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Multi-scale

A dynamical system such as from engineering, science, economics,
and ecology consists of many different variables interacting with
each other. Given an object of study, the interacting elements are
classified as into two categories: influential or negligible, the
negligible is either neglected or included in the model through the
CLT theorem and modelled by randomness.
Some influential interacting variables evolve at the same time scale
as our objects, some evolves at a slower scale (so can be treated to
be constant in time), others at faster scales. If we model the
evolution of the slow variables by a random differential equations,
the fast variable entered into the expression for the vector fields.
On the time scale of the object of interest, the precise positions of
fast variables are not tractable but often not needed. Instead, one
focuses on the persistent effects of the fast variables.
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Two time scale stochastic equations

Stochastic equations with slow and fast variables already separated:

ẋεt = F0(x
ε
t , y

ε
t ) + F (xεt , y

ε
t )ξ̇t

where yεt = y t
ε
for a suitable process y or

ẏεt =
1

ε
σ0(x

ε
t , yt) + ε−ασ(xεt , yt)η̇t

As the time separation parameter ε → 0, the position of yεt is not
tractable and irrelevant. The aim is to track down its persistent
effect and deduce an autonomous equation for the variable of
interests.
Examples of such fast motions are for example periodic functions
or ergodic (stationary) Markovian process.
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What noise?

According to J. Jona-Lasino, ‘the critical point of a second order
phase transitions so far represents in physics the most important
instance where the central limit theorem breaks down’. By this he
refers to the convergence of the rescaled sum of an infinite number
of mean zero random variables 1

n−α

∑n
i=1Xi to a Gaussian random

variable.
This breaks down precisely when there is a strong correlation of the
said random variables. In deed Rosenblatt showed that if Yk is a
Gaussian sequence with mean zero and variance E(Y0Yn) ∼ n−a,
with a ∈ (0, 12) then

1
n1−a

∑n
i=1H2(Xi) converges to a

non-Gaussian random variable.
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Functional Limit Theorems

In fact even when the limits are Gausssian distributed, Donsker’s
invariance principle may fail:

lim
n→∞

1

nα

[nt]∑
i=1

Xi

may not be a Brownian motion.

The scale α would actually yield the self-similarity exponent of the
process in the domain of attraction.
One of these processes are fractional Brownian motions, the others
are Hermit processes ZH,m.
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The Nile

Each summer, the river Nile overflows and floods the surrounding
areas, leaving behind rich fertile silt for agriculture.
If the inundation was inadequate, only a small area would be
covered with the life-giving silt, famine follows.

During the Pharaonic Period, forecast for the water flow was used
to compute taxes.
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Time series data

Records on the height of the annual flow has been kept for 3
millennia, with numerous Nilometers.

In 1906, Harold Hurst started to work in the Survey Department of
Egypt in October 1906, which was responsible for collecting data
throughout the Nile basin.
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Harold Hurst

Hurst worked in Egypt from 1906-1968, studying the annual Nile
overflow series data he discovered a heavier flood year is followed
by a heavier than average flood year and a draught year flow is
followed by a lighter than average river flow.

The Hurst phenomenon is modelled by
Mandelbrot and van Ness with fractional
BM (1968).
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Mandelbrot studied fractals to capture
the roughness persistent at all levels.

Bt =

∫ t

0
(t− u)H− 1

2 dWu+∫ 0

−∞
[(t− u)H− 1

2 − (−u)H− 1
2 ] dWu.

Self-similar: Bat = aHBt.
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Correlated noise

The ‘derivative’ of a fractional Brownian motion is the simplest
noise with correlation. A fBM is a Gaussian process with stationary
increment and E(Bt+s −Bs)

2 = t2H .
For t large, H ̸= 1

2 :

E(Bt+s+1 −Bt+s)(Bs+1 −Bs) ∼ t2H−2.

The dynamics of an equation driven by a long range fractional
Brownian motion (H > 1

2) is quite different from that of a
Brownian motion. Very little is know of its invariant measure, no
formula exists so far except for the fractional Ornstein-Uhlenbeck
equation. Even little is know of its densities and lower and upper
bounds.
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This talk draws from

▶ Fast variable non-Markovian, driven by fBM. Time
homogenisation problem (multiple scaling constants, the
effect dynamics is much richer than that given by the
Markovian dynamics), Johann Gehringer +L.

▶ Slow variable driven by fBM. The analysis is a puzzle.
Hairer+L.

▶ Fractional averaging with fast fractional dynamics, Sieber+L.

▶ non-product form for Volterra kernels, Gehringer +L+Sieber
- for SPDE

dXε
t = AXε

t dt+ f
(
Xε

t , Y t
ε

)
dt+ g

(
Xε

t , Y t
ε

)
dBt.

