Phase diagram of the Ashkin-Teller model

Moritz Dober

joint with Yacine Aoun and Alexander Glazman

Faculty of Mathematics
University of Vienna

24th February 2023
Mathematical Physics In Les Diablerets

Outline

1. The Ashkin-Teller model:

- Definition
- Infinite-volume measures and phase transition(s)
- Duality

2. Results: previous and new

- Two distinct transitions in one 'half' of the phase diagram
- Unique phase transition in the other 'half'

3. Tools and sketch of proof of main result

- Connection to six-vertex
- Graphical representation
- Sketch of proof of main result

4. What next?

The Ashkin-Teller (AT) model

Introduced in ' 43 by Ashkin and Teller as generalisation of the Ising model. We introduce a representation due to Fan '72:

- $G=(V, E)$ finite subgraph of \mathbb{Z}^{d},
- two spin configurations $\left(\tau, \tau^{\prime}\right) \in\{-1,1\}^{V} \times\{-1,1\}^{V}$,

The Ashkin-Teller (AT) model

Introduced in ' 43 by Ashkin and Teller as generalisation of the Ising model. We introduce a representation due to Fan '72:

- $G=(V, E)$ finite subgraph of \mathbb{Z}^{d},
- two spin configurations $\left(\tau, \tau^{\prime}\right) \in\{-1,1\}^{V} \times\{-1,1\}^{V}$,
- given $J, U \geq 0$ (coupling constants), assign the energy

$$
H\left(\tau, \tau^{\prime}\right):=-\sum_{x y \in E} J\left(\tau_{x} \tau_{y}+\tau_{x}^{\prime} \tau_{y}^{\prime}\right)+U \tau_{x} \tau_{x}^{\prime} \tau_{y} \tau_{y}^{\prime}
$$

The Ashkin-Teller (AT) model

Introduced in ' 43 by Ashkin and Teller as generalisation of the Ising model. We introduce a representation due to Fan '72:

- $G=(V, E)$ finite subgraph of \mathbb{Z}^{d},
- two spin configurations $\left(\tau, \tau^{\prime}\right) \in\{-1,1\}^{V} \times\{-1,1\}^{V}$,
- given $J, U \geq 0$ (coupling constants), assign the energy

$$
H\left(\tau, \tau^{\prime}\right):=-\sum_{x y \in E} J\left(\tau_{x} \tau_{y}+\tau_{x}^{\prime} \tau_{y}^{\prime}\right)+U \tau_{x} \tau_{x}^{\prime} \tau_{y} \tau_{y}^{\prime}
$$

- and define probability measures

$$
\operatorname{AT}_{G}\left[\tau, \tau^{\prime}\right]:=\frac{1}{Z} \cdot \exp \left(-H\left(\tau, \tau^{\prime}\right)\right)
$$

and

$$
\mathrm{AT}_{G}^{+,+}:=\mathrm{AT}_{G}\left[\cdot \mid \tau=\tau^{\prime}=+1 \text { on } \partial G\right]
$$

Infinite-volume measures and phase transitions I

Correlation inequalities guarantee existence of weak limits:

$$
\mathrm{AT}_{G} \Rightarrow \mathrm{AT} \quad \text { and } \quad \mathrm{AT}_{G}^{+,+} \Rightarrow \mathrm{AT}^{+,+} \quad \text { as } G \nearrow \mathbb{Z}^{d}
$$

Infinite-volume measures and phase transitions I

Correlation inequalities guarantee existence of weak limits:

$$
\mathrm{AT}_{G} \Rightarrow \mathrm{AT} \quad \text { and } \quad \mathrm{AT}_{G}^{+,+} \Rightarrow \mathrm{AT}^{+,+} \quad \text { as } G \nearrow \mathbb{Z}^{d}
$$

