation inequalities guarantee existence of weak limits:

$$\operatorname{AT}_G \Rightarrow \operatorname{AT}$$
 and $\operatorname{AT}_G^{+,+} \Rightarrow \operatorname{AT}^{+,+}$ as $G \nearrow \mathbb{Z}^d$.

Fix J, U > 0 and write AT_{β} for AT with parameters $\beta J, \beta U$. In dimension $d \geq 2$, there exist $\beta_c^{\tau}, \beta_c^{\tau \tau'} \in (0, \infty)$ such that

as well as

$$\operatorname{AT}_{\beta}(\tau_{0}\tau_{0}^{\prime}\tau_{x}\tau_{x}^{\prime}) \begin{cases} \leq e^{-c_{\beta}\cdot|x|} & \text{if } \beta < \beta_{c}^{\tau\tau^{\prime}}, \\ \geq C_{\beta} > 0 & \text{if } \beta > \beta_{c}^{\tau\tau^{\prime}}. \end{cases}$$

Sharpness via the OSSS approach (Duminil-Copin–Raoufi–Tassion '19).

Infinite-volume measures and phase transitions II

Heuristically: order in τ and in $\tau' \Rightarrow$ order in $\tau\tau'$. This suggests

$$\beta_c^{\tau} \ge \beta_c^{\tau\tau'},$$

which follows from correlation inequalities (Kelly-Sherman '68).

Infinite-volume measures and phase transitions II

Heuristically: order in τ and in $\tau' \Rightarrow$ order in $\tau\tau'$. This suggests

$$\beta_c^{\tau} \ge \beta_c^{\tau\tau'},$$

which follows from correlation inequalities (Kelly–Sherman '68). Define the transition curves γ_{τ} and $\gamma_{\tau\tau'}$ by

Duality

As for Ising and Potts:

Relate AT on some planar graph G to AT on its dual G^* with (possibly) different J, U and different boundary conditions.

Duality

As for Ising and Potts:

Relate AT on some planar graph G to AT on its dual G^* with (possibly) different J, U and different boundary conditions.

The self-dual curve

$$\sinh(2J) = e^{-2U}$$

describes the invariant parameters.

For each J, U > 0, there exists a unique $\beta_{sd} > 0$ such that $\beta_{sd} \cdot (J, U)$ lies on this curve.

Results for J < U

Main result: two distinct phase transitions for J < U in d = 2.

Theorem [Aoun–D.–Glazman '22]

In dimension d = 2:

(i) For any 0 < J < U, we have $\beta_c^{\tau} > \beta_{\rm sd} > \beta_c^{\tau \tau'}$,

(ii) γ_{τ} and $\gamma_{\tau\tau'}$ are dual to each other.

Results for J < U

Main result: two distinct phase transitions for J < U in d = 2.

Theorem [Aoun–D.–Glazman '22]

In dimension d = 2:

(i) For any 0 < J < U, we have $\beta_c^{\tau} > \beta_{\rm sd} > \beta_c^{\tau\tau'}$,

(ii) γ_{τ} and $\gamma_{\tau\tau'}$ are dual to each other.

Previous results:

1. $\beta_c^{\tau} > \beta_c^{\tau\tau'}$:

- ▶ conjectured by Wegner '72, Fan '72, and by Wu–Lin '74,
- ▶ Pfister '82: for 2J < U using correlation inequalities only,
- ▶ Pfister–Velenik '97 and Häggström '97: for $J \ll U$,
- 2. Intermediate behaviour on self-dual line (J < U): Glazman–Peled '19 \rightarrow starting point of our work; details later

Results for $J \ge U$

▶ The graphical representation directly implies

$$\beta_c^\tau = \beta_c^{\tau\tau'} =: \beta_c$$

in any dimension $d \ge 2$.

Results for $J \ge U$

▶ The graphical representation directly implies

$$\beta_c^\tau = \beta_c^{\tau\tau'} =: \beta_c$$

in any dimension $d \geq 2$.

▶ In dimension d = 2,

$$\beta_c = \beta_{\rm sc}$$

follows from duality, sharpness and the following lemma.

Lemma [Aoun–D.–Glazman '22] The set of J, U > 0 for which $AT \neq AT^{+,+}$

has Lebesgue measure 0.