L.+Sieber

▶ L. + Planloup+Sieber: smooth dependence of invariant
measures for SDEs driven by fBMs depending on a parameter.
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Ergodicity of Fast Motion

Let yt be a stationary process with invariant measure µ, define

f̄ :=

∫
Y
f(y) µ(dy).
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Functional LLN and Averaging Principle

ẋεt = F0(x
ε
t , yt/ε) + F (xεt , yt/ε)ξ̇t

Definition
yt satisfies a Functional LLN if for any f regular∣∣∣∣ε∫ t

0
f(yr/ε)dr − tf̄

∣∣∣∣ = o(ε)

Let Ys be an independent stationary ergodic Markov process with
generator L which one assumes nice. Functional LLN implies that∫ t

0
f(Ys/ε)dWs → Ŵt

a Wiener process with covariance (f ⊗ f)
1
2 .

dxεt = f(xεt , Ys/ε)dWs
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Diffusion Creation /Homogenesation

The functional CLT for the Markov process
If f̄ = 0 and regular

1√
ε

∫ t

0
f(Ys/ε)ds → (fL−1f)

1
2 Wt.

Diffusion creation problem:

ẋεt =
√
ε f(xεt , y t

ε
).
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Integration and enhanced processes

∫ t

0
f(Bs)dBs ∼

∑∫ v

u
f(Bu) + f ′(Bu)δBur + . . . )dBr

∼

Auv︷ ︸︸ ︷∑
f(Bu)δBuv + f ′(Bu)

∫ v

u
δBurdBr + . . . .

For H > 1
2 , this is Riemann-Stieljes, for H ∈ (13 ,

1
2), we need the

second order term, the iterated integrals of B.
Enhanced process (B,B) where

Buv =

∫ v

u
(Bu −Br)dBr.

For H ∈ (14 ,
1
3), need to Taylor expand to order 3.

To define
∫
f(xs)dBs we assume that xs is controlled by B: it is

similar to B plus smooth order terms.
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Sewing Lemma

Given a two parameter object Au,v define
δAs,u,t = Ast −Asu −Aut. If

|Ast| ≤ K ′|t− s|η, |δAsut| ≤ K|t− s|η̄

for η > 0, η̄ > 1 then lim
∑

Auv exists and defines an integral I

|Iuv −Auv| ≤ K|t− s|η̄.

Sewing is used to take away probability from Itô integral.

It turns out that there is a stochastic sewing lemma pumping
probability back into action when sewing lemma fails.
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Rough functional limit theorem
Ys is a fractional Ornstein-Uhlenbeck process,
H∗(m) = m(H − 1) + 1, G function with Hermite rank m.

▶
1√
ε

∫ t

0
G(Ys/ε)ds → cWt, if H∗(m) <

1

2
,

▶

1
√
ε
√

| ln ε|

∫ t

0
G(Ys/ε)ds → cWt, if H∗(m) =

1

2
,

▶

εH
∗(m)−1

∫ t

0
G(ys/ε)ds → cZ̄

H∗(m),m
t , if H∗(m) >

1

2
, .

These are essentially known, as for all previous FCL, they converge
weakly.
Theorem (Gehringer-L.) Functional limit theorem holds in rough
path topology, so limit of ẋεt = f(xεt )G(y t

ε
) converge.
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Young bounds fails

For H > 1
2 , the following is the essence for defining integrals:∣∣∣∣∫ v

u
fsdBs − fvδBu,v

∣∣∣∣ ≤ |f |α|B|β|t− s|α+β.

dxεt = F0(x
ε
t , yt/ε) + F (xεt , yt/ε) dBt

One difficulty is that the uniform estimates for xεt are difficulty
obtain, while for diffusions or ODEs they come for free. The usual
young bound, in case H > 1

2 blows up as ε → 0.

The other difficulty is that we have no clue as to what limit to
expect. Martingale problem technique is used for averaging
principle.
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Functional LLN for stochastic integrals
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Fractional Averaging

dxεt = f(xεt , y
ε
t ) dBt + g(xεt , y

ε
t ) dt ,

Proposition. Let (Bt) be a fBM of Hurst parameter H > 1
2 and

yt is a uniformly elliptic Markov process on a compact manifold
solving a feedback SDE. Then xεt converges to x̄t in probability

dx̄t = f̄(x̄t) dBt + ḡ(x̄t) dt .

In particular for any β < H, there exists κ > 0 such that

lim
ε→0

P
(∣∣∣∫ t

s
f(y r

ε
)dBr − f̄(Bt −Bs)

∣∣∣
β
> εκ

)
= 0 .