Fix $J, U>0$ and write AT_{β} for AT with parameters $\beta J, \beta U$.
In dimension $d \geq 2$, there exist $\beta_{c}^{\tau}, \beta_{c}^{\tau \tau^{\prime}} \in(0, \infty)$ such that
$\operatorname{AT}_{\beta}\left(\tau_{0} \tau_{x}\right) \begin{cases}\xrightarrow{|x| \rightarrow \infty} 0 & \text { if } \beta<\beta_{c}^{\tau}, \\ \geq C_{\beta}>0 & \text { if } \beta>\beta_{c}^{\tau},\end{cases}$
as well as
$\operatorname{AT}_{\beta}\left(\tau_{0} \tau_{0}^{\prime} \tau_{x} \tau_{x}^{\prime}\right)\left\{\begin{array}{ll}\xrightarrow{|x| \rightarrow \infty} 0 & \text { if } \beta<\beta_{c}^{\tau \tau^{\prime}} \\ \geq C_{\beta}>0 & \text { if } \beta>\beta_{c}^{\tau \tau^{\prime}}\end{array}\right.$.

Infinite-volume measures and phase transitions I

Correlation inequalities guarantee existence of weak limits:

$$
\mathrm{AT}_{G} \Rightarrow \mathrm{AT} \quad \text { and } \quad \mathrm{AT}_{G}^{+,+} \Rightarrow \mathrm{AT}^{+,+} \quad \text { as } G \nearrow \mathbb{Z}^{d}
$$

Fix $J, U>0$ and write AT_{β} for AT with parameters $\beta J, \beta U$.
In dimension $d \geq 2$, there exist $\beta_{c}^{\tau}, \beta_{c}^{\tau \tau^{\prime}} \in(0, \infty)$ such that
$\operatorname{AT}_{\beta}\left(\tau_{0} \tau_{x}\right) \begin{cases}\leq e^{-c_{\beta} \cdot|x|} & \text { if } \beta<\beta_{c}^{\tau}, \\ \geq C_{\beta}>0 & \text { if } \beta>\beta_{c}^{\tau},\end{cases}$
as well as
$\operatorname{AT}_{\beta}\left(\tau_{0} \tau_{0}^{\prime} \tau_{x} \tau_{x}^{\prime}\right)\left\{\begin{array}{ll}\leq e^{-c_{\beta} \cdot|x|} & \text { if } \beta<\beta_{c}^{\tau \tau^{\prime}} \\ \geq C_{\beta}>0 & \text { if } \beta>\beta_{c}^{\tau \tau^{\prime}}\end{array}\right.$,

Sharpness via the OSSS approach (Duminil-Copin-Raoufi-Tassion '19).

Infinite-volume measures and phase transitions II

Heuristically: order in τ and in $\tau^{\prime} \Rightarrow$ order in $\tau \tau^{\prime}$. This suggests

$$
\beta_{c}^{\tau} \geq \beta_{c}^{\tau \tau^{\prime}}
$$

which follows from correlation inequalities (Kelly-Sherman '68).

Infinite-volume measures and phase transitions II

Heuristically: order in τ and in $\tau^{\prime} \Rightarrow$ order in $\tau \tau^{\prime}$. This suggests

$$
\beta_{c}^{\tau} \geq \beta_{c}^{\tau \tau^{\prime}}
$$

which follows from correlation inequalities (Kelly-Sherman '68).
Define the transition curves γ_{τ} and $\gamma_{\tau \tau^{\prime}}$ by

$$
\begin{aligned}
\gamma_{\tau} & :=\left\{(J, U): J, U>0 \text { and } \beta_{c}^{\tau}=1\right\}, \\
\gamma_{\tau \tau^{\prime}} & :=\left\{(J, U): J, U>0 \text { and } \beta_{c}^{\tau \tau^{\prime}}=1\right\} .
\end{aligned}
$$

Duality

As for Ising and Potts:
Relate AT on some planar graph G to AT on its dual G^{*} with (possibly) different J, U and different boundary conditions.

Duality

As for Ising and Potts:
Relate AT on some planar graph G to AT on its dual G^{*} with (possibly) different J, U and different boundary conditions.

The self-dual curve

$$
\sinh (2 J)=e^{-2 U}
$$

describes the invariant parameters.
For each $J, U>0$, there exists a unique $\beta_{\text {sd }}>0$ such that $\beta_{\text {sd }} \cdot(J, U)$ lies on this curve.

Results for $J<U$

Main result: two distinct phase transitions for $J<U$ in $d=2$.