Relation to eight-vertex already noticed by Fan '72 and Wegner '72.

Intuition:

Fix the product $\tau \tau'$ and apply duality to τ .

Fix a finite subgraph G = (V, E) of \mathbb{Z}^2 and J, U > 0, and take

 $(\tau, \tau') \sim \operatorname{AT}_G \left[\cdot \mid \tau = \tau' \text{ on } \partial G \right].$

Relation to eight-vertex already noticed by Fan '72 and Wegner '72.

Intuition:

Fix the product $\tau \tau'$ and apply duality to τ .

Fix a finite subgraph G = (V, E) of \mathbb{Z}^2 and J, U > 0, and take

$$(\tau, \tau') \sim \operatorname{AT}_G \left[\cdot \mid \tau = \tau' \text{ on } \partial G \right].$$

• Consider the dual graph $G^* = (V^*, E^*).$

Relation to eight-vertex already noticed by Fan '72 and Wegner '72.

Intuition:

Fix the product $\tau \tau'$ and apply duality to τ .

Fix a finite subgraph G = (V, E) of \mathbb{Z}^2 and J, U > 0, and take

$$(\tau, \tau') \sim \operatorname{AT}_G \left[\cdot \mid \tau = \tau' \text{ on } \partial G \right].$$

- Consider the dual graph $G^* = (V^*, E^*).$
- ► Define $\sigma = (\sigma^{\bullet}, \sigma^{\bullet}) \in \{\pm 1\}^{V \cup V^*}$: ► $\sigma^{\bullet} = \tau \tau'$ on V,

Relation to eight-vertex already noticed by Fan '72 and Wegner '72.

Intuition:

Fix the product $\tau \tau'$ and apply duality to τ .

Fix a finite subgraph G = (V, E) of \mathbb{Z}^2 and J, U > 0, and take

$$(\tau, \tau') \sim \operatorname{AT}_G \left[\cdot \mid \tau = \tau' \text{ on } \partial G \right].$$

• Consider the dual graph $G^* = (V^*, E^*).$

• Define
$$\sigma = (\sigma^{\bullet}, \sigma^{\bullet}) \in \{\pm 1\}^{V \cup V^*}$$
:

$$\blacktriangleright \ \sigma^{\bullet} = \tau \tau' \text{ on } V,$$

•
$$\sigma^{\bullet} = \tau^*$$
 on V^* (FK-Ising duality).

Relation to eight-vertex already noticed by Fan '72 and Wegner '72.

Intuition:

Fix the product $\tau \tau'$ and apply duality to τ .

Fix a finite subgraph G = (V, E) of \mathbb{Z}^2 and J, U > 0, and take

$$(\tau, \tau') \sim \operatorname{AT}_G \left[\cdot \mid \tau = \tau' \text{ on } \partial G \right].$$

- Consider the dual graph $G^* = (V^*, E^*).$
- Define $\sigma = (\sigma^{\bullet}, \sigma^{\bullet}) \in \{\pm 1\}^{V \cup V^*}$: • $\sigma^{\bullet} = \tau \tau'$ on V.

• $\sigma^{\bullet} = \tau^*$ on V^* (FK-Ising duality).

For any edge $e \in E$: σ^{\bullet} is constant on e, or σ^{\bullet} is constant on e^* (\rightarrow *ice* rule).

The law of σ satisfies

$$\mathbb{P}[\sigma] \propto \left(\frac{e^{-2U}}{\cosh 2J}\right)^{|E_{\sigma}\bullet|} \left(\frac{\sinh 2J}{\cosh 2J}\right)^{|E_{\sigma}\bullet|} \mathbb{1}_{\{\text{ice-rule}\}} \mathbb{1}_{\{\text{boundary conditions}\}},$$

where $E_{\sigma^{\bullet}} = \{xy \in E : \sigma^{\bullet}(x) \neq \sigma^{\bullet}(y)\}$, and similarly for $E_{\sigma^{\bullet}}$.

