Multiscale analysis of a transmission problem

Laurence HALPERN

LAGA - Université Paris 13

Workshop on multiscale methods for deterministic and stochastic dynamics

Genève, january 29, 2020

Collaboration with Martin Gander, Véronique Martin Philippe d'Anfray, Juliette Ryan et Michel Borrel, Oana Ciobanu, ONERA

1 Introduction

2 Coupling advection-diffusion/advection

8 New answer with paraxial operator.

Multiscale Analysis

1 Introduction

2 Coupling advection-diffusion/advection

3 New answer with paraxial operator

Multiscale Analysis

1 Introduction

2 Coupling advection-diffusion/advection

Over a start with paraxial operator

4 Multiscale Analysis

1 Introduction

- 2 Coupling advection-diffusion/advection
- 3 New answer with paraxial operator
- Multiscale Analysis
 - 5 References
 - 6 Conclusion and perspectives

1 Introduction

- 2 Coupling advection-diffusion/advection
- 3 New answer with paraxial operator
- Multiscale Analysis

1 Introduction

- 2 Coupling advection-diffusion/advection
- 3 New answer with paraxial operator
- Multiscale Analysis

Summary

Coupling advection-diffusion/advection

3 New answer with paraxial operator

4 Multiscale Analysis

Absorbing boundary conditions for parabolic equations

LH +M. Schatzmann +J. Rauch 86-95

Absorbing boundary conditions

Domain of interest

Domain of computation

The convection-diffusion equation

$$\mathcal{L}(u) := u_t - \nu \Delta u + a\partial_1 u + \boldsymbol{b} \cdot \boldsymbol{\nabla} u + cu = f$$
$$u(\cdot, 0) = u_0$$
$$\nu > 0, \ a > 0, \ b \in \mathbb{R}^n, \ c > 0.$$
$$\mathcal{B}_n = \left(-\frac{\nu}{a}\right)^{n-1} \mathcal{B}_1^n, \quad \mathcal{B}_1 = \partial_t + a\partial_1 + cI.$$

 v_n solution with $\mathcal{B}_n v_n = 0$ on the exterior boundary of the layer,

$$\|u - v_n\|_{L^2(\Omega_I)} \leq \frac{1}{\sqrt{2a}} \nu^{2n+1/2} e^{-\frac{a}{\nu}\varepsilon} \|\mathcal{L}^{2n} u\|_{L^2(\Omega_I)}$$

If $u \ll 1$, we choose $arepsilon \approx \mathit{Ch}, \mathsf{and}$ get

$$\|u - v_n\|_{L^2(\Omega_I)} \leq \frac{1}{\sqrt{2a}} \nu^{2n+1/2} e^{-2CPe} \|\mathcal{L}^{2n} u\|_{L^2(\Omega_I)}$$

Towards coupling

Towards coupling

Couple "for good" Euler and Navier-Stokes. P. Borrel and J. Ryan. 2006-11. Thèse Oana CIOBANU.

Towards coupling

Couple "for good" Euler and Navier-Stokes. P. Borrel and J. Ryan. 2006-11. Thèse Oana CIOBANU.

Towards coupling

- Instead of having $\mathcal{B}_n v$ on the boundary, use it in a layer. Eric Dubach's thesis, stationary AD equation. 1993.
- Beyond Dubach's work, write an algorithm which improves the error at each iterate. M. Gander, C. Japhet, V. Martin, 2002-2016.
- Develop a (modest) multiscale expansion for the coupling problem. M. Gander, V. Martin, 2018.

Towards coupling

- Instead of having $\mathcal{B}_n v$ on the boundary, use it in a layer. Eric Dubach's thesis, stationary AD equation. 1993.
- Beyond Dubach's work, write an algorithm which improves the error at each iterate. M. Gander, C. Japhet, V. Martin, 2002-2016.
- Develop a (modest) multiscale expansion for the coupling problem. M. Gander, V. Martin, 2018.

Towards coupling

- Instead of having $\mathcal{B}_n v$ on the boundary, use it in a layer. Eric Dubach's thesis, stationary AD equation. 1993.
- Beyond Dubach's work, write an algorithm which improves the error at each iterate. M. Gander, C. Japhet, V. Martin, 2002-2016.
- Develop a (modest) multiscale expansion for the coupling problem. M. Gander, V. Martin, 2018.