Theorem [Aoun-D.-Glazman '22]

In dimension $d=2$:
(i) For any $0<J<U$, we have $\beta_{c}^{\tau}>\beta_{\text {sd }}>\beta_{c}^{\tau \tau^{\prime}}$,
(ii) γ_{τ} and $\gamma_{\tau \tau^{\prime}}$ are dual to each other.

Results for $J<U$

Main result: two distinct phase transitions for $J<U$ in $d=2$.
Theorem [Aoun-D.-Glazman '22]
In dimension $d=2$:
(i) For any $0<J<U$, we have $\beta_{c}^{\tau}>\beta_{\mathrm{sd}}>\beta_{c}^{\tau \tau^{\prime}}$,
(ii) γ_{τ} and $\gamma_{\tau \tau^{\prime}}$ are dual to each other.

Previous results:

1. $\beta_{c}^{\tau}>\beta_{c}^{\tau \tau^{\prime}}$:

- conjectured by Wegner '72, Fan '72, and by Wu-Lin '74,
- Pfister '82: for $2 J<U$ using correlation inequalities only,
- Pfister-Velenik '97 and Häggström '97: for $J \ll U$,

2. Intermediate behaviour on self-dual line $(J<U)$: Glazman-Peled '19
\rightarrow starting point of our work; details later

Results for $J \geq U$

- The graphical representation directly implies

$$
\beta_{c}^{\tau}=\beta_{c}^{\tau \tau^{\prime}}=: \beta_{c}
$$

in any dimension $d \geq 2$.

Results for $J \geq U$

- The graphical representation directly implies

$$
\beta_{c}^{\tau}=\beta_{c}^{\tau \tau^{\prime}}=: \beta_{c}
$$

in any dimension $d \geq 2$.

- In dimension $d=2$,

$$
\beta_{c}=\beta_{\mathrm{sd}}
$$

follows from duality, sharpness and the following lemma.

Lemma [Aoun-D.-Glazman '22]
The set of $J, U>0$ for which

$$
\mathrm{AT} \neq \mathrm{AT}^{+,+}
$$

has Lebesgue measure 0 .

From AT to the six-vertex model I

Relation to eight-vertex already noticed by Fan '72 and Wegner ' 72.

Intuition:

Fix the product $\tau \tau^{\prime}$ and apply duality to τ.
Fix a finite subgraph $G=(V, E)$ of \mathbb{Z}^{2} and $J, U>0$, and take

$$
\left(\tau, \tau^{\prime}\right) \sim \operatorname{AT}_{G}\left[\cdot \mid \tau=\tau^{\prime} \text { on } \partial G\right] .
$$

From AT to the six-vertex model I

Relation to eight-vertex already noticed by Fan '72 and Wegner ' 72.

Intuition:

Fix the product $\tau \tau^{\prime}$ and apply duality to τ.
Fix a finite subgraph $G=(V, E)$ of \mathbb{Z}^{2} and $J, U>0$, and take

$$
\left(\tau, \tau^{\prime}\right) \sim \operatorname{AT}_{G}\left[\cdot \mid \tau=\tau^{\prime} \text { on } \partial G\right] .
$$

- Consider the dual graph

$$
G^{*}=\left(V^{*}, E^{*}\right)
$$

From AT to the six-vertex model I

Relation to eight-vertex already noticed by Fan '72 and Wegner ' 72.

Intuition:

Fix the product $\tau \tau^{\prime}$ and apply duality to τ.
Fix a finite subgraph $G=(V, E)$ of \mathbb{Z}^{2} and $J, U>0$, and take

$$
\left(\tau, \tau^{\prime}\right) \sim \operatorname{AT}_{G}\left[\cdot \mid \tau=\tau^{\prime} \text { on } \partial G\right] .
$$

- Consider the dual graph $G^{*}=\left(V^{*}, E^{*}\right)$.
- Define $\sigma=\left(\sigma^{\bullet}, \sigma^{\bullet}\right) \in\{ \pm 1\}^{V \cup V^{*}}$:
- $\sigma^{\bullet}=\tau \tau^{\prime}$ on V,

From AT to the six-vertex model I

Relation to eight-vertex already noticed by Fan '72 and Wegner ' 72.