The law of σ satisfies

$$\mathbb{P}[\sigma] \propto \left(\frac{e^{-2U}}{\cosh 2J}\right)^{|E_{\sigma}\bullet|} \left(\frac{\sinh 2J}{\cosh 2J}\right)^{|E_{\sigma}\bullet|} \mathbb{1}_{\{\text{ice-rule}\}} \mathbb{1}_{\{\text{boundary conditions}\}},$$

where $E_{\sigma^{\bullet}} = \{xy \in E : \sigma^{\bullet}(x) \neq \sigma^{\bullet}(y)\}$, and similarly for $E_{\sigma^{\bullet}}$.

Six-vertex spins induce *edge orientations* and a *height function*:

The law of σ satisfies

$$\mathbb{P}[\sigma] \propto \left(\frac{e^{-2U}}{\cosh 2J}\right)^{|E_{\sigma}\bullet|} \left(\frac{\sinh 2J}{\cosh 2J}\right)^{|E_{\sigma}\bullet|} \mathbb{1}_{\{\text{ice-rule}\}} \mathbb{1}_{\{\text{boundary conditions}\}},$$

where $E_{\sigma^{\bullet}} = \{xy \in E : \sigma^{\bullet}(x) \neq \sigma^{\bullet}(y)\}$, and similarly for $E_{\sigma^{\bullet}}$.

Six-vertex spins induce *edge orientations* and a *height function*:

_							
			+	+	+		
		+	+	+	+	+	
-	ł	+	+	-	+	+	+
-	+	+	-	+	+	_	+
-	ł	+	+	+	+	+	+
_		+	+	-	+	+	
		-	+	+	+		•

The law of σ satisfies

$$\mathbb{P}[\sigma] \propto \left(\frac{e^{-2U}}{\cosh 2J}\right)^{|E_{\sigma}\bullet|} \left(\frac{\sinh 2J}{\cosh 2J}\right)^{|E_{\sigma}\bullet|} \mathbb{1}_{\{\text{ice-rule}\}} \mathbb{1}_{\{\text{boundary conditions}\}},$$

where $E_{\sigma^{\bullet}} = \{xy \in E : \sigma^{\bullet}(x) \neq \sigma^{\bullet}(y)\}$, and similarly for $E_{\sigma^{\bullet}}$.

Six-vertex spins induce *edge orientations* and a *height function*:

		+	+	+		
	+	+	+	+	+	
+	+	+	-	+	+	+
+	+	-	+	+	_	+
+	+	+	+	+	+	+
	+	+	-	+	+	
		+	+	+		

Note: the boundary conditions $\tau = \tau'$ in AT impose both a layer of 1s and a layer of 0s on the boundary for the height function.

Note: the boundary conditions $\tau = \tau'$ in AT impose both a layer of 1s and a layer of 0s on the boundary for the height function.

For J, U self-dual, the corresponding six-vertex model is not staggered and reduces to the usual six-vertex model with weights

$$a = b \in (0, 1), c = 1,$$

and $a < \frac{1}{2}$ if and only if J < U.

Input from six-vertex

On the self-dual line, the corresponding six-vertex height function

- ▶ delocalizes for $J \ge U$ (Duminil-Copin–Karrila–Manolescu–Oulamara '20, Glazman–Lammers '22+),
- ▶ localizes for J < U (Duminil-Copin-Gagnebin-Harel-Manolescu-Tassion '16, Glazman-Peled '19).

Input from six-vertex

On the self-dual line, the corresponding six-vertex height function

- ▶ delocalizes for $J \ge U$ (Duminil-Copin–Karrila–Manolescu–Oulamara '20, Glazman–Lammers '22+),
- ▶ localizes for J < U (Duminil-Copin-Gagnebin-Harel-Manolescu-Tassion '16, Glazman-Peled '19).

Localization of the height function implies long-range order in

$$\sigma^{\bullet} = \tau \tau' \quad \text{and} \quad \sigma^{\bullet} = \tau^*.$$

Building on that, the following was shown.

Theorem [Glazman–Peled '19]

For d = 2 and any self-dual J < U,

$$\operatorname{AT}_G[\cdot | \tau = \tau' \text{ on } \partial G] \Rightarrow \operatorname{AT}^{\mathrm{f},+} \text{ as } G \nearrow \mathbb{Z}^2,$$

and the limit satisfies

 $\operatorname{AT}^{\mathrm{f},+}[\tau_0\tau_x] \le e^{-c \cdot |x|} \quad \text{while} \quad \operatorname{AT}^{\mathrm{f},+}[\tau_0\tau_0'\tau_x\tau_x'] \ge C > 0.$

 \rightarrow starting point of our work.