Summary

2 Coupling advection-diffusion/advection

New answer with paraxial operator

4 Multiscale Analysis

What is the question?

\checkmark How to couple the models?

 \square How to minimize $||u - u_{ad}||$?

What is the question?

- ☑ How to couple the models?
- \square How to minimize $||u u_{ad}||$?

- Fabio Gastaldi and Alfio Quarteroni. (1989). On the Coupling of Hyperbolic and Parabolic Systems : Analytical and Numerical Approach, Applied Numerical Mathematics,
- F. Brezzi and C. Canuto and A. Russo (1989). A self-adaptive formulation for the Euler-Navier Stokes coupling. Comp. Meth. Appl. Mech. Eng.
- Cristian A. Coclici and Gheorghe Morosanu and Wolfgang L. Wendland (2000.). The Coupling of Hyperbolic and Elliptic Boundary Value Problems with Variable Coefficients. Mathematical Methods in the Applied Sciences.
- Eric Dubach. Contribution à la Résolution des Équations fluides en domaine non borné. Université Paris 13,1993.

- Fabio Gastaldi and Alfio Quarteroni. (1989). On the Coupling of Hyperbolic and Parabolic Systems : Analytical and Numerical Approach, Applied Numerical Mathematics,
- F. Brezzi and C. Canuto and A. Russo (1989). A self-adaptive formulation for the Euler-Navier Stokes coupling. Comp. Meth. Appl. Mech. Eng.
- Cristian A. Coclici and Gheorghe Morosanu and Wolfgang L. Wendland (2000.). The Coupling of Hyperbolic and Elliptic Boundary Value Problems with Variable Coefficients. Mathematical Methods in the Applied Sciences.
- Eric Dubach. Contribution à la Résolution des Équations fluides en domaine non borné. Université Paris 13,1993.

- Fabio Gastaldi and Alfio Quarteroni. (1989). On the Coupling of Hyperbolic and Parabolic Systems : Analytical and Numerical Approach, Applied Numerical Mathematics,
- F. Brezzi and C. Canuto and A. Russo (1989). A self-adaptive formulation for the Euler-Navier Stokes coupling. Comp. Meth. Appl. Mech. Eng.
- Cristian A. Coclici and Gheorghe Morosanu and Wolfgang L. Wendland (2000.). The Coupling of Hyperbolic and Elliptic Boundary Value Problems with Variable Coefficients. Mathematical Methods in the Applied Sciences.
- Eric Dubach. Contribution à la Résolution des Équations fluides en domaine non borné. Université Paris 13,1993.

- Fabio Gastaldi and Alfio Quarteroni. (1989). On the Coupling of Hyperbolic and Parabolic Systems : Analytical and Numerical Approach, Applied Numerical Mathematics,
- F. Brezzi and C. Canuto and A. Russo (1989). A self-adaptive formulation for the Euler-Navier Stokes coupling. Comp. Meth. Appl. Mech. Eng.
- Cristian A. Coclici and Gheorghe Morosanu and Wolfgang L. Wendland (2000.). The Coupling of Hyperbolic and Elliptic Boundary Value Problems with Variable Coefficients. Mathematical Methods in the Applied Sciences.
- Eric Dubach. Contribution à la Résolution des Équations fluides en domaine non borné. Université Paris 13,1993.

Summary

Problem a > 0

$$\mathcal{L}_{ad} u := -\nu \partial_{xx} u + \underbrace{\partial_t u + a \partial_x u + cu}_{\mathcal{L}_a u} = f \text{ in } \Omega,$$
$$u(-L_1, \cdot) = g_1 \text{ L.B.C. } \mathcal{L}_a u(L_2, \cdot) = 0 \text{ R.B.C.}$$
$$u(x, 0) = u_0 \text{ I.C.}$$

Problem a > 0

$$\mathcal{L}_{ad} u := -\nu \partial_{xx} u + \underbrace{\partial_t u + a \partial_x u + c u}_{\mathcal{L}_a u} = f \text{ in } \Omega,$$
$$u(-L_1, \cdot) = g_1 \text{ L.B.C. } \mathcal{L}_a u(L_2, \cdot) = 0 \text{ R.B.C.}$$
$$u(x, 0) = u_0 \text{ I.C.}$$

Factorisation a > 0

$$\mathcal{L}_{ad}u = f$$
 $\widetilde{\mathcal{L}}_a\mathcal{L}_au = f$?