Intuition:

Fix the product $\tau \tau^{\prime}$ and apply duality to τ.
Fix a finite subgraph $G=(V, E)$ of \mathbb{Z}^{2} and $J, U>0$, and take

$$
\left(\tau, \tau^{\prime}\right) \sim \operatorname{AT}_{G}\left[\cdot \mid \tau=\tau^{\prime} \text { on } \partial G\right] .
$$

- Consider the dual graph $G^{*}=\left(V^{*}, E^{*}\right)$.
- Define $\sigma=\left(\sigma^{\bullet}, \sigma^{\bullet}\right) \in\{ \pm 1\}^{V \cup V^{*}}$:
- $\sigma^{\bullet}=\tau \tau^{\prime}$ on V,
- $\sigma^{\bullet}=\tau^{*}$ on V^{*} (FK-Ising duality).

From AT to the six-vertex model I

Relation to eight-vertex already noticed by Fan '72 and Wegner ' 72.

Intuition:

Fix the product $\tau \tau^{\prime}$ and apply duality to τ.
Fix a finite subgraph $G=(V, E)$ of \mathbb{Z}^{2} and $J, U>0$, and take

$$
\left(\tau, \tau^{\prime}\right) \sim \operatorname{AT}_{G}\left[\cdot \mid \tau=\tau^{\prime} \text { on } \partial G\right] .
$$

- Consider the dual graph $G^{*}=\left(V^{*}, E^{*}\right)$.
- Define $\sigma=\left(\sigma^{\bullet}, \sigma^{\bullet}\right) \in\{ \pm 1\}^{V \cup V^{*}}$:
- $\sigma^{\bullet}=\tau \tau^{\prime}$ on V,
- $\sigma^{\bullet}=\tau^{*}$ on V^{*} (FK-Ising duality).
- For any edge $e \in E$:
σ^{\bullet} is constant on e, or σ^{\bullet} is constant on $e^{*}(\rightarrow$ ice rule).

From AT to the six-vertex model II

The law of σ satisfies

$$
\mathbb{P}[\sigma] \propto\left(\frac{e^{-2 U}}{\cosh 2 J}\right)^{\left|E_{\sigma} \bullet\right|}\left(\frac{\sinh 2 J}{\cosh 2 J}\right)^{\left|E_{\sigma} \bullet\right|} \mathbb{1}_{\{\text {ice-rule }\}} \mathbb{1}_{\{\text {boundary conditions }\}},
$$

where $E_{\sigma} \bullet=\left\{x y \in E: \sigma^{\bullet}(x) \neq \sigma^{\bullet}(y)\right\}$, and similarly for $E_{\sigma^{\bullet}}$.

From AT to the six-vertex model II

The law of σ satisfies

$$
\mathbb{P}[\sigma] \propto\left(\frac{e^{-2 U}}{\cosh 2 J}\right)^{\left|E_{\sigma} \bullet\right|}\left(\frac{\sinh 2 J}{\cosh 2 J}\right)^{\left|E_{\sigma} \bullet\right|} \mathbb{1}_{\{\text {ice-rule }\}} \mathbb{1}_{\{\text {boundary conditions }\}},
$$

where $E_{\sigma} \bullet=\left\{x y \in E: \sigma^{\bullet}(x) \neq \sigma^{\bullet}(y)\right\}$, and similarly for $E_{\sigma^{\bullet}}$.
Six-vertex spins induce edge orientations and a height function:

From AT to the six-vertex model II

The law of σ satisfies

$$
\mathbb{P}[\sigma] \propto\left(\frac{e^{-2 U}}{\cosh 2 J}\right)^{\left|E_{\sigma} \bullet\right|}\left(\frac{\sinh 2 J}{\cosh 2 J}\right)^{\left|E_{\sigma} \bullet\right|} \mathbb{1}_{\{\text {ice-rule }\}} \mathbb{1}_{\{\text {boundary conditions }\}},
$$

where $E_{\sigma^{\bullet}}=\left\{x y \in E: \sigma^{\bullet}(x) \neq \sigma^{\bullet}(y)\right\}$, and similarly for $E_{\sigma^{\bullet}}$.
Six-vertex spins induce edge orientations and a height function:

From AT to the six-vertex model II

The law of σ satisfies

$$
\mathbb{P}[\sigma] \propto\left(\frac{e^{-2 U}}{\cosh 2 J}\right)^{\left|E_{\sigma} \bullet\right|}\left(\frac{\sinh 2 J}{\cosh 2 J}\right)^{\left|E_{\sigma} \bullet\right|} \mathbb{1}_{\{\text {ice-rule }\}} \mathbb{1}_{\{\text {boundary conditions }\}},
$$

where $E_{\sigma^{\bullet}}=\left\{x y \in E: \sigma^{\bullet}(x) \neq \sigma^{\bullet}(y)\right\}$, and similarly for $E_{\sigma^{\bullet}}$.
Six-vertex spins induce edge orientations and a height function:

From AT to the six-vertex model III

		$+$	+	$+$		
	+	+	+	+	+	
+	+	+	-	+	+	$+$
+	+	-	+	+	-	$+$
+	+	+	+	+	+	$+$
	+	+	-	+	+	
		+	+	+		

Note: the boundary conditions $\tau=\tau^{\prime}$ in AT impose both a layer of 1 s and a layer of 0 s on the boundary for the height function.

From AT to the six-vertex model III

		+	+	+		
	+	+	+	+	$+$	
+	+	+	-	+	+	$+$
+	+	-	+	+	-	+
+	+	+	+	+	$+$	+
	+	+	-	+	+	
		+	+	+		

Note: the boundary conditions $\tau=\tau^{\prime}$ in AT impose both a layer of 1 s and a layer of 0 s on the boundary for the height function.
For J, U self-dual, the corresponding six-vertex model is not staggered and reduces to the usual six-vertex model with weights

$$
a=b \in(0,1), c=1
$$

and $a<\frac{1}{2}$ if and only if $J<U$.

Input from six-vertex

On the self-dual line, the corresponding six-vertex height function

- delocalizes for $J \geq U$ (Duminil-Copin-Karrila-Manolescu-Oulamara '20, Glazman-Lammers '22+),
- localizes for $J<U$ (Duminil-Copin-Gagnebin-Harel-Manolescu-Tassion '16, Glazman-Peled '19).

Input from six-vertex

On the self-dual line, the corresponding six-vertex height function

- delocalizes for $J \geq U$ (Duminil-Copin-Karrila-Manolescu-Oulamara '20, Glazman-Lammers '22+),
- localizes for $J<U$ (Duminil-Copin-Gagnebin-Harel-Manolescu-Tassion '16, Glazman-Peled '19).

Localization of the height function implies long-range order in

$$
\sigma^{\bullet}=\tau \tau^{\prime} \quad \text { and } \quad \sigma^{\bullet}=\tau^{*}
$$

Intermediate behaviour on self-dual line

Building on that, the following was shown.

Theorem [Glazman-Peled '19]

For $d=2$ and any self-dual $J<U$,

$$
\mathrm{AT}_{G}\left[\cdot \mid \tau=\tau^{\prime} \text { on } \partial G\right] \Rightarrow \mathrm{AT}^{\mathrm{f},+} \quad \text { as } G \nearrow \mathbb{Z}^{2}
$$

and the limit satisfies

$$
\operatorname{AT}^{\mathrm{f},+}\left[\tau_{0} \tau_{x}\right] \leq e^{-c \cdot|x|} \quad \text { while } \quad \operatorname{AT}^{\mathrm{f},+}\left[\tau_{0} \tau_{0}^{\prime} \tau_{x} \tau_{x}^{\prime}\right] \geq C>0
$$

\rightarrow starting point of our work.

Sketch of proof of main result

Key result:

Proposition [Aoun-D.-Glazman '22]
For $J<U$ self-dual, there exists $c>0$ such that, for any $n \geq 1$,

$$
\operatorname{AT}_{\Lambda_{n}}^{+,+}\left[\tau_{0}\right] \leq e^{-c n}
$$

where Λ_{n} is induced by $[-n, n]^{2} \cap \mathbb{Z}^{2}$.