Sketch of proof of main result

Key result:

Proposition [Aoun-D.-Glazman '22]

For J < U self-dual, there exists c > 0 such that, for any $n \ge 1$,

$$\operatorname{AT}_{\Lambda_n}^{+,+}[\tau_0] \le e^{-cn},$$

where Λ_n is induced by $[-n, n]^2 \cap \mathbb{Z}^2$.

classical arguments in the graphical representation show that

$$\lim_{n \to \infty} -\frac{1}{n} \log \operatorname{AT}_{\Lambda_n,\beta}^{+,+}[\tau_0]$$

exists and is right-continuous in β ; alternatively: $\varphi_{\beta}(S)$ -argument

• duality, sharpness and the lemma (AT = AT^{+,+} a.e.) imply the theorem $(\beta_c^{\tau} > \beta_{sd} > \beta_c^{\tau\tau'}$ and duality of γ_{τ} and $\gamma_{\tau\tau'}$)

Graphical representation

Introduced by Chayes–Machta '97 and Pfister–Velenik '97.

Express correlations in AT in terms of connection probabilities in some edge model:

- G = (V, E) finite subgraph of \mathbb{Z}^d and J, U > 0,
- configuration space: $\Omega = \{0, 1\}^E \times \{0, 1\}^E$
- ▶ probability measure $ATRC_G$ on Ω (FKG, DMP, CBC)

Graphical representation

Introduced by Chayes–Machta '97 and Pfister–Velenik '97.

Express correlations in AT in terms of connection probabilities in some edge model:

- G = (V, E) finite subgraph of \mathbb{Z}^d and J, U > 0,
- configuration space: $\Omega = \{0, 1\}^E \times \{0, 1\}^E$
- ▶ probability measure $ATRC_G$ on Ω (FKG, DMP, CBC)

 $\mathbf{J} < \mathbf{U}$: pairs $(\omega_{\tau}, \omega_{\tau\tau'})$ with $\omega_{\tau} \subseteq \omega_{\tau\tau'}$ and

$$\operatorname{AT}_G[\tau_x \tau_y] = \operatorname{ATRC}_G[x \longleftrightarrow^{\omega_{\tau}} y],$$
$$\operatorname{AT}_G[\tau_x \tau'_x \tau_y \tau'_y] = \operatorname{ATRC}_G[x \xleftarrow^{\omega_{\tau\tau'}} y].$$

Graphical representation

Introduced by Chayes–Machta '97 and Pfister–Velenik '97.

Express correlations in AT in terms of connection probabilities in some edge model:

- G = (V, E) finite subgraph of \mathbb{Z}^d and J, U > 0,
- configuration space: $\Omega = \{0, 1\}^E \times \{0, 1\}^E$
- ▶ probability measure $ATRC_G$ on Ω (FKG, DMP, CBC)
- $\mathbf{J} < \mathbf{U}$: pairs $(\omega_{\tau}, \omega_{\tau\tau'})$ with $\omega_{\tau} \subseteq \omega_{\tau\tau'}$ and

$$\operatorname{AT}_G[\tau_x \tau_y] = \operatorname{ATRC}_G[x \longleftrightarrow^{\omega_{\tau}} y],$$
$$\operatorname{AT}_G[\tau_x \tau'_x \tau_y \tau'_y] = \operatorname{ATRC}_G[x \xleftarrow{\omega_{\tau\tau'}} y].$$

Boundary conditions relevant for the proof:

$$\operatorname{AT}_{G}^{+,+}[\tau_{x}] = \operatorname{ATRC}_{G}^{\mathbf{w},\mathbf{w}}[x \xleftarrow{\omega_{\tau}} \partial G],$$
$$\operatorname{AT}_{G}[\tau_{x} \mid \tau = \tau' \text{ on } \partial G] = \operatorname{ATRC}_{G}^{\mathbf{f},\mathbf{w}}[x \xleftarrow{\omega_{\tau}} \partial G].$$

Steps and ingredients for proof of key result

Fix J < U on the self-dual curve.