Factorisation a > 0

$$\mathcal{L}_{ad}u = f \qquad \qquad \widetilde{\mathcal{L}}_a \mathcal{L}_a u = f$$

$$\mathcal{L}_{a} := \partial_{t} + a\partial_{x} + c, \quad \mathcal{L}_{ad} = \mathcal{L}_{ma}\mathcal{L}_{a} + \frac{\nu}{a^{2}}\mathcal{R}$$
$$\mathcal{L}_{ma} = -\frac{\nu}{a^{2}}(a\partial_{x} - \partial_{t} - c - \frac{a^{2}}{\nu}), \quad \mathcal{R} = (\partial_{t} + c)^{2}.$$

J.P. Lohéac, F. Nataf and M. Schatzman, Parabolic Approximations of the Convection-Diffusion Equation, Math. of Comp., 60 (2002), p.515-530, 1993.

$$\mathcal{L}_{ad} = \mathcal{L}_{ma}\mathcal{L}_{a} + rac{
u}{a^2}\mathcal{R}$$

$$\mathcal{L}_{ad} = \mathcal{L}_{ma}\mathcal{L}_{a} + rac{
u}{a^2}\mathcal{R}$$
00000

Refe

00000

Refe

Iterative coupling a > 0

 $\mathcal{L}_{ad} u_{ad} = f \text{ in } \Omega_1$ $u_{ad}(\cdot,0) = u_0$ $u_{ad}(-L_1,\cdot)=g,$ $\mathcal{L}_{a}u_{ad}(0,\cdot)=u_{ma}(0,\cdot),$

 $\mathcal{L}_{ma}u_{ma} = f - \frac{\nu}{a^2}\mathcal{R}u_a$ in Ω_2 $u_{ma}(\cdot, 0) = w_0 := f(\cdot, 0) + \nu u_0''$ $u_{ma}(L_2,\cdot)=0.$ $\mathcal{L}_a u_a = f \text{ in } \Omega_2$ $u_{a}(\cdot, 0) = u_{0}$ $u_a(0,\cdot)=\mathbf{u}(0,\cdot),$

Iterative coupling a > 0

 $\mathcal{L}_{ad} \mathcal{U}_{ad} = f \text{ in } \Omega_1$ $u_{ad}(\cdot,0) = u_0$ $u_{ad}(-L_1,\cdot)=g$ $\mathcal{L}_{a} u_{ad}(0, \cdot) = u_{ma}(0, \cdot),$ $\mathcal{L}_{ad} u_{ad}^k = f \text{ in } \Omega_1$ $u_{ad}^k(\cdot,0) = u_0$ $u_{ad}^k(-L_1,\cdot)=g,$ $\mathcal{L}_{a}u_{ad}^{k}(0,\cdot) = u_{ma}^{k}(0,\cdot),$

 $\mathcal{L}_{ma} u_{ma} = f - \frac{\nu}{r^2} \mathcal{R} u_a$ in Ω_2 $u_{ma}(\cdot, 0) = w_0 := f(\cdot, 0) + \nu u_0''$ $u_{m_2}(L_2, \cdot) = 0.$ $\mathcal{L}_{2}u_{2}=f$ in Ω_{2} $u_{a}(\cdot, 0) = u_{0}$ $u_a(0,\cdot) = \mathbf{u}(0,\cdot),$

 $\mathcal{L}_{ma} u_{ma}^k = f - \frac{\nu}{2} \mathcal{R} u_a^k$ in Ω_2 $u_{ma}^{k}(\cdot,0) = f(\cdot,0) + \nu u_{0}^{\prime\prime}$ $u_{ma}(L_2, \cdot) = 0.$ $\mathcal{L}_{2}\mu_{*}^{k} = f \text{ in } \Omega_{2}$ $u_{2}^{k}(\cdot, 0) = u_{0}$ $u_{a}^{k}(0,\cdot) = u_{ad}^{k-1}(0,\cdot).$

Refe

Iterative coupling a > 0

Summary

Coupling advection-diffusion/advection

New answer with paraxial operator

🕘 Multiscale Analysis

5 References

References

Métivier, G. (2012). Small Viscosity and Boundary Layer Methods : Theory, Stability Analysis, and Applications. Springer Science and Business Media.

Shih, S. D. (2007). Internal layers of parabolic singularly perturbed problems. ZAMM Journal of Applied Mathematics and Mechanics, 87(11-12), 831-844.