- classical arguments in the graphical representation show that

$$
\lim _{n \rightarrow \infty}-\frac{1}{n} \log \mathrm{AT}_{\Lambda_{n}, \beta}^{+,+}\left[\tau_{0}\right]
$$

exists and is right-continuous in β; alternatively: $\varphi_{\beta}(S)$-argument

- duality, sharpness and the lemma ($\mathrm{AT}=\mathrm{AT}^{+,+}$a.e.) imply the theorem $\left(\beta_{c}^{\tau}>\beta_{\mathrm{sd}}>\beta_{c}^{\tau \tau^{\prime}}\right.$ and duality of γ_{τ} and $\left.\gamma_{\tau \tau^{\prime}}\right)$

Graphical representation

Introduced by Chayes-Machta '97 and Pfister-Velenik '97.
Express correlations in AT in terms of connection probabilities in some edge model:

- $G=(V, E)$ finite subgraph of \mathbb{Z}^{d} and $J, U>0$,
- configuration space: $\Omega=\{0,1\}^{E} \times\{0,1\}^{E}$
- probability measure ATRC_{G} on Ω (FKG, DMP, CBC)

Graphical representation

Introduced by Chayes-Machta '97 and Pfister-Velenik '97.
Express correlations in AT in terms of connection probabilities in some edge model:

- $G=(V, E)$ finite subgraph of \mathbb{Z}^{d} and $J, U>0$,
- configuration space: $\Omega=\{0,1\}^{E} \times\{0,1\}^{E}$
- probability measure ATRC_{G} on Ω (FKG, DMP, CBC)
$\mathbf{J}<\mathbf{U}:$ pairs $\left(\omega_{\tau}, \omega_{\tau \tau^{\prime}}\right)$ with $\omega_{\tau} \subseteq \omega_{\tau \tau^{\prime}}$ and

$$
\begin{aligned}
\operatorname{AT}_{G}\left[\tau_{x} \tau_{y}\right] & =\operatorname{ATRC}_{G}\left[x \stackrel{\omega_{\tau}}{\longleftrightarrow} y\right], \\
\operatorname{AT}_{G}\left[\tau_{x} \tau_{x}^{\prime} \tau_{y} \tau_{y}^{\prime}\right] & =\operatorname{ATRC}_{G}\left[x \stackrel{\omega_{\tau \tau^{\prime}}}{\longleftrightarrow} y\right] .
\end{aligned}
$$

Graphical representation

Introduced by Chayes-Machta '97 and Pfister-Velenik '97.
Express correlations in AT in terms of connection probabilities in some edge model:

- $G=(V, E)$ finite subgraph of \mathbb{Z}^{d} and $J, U>0$,
- configuration space: $\Omega=\{0,1\}^{E} \times\{0,1\}^{E}$
- probability measure ATRC_{G} on Ω (FKG, DMP, CBC)
$\mathbf{J}<\mathbf{U}:$ pairs $\left(\omega_{\tau}, \omega_{\tau \tau^{\prime}}\right)$ with $\omega_{\tau} \subseteq \omega_{\tau \tau^{\prime}}$ and

$$
\begin{aligned}
\operatorname{AT}_{G}\left[\tau_{x} \tau_{y}\right] & =\operatorname{ATRC}_{G}\left[x \stackrel{\omega_{\tau}}{\longleftrightarrow} y\right], \\
\operatorname{AT}_{G}\left[\tau_{x} \tau_{x}^{\prime} \tau_{y} \tau_{y}^{\prime}\right] & =\operatorname{ATRC}_{G}\left[x \stackrel{\omega_{\tau \tau^{\prime}}}{\longleftrightarrow} y\right] .
\end{aligned}
$$

Boundary conditions relevant for the proof:

$$
\begin{aligned}
\operatorname{AT}_{G}^{+,+}\left[\tau_{x}\right] & =\operatorname{ATRC}_{G}^{\mathrm{w}, \mathrm{w}}\left[x \stackrel{\omega_{\tau}}{\longleftrightarrow} \partial G\right] \\
\operatorname{AT}_{G}\left[\tau_{x} \mid \tau=\tau^{\prime} \text { on } \partial G\right] & =\operatorname{ATRC}_{G}^{\mathrm{f}, \mathrm{w}}\left[x \stackrel{\omega_{\tau}}{\longleftrightarrow} \partial G\right]
\end{aligned}
$$

Steps and ingredients for proof of key result

Fix $J<U$ on the self-dual curve.
Step 1. Prove the exponential decay in Glazman-Peled '19 in finite volume: for any $G \supseteq \Lambda_{n}$,

$$
\operatorname{ATRC}_{G}^{\mathrm{f}, \mathrm{w}}\left[0 \stackrel{\omega_{\tau}}{\longleftrightarrow} \partial \Lambda_{n}\right] \leq e^{-c n}
$$

BKW coupling (Baxter-Kelland-Wu '73), and exponential relaxation for the critical random-cluster model with cluster-weight $q>4$ and free boundary conditions (Duminil-Copin-Gagnebin-Harel-Manolescu-Tassion '16).