Step 1. Prove the exponential decay in Glazman–Peled '19 in finite volume: for any $G \supseteq \Lambda_n$,

$$\operatorname{ATRC}_{G}^{\mathbf{f},\mathbf{w}}\left[0 \stackrel{\omega_{\tau}}{\longleftrightarrow} \partial \Lambda_{n}\right] \leq e^{-cn}.$$

BKW coupling (Baxter–Kelland–Wu '73), and exponential relaxation for the critical random-cluster model with cluster-weight q > 4 and free boundary conditions (Duminil-Copin–Gagnebin–Harel–Manolescu–Tassion '16).

Steps and ingredients for proof of key result

Fix J < U on the self-dual curve.

Step 1. Prove the exponential decay in Glazman–Peled '19 in finite volume: for any $G \supseteq \Lambda_n$,

$$\operatorname{ATRC}_{G}^{\mathbf{f},\mathbf{w}}\left[0 \stackrel{\omega_{\tau}}{\longleftrightarrow} \partial \Lambda_{n}\right] \leq e^{-cn}.$$

BKW coupling (Baxter-Kelland-Wu '73), and exponential relaxation for the critical random-cluster model with cluster-weight q > 4 and free boundary conditions (Duminil-Copin-Gagnebin-Harel-Manolescu-Tassion '16). **Step 2.** Show that $\operatorname{ATRC}^{\mathbf{w},\mathbf{w}}[0 \leftrightarrow^{\omega_{\tau}} \infty] = 0$ (infinite volume). Exploration argument in the corresponding six-vertex model (*semi-free*), and non-coextistence thm. (Sheffield '05, Duminil-Copin-Raoufi-Tassion '19).

Steps and ingredients for proof of key result

Fix J < U on the self-dual curve.

Step 1. Prove the exponential decay in Glazman–Peled '19 in finite volume: for any $G \supseteq \Lambda_n$,

$$\operatorname{ATRC}_{G}^{\mathbf{f},\mathbf{w}}\left[0 \stackrel{\omega_{\tau}}{\longleftrightarrow} \partial \Lambda_{n}\right] \leq e^{-cn}.$$

BKW coupling (Baxter-Kelland-Wu '73), and exponential relaxation for the critical random-cluster model with cluster-weight q > 4 and free boundary conditions (Duminil-Copin-Gagnebin-Harel-Manolescu-Tassion '16). **Step 2.** Show that $\operatorname{ATRC}^{\mathsf{W},\mathsf{W}}[0 \leftrightarrow^{\omega_{\tau}} \infty] = 0$ (infinite volume). Exploration argument in the corresponding six-vertex model (*semi-free*), and non-coextistence thm. (Sheffield '05, Duminil-Copin-Raoufi-Tassion '19). **Step 3.** Given step 2, show that, for any $\delta > 0$, there exists $\alpha > 0$ with

$$\operatorname{ATRC}_{\Lambda_{2n}}^{\mathbf{w},\mathbf{w}}[0 \stackrel{\omega_{\tau}}{\longleftrightarrow} \partial \Lambda_n] \leq e^{-\alpha n} + e^{\delta n} \sum_{\Lambda_n \subseteq G \subseteq \Lambda_{2n}} p_G \cdot \operatorname{ATRC}_G^{\mathbf{f},\mathbf{w}}[0 \stackrel{\omega_{\tau}}{\longleftrightarrow} \partial \Lambda_n].$$

Finding almost free ω_{τ} -circuits (Alexander '04, Campanino–Ioffe–Velenik '08).

- ▶ Delevop Ornstein–Zernike theory in AT
 → transport via couplings to six-vertex and further to critical random-cluster model with q > 4
 (with Alexander Glazman and Sébastien Ott)
- ▶ Sharpness when U < 0 (graphical representation partially available)
- Continuity of the phase transitions when J < U

- ▶ Delevop Ornstein–Zernike theory in AT
 → transport via couplings to six-vertex and further to critical random-cluster model with q > 4
 (with Alexander Glazman and Sébastien Ott)
- ▶ Sharpness when U < 0 (graphical representation partially available)
- Continuity of the phase transitions when J < U

Thank you for your attention!