Notes
Annealed limit. xεt → x̄ in probability.
Technical difficulty: Tightness
Quenched Problem. If we fix a path h = B(ω), does the
convergence hold for each fixed fBM path?
Feedback model.
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Toy Model : Averaging with rough path tools
based on Hairer-L’20
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Strong Mixing conditions and Stochastic LLN

One useful ergodic condition on a stationary process y is the
strong mixing condition, in particular for f, g bounded measurable,∣∣Ef(yt)g(ys)∣∣ ≤ 4|t− s|−δ|f |∞|g|∞ ,

Then if f is bounded and f̄ = 0,

E
(∫ t

s
f(yr/ε) dr

)2
= ε2E

∫ t/ε

s/ε

∫ t/ε

s/ε
f(yr)f(yr̄) dr dr̄

≲ |f |2∞ ε2
∫ t/ε

s/ε

∫ t/ε

s/ε
|r − r̄|−δ dr dr̄

≲ εδ|t− s|2−δ .
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Using time average in topology

∥∥∥∫ t

s
f(yr/ε) dr

∥∥∥
p
≲ ε

δ
p |t− s|1−

δ
p .

|h|−κ = sup
0≤s,t≤T

|t− s|κ−1
∣∣∣∫ t

s
h(r) dr

∣∣∣ .
Lemma (Hairer-L’20)

If y is strong mixing with rate δ, F : Rd × Y → R bounded
measurable, uniformly Lipschitz continuous in the first variable ( Y
compact), then ∥F (x, y·/ε)− F̄∥−κ,γ → 0.

Indeed, assume F̄ = 0.∥∥∥∫ t

s
(F (x, yr/ε)− F (z, yr/ε)) dr

∥∥∥
p
≲ ε

δ
p |x− z||t− s|1−

δ
p .

F (x, y·/ε) is of class C
−κ,γ a.s.
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Lemma (Hairer-L’20)

Let H > 1
2 . Let fn, f̄ : R+ × Rd → L(Rm,Rd) be in Cζ,2. Let xn

and x be the Cα solutions to the equations

dxnt = fn(t, x
n
t ) dBt,+f0(t, x

n
t )dt, dxt = f̄(xt) dBt + f̄0(xt)dt ,

with xn0 = x0. Suppose that κ, γ ≥ 0,

lim
n→∞

|fn − f̄ |−κ,γ = 0 .

Then, xn → x in probability in Cα, for α ∈ (12 , H − κ), ζ + α > 1
and H − κ+ γα > 1.

Corollary (Fractional Averaging Theorem)

Let f, g be bounded measurable and of class BC2 in their first
arguments. Then, any solutions xε converges to x̄.

dxεt = f(xεt , y
ε
t ) dBt + g(xεt , y

ε
t ) dt ,

dx̄t = f̄(x̄t) dBt + ḡ(x̄t) dt .
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Ingredients of the proof
Let Bα,p denote adapted stochastic process with δx ∈ Hα

p , i.e.

sup
s,t

|t− s|−α∥xt − xs∥Lp < ∞ .

Lemma (Hairer-L’20)

Let p ≥ 2 and α > 1
2 , x· ∈ Bα,p, f : R+ × Rd → R with f ∈ C−κ,γ

(deterministic) for some κ, γ ≥ 0 such that η = H − κ > 1
2 and

η̄ = H − κ+ γα > 1, we may define∫ t

s
f(r, xr) dBr

by sewing up As,t =
∫ t
s f(r, xs) dBr (the integral is interpreted as

the sum of a Wiener integral and Riemann-Stieltjes integral).

Moreover, uniformly over s, t ∈ [0, T ].∥∥∥∫ t

s
f(r, xr) dBr

∥∥∥
p
≲ |f |−κ,γ

(
|t− s|H−κ + ∥x∥γα,p|t− s|η̄

)
.
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A unification of fractional averaging, averaging and homogenisation
Hairer-Li 21
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Unusual Limit Theorems

Ys stationary ergodic Markov process with all nice properties and
generator L.
Lemma (Hairer+Li 21)

▶ If H > 1
2 , the following converges in probability∫ t

0
f(Ys/ε)dBs → f̄Bt.

▶ If H ∈ (13 ,
1
2) (and f̄ = 0 incase H > 1

2)

ε
1
2
−H

∫ t

0
f(Ys/ε)dBs → ΣWt.

Σ =
1

2
Γ(2H + 1)F ⊗ L1−2HF .
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Concluding Remark

These limit theorems underlying the effective dynamics for
stochastic systems whose slow motion is driven by fractional
Brownian motions.
For low H we have to slow it down to see an effective motion.
These results, best described as factional averaging, are given in
Hairer + Li 21 for H ∈ (13 ,

1
2), which also surprisingly connects the

two classic topics ‘stochastic averaging’ and ‘homogenisation’. It is
surprising because the first is a LLN (H = 1

2) and the second is a
fluctuation theorem (H = 1), one did not previously connecting
the dots on the form of the effective limit. Here there is a unified
formula for H ∈ (13 , 1], and our results resembles an averaging for
small H and fluctuation for H > 1

2 .
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