Steps and ingredients for proof of key result

Fix $J<U$ on the self-dual curve.
Step 1. Prove the exponential decay in Glazman-Peled '19 in finite volume: for any $G \supseteq \Lambda_{n}$,

$$
\operatorname{ATRC}_{G}^{\mathrm{f}, \mathrm{w}}\left[0 \stackrel{\omega_{\tau}}{\longleftrightarrow} \partial \Lambda_{n}\right] \leq e^{-c n}
$$

BKW coupling (Baxter-Kelland-Wu '73), and exponential relaxation for the critical random-cluster model with cluster-weight $q>4$ and free boundary conditions (Duminil-Copin-Gagnebin-Harel-Manolescu-Tassion '16).
Step 2. Show that $\operatorname{ATRC}^{\mathrm{w}, \mathrm{w}}\left[0 \stackrel{\omega_{\tau}}{\longleftrightarrow} \infty\right]=0$ (infinite volume).
Exploration argument in the corresponding six-vertex model (semi-free), and non-coextistence thm. (Sheffield '05, Duminil-Copin-Raoufi-Tassion '19).

Steps and ingredients for proof of key result

Fix $J<U$ on the self-dual curve.
Step 1. Prove the exponential decay in Glazman-Peled '19 in finite volume: for any $G \supseteq \Lambda_{n}$,

$$
\operatorname{ATRC}_{G}^{\mathrm{f}, \mathrm{w}}\left[0 \stackrel{\omega_{\tau}}{\longleftrightarrow} \partial \Lambda_{n}\right] \leq e^{-c n}
$$

BKW coupling (Baxter-Kelland-Wu '73), and exponential relaxation for the critical random-cluster model with cluster-weight $q>4$ and free boundary conditions (Duminil-Copin-Gagnebin-Harel-Manolescu-Tassion '16).
Step 2. Show that $\operatorname{ATRC}^{\mathrm{w}, \mathrm{w}}\left[0 \stackrel{\omega_{\tau}}{\longleftrightarrow} \infty\right]=0$ (infinite volume).
Exploration argument in the corresponding six-vertex model (semi-free), and non-coextistence thm. (Sheffield '05, Duminil-Copin-Raoufi-Tassion '19).
Step 3. Given step 2, show that, for any $\delta>0$, there exists $\alpha>0$ with $\operatorname{ATRC}_{\Lambda_{2 n}}^{\mathrm{w}, \mathrm{w}}\left[0 \stackrel{\omega_{\tau}}{\longleftrightarrow} \partial \Lambda_{n}\right] \leq e^{-\alpha n}+e^{\delta n} \sum_{\Lambda_{n} \subseteq G \subseteq \Lambda_{2 n}} p_{G} \cdot \operatorname{ATRC}_{G}^{\mathrm{f}, \mathrm{w}}\left[0 \stackrel{\omega_{\tau}}{\longleftrightarrow} \partial \Lambda_{n}\right]$.

Finding almost free ω_{τ}-circuits (Alexander '04, Campanino-Ioffe-Velenik '08).

What next?

- Delevop Ornstein-Zernike theory in AT
\rightarrow transport via couplings to six-vertex and further to critical random-cluster model with $q>4$ (with Alexander Glazman and Sébastien Ott)
- Sharpness when $U<0$ (graphical representation partially available)
- Continuity of the phase transitions when $J<U$

What next?

- Delevop Ornstein-Zernike theory in AT
\rightarrow transport via couplings to six-vertex and further to critical random-cluster model with $q>4$ (with Alexander Glazman and Sébastien Ott)
- Sharpness when $U<0$ (graphical representation partially available)
- Continuity of the phase transitions when $J<U$

Thank you for your attention!