The advection-diffusion equation

The advection-diffusion equation

$$-\nu\partial_{xx}u + \partial_t u + a\partial_x u = f$$

u = h

The advection-diffusion equation

u = h

The advection-diffusion equation

$$-\nu \partial_{xx} u + \partial_{t} u + a \partial_{x} u = f$$

$$u = g_{1}$$

$$u = h$$

The factorization algorithm

The factorization algorithm

The factorization algorithm

The advection-diffusion equation

$$-\nu\partial_{xx}u + \partial_t u + a\partial_x u = f$$

u = h

1

Each term in the outer expansion u^{out} is solution of a transport equation,

$$\mathcal{L}_a u_0 = f,$$
 $u_0(x,0) = h(x),$ $u_0(-L_1,t) = g_1(t),$ (1)

$$\mathcal{L}_{a}u_{j} = \partial_{x}^{2}u_{j-1}, \quad u_{j}(x,0) = 0, \quad u_{j}(-L_{1},t) = 0, \quad j \ge 1.$$
 (2)

The first non vanishing term in the *inner expansion* uⁱⁿ is

$$U_2^*(y,t) = -rac{1}{a^2}\partial_x^2 u_0(L_2,t)e^{-ay}.$$

The algorithm, first advection steps

$$\mathcal{L}_{a}u_{a}^{1} := \partial_{t}u_{a}^{1} + a\partial_{x}u_{a}^{1} = f, \ u_{a}^{1}(0, \cdot) = g^{0}.$$

The algorithm, first advection steps

$$\mathcal{L}_{ma}u_{ma}^{1} := \partial_{t}u_{ma}^{1} - a\partial_{x}u_{ma}^{1} + \frac{a^{2}}{\nu}u_{ma}^{1} = \mathcal{R}u_{a}^{1} + \frac{a^{2}}{\nu}f, \ u_{ma}^{1}(0,t) = 0.$$

The algorithm, first advection steps

$$\mathcal{L}_{ma}u_{ma}^{1} := \partial_{t}u_{ma}^{1} - a\partial_{x}u_{ma}^{1} + \frac{a^{2}}{\nu}u_{ma}^{1} = \mathcal{R}u_{a}^{1} + \frac{a^{2}}{\nu}f, \ u_{ma}^{1}(0,t) = 0.$$

$$u_{ma}^{1,out}(x,t) + u_{ma}^{1,in}(x,t) = \sum_{j\geq 0}\nu^{j}u_{ma,j}^{1}(x,t) + \sum_{j\geq 1}\nu^{j}U_{ma,j}^{1,*}(\frac{L_{2}-x}{\nu},t).$$
(3)
$$u_{ma,0}^{1} = f, \quad u_{ma,j}^{1} = \left(-\frac{\mathcal{L}_{ma}^{0}}{a^{2}}\right)^{j-1}\partial_{x}^{2}u_{a}^{1} \quad \text{for } j \geq 1,$$
(4)
with $\mathcal{L}_{ma}^{0} = \partial_{t} - a\partial_{x}.$

The algorithm, advection diffusion step 1

$$\mathcal{L}_{ad} u_{ad}^{1} = f, \ \mathcal{L}_{a} u_{ad}^{1}(0, \cdot) = u_{ma}^{1}(0, \cdot).$$
$$u^{out}(x, t) + u_{ad}^{1,in}(x, t) = \sum_{j \ge 0} \nu^{j} u_{j}(x, t) + \sum_{j \ge 2} \nu^{j} U_{ad,j}^{1,*}(\frac{-x}{\nu}, t).$$
(5)

The first non vanishing term in the inner expansion $u_{ad}^{1,in}$ is

$$U_{ad,2}^{1,*}(y,t) = -\frac{1}{a^4} \partial_{tt} (u_0 - u_a^1)(0,t) e^{-ay}.$$
 (6) 35 /49

The algorithm, second advection steps

$$u_{ma}^{2,out}(x,t) + u_{ma}^{2,in}(x,t) = \sum_{j\geq 0} \nu^{j} u_{ma,j}^{2}(x,t) + \sum_{j\geq 1} \nu^{j} U_{ma,j}^{2,*}(\frac{L_{2}-x}{\nu},t).$$
(7)

The first terms in the outer expansion $u_{ma}^{2,out}$ are given at x = 0 by

$$u_{ma,0}^{2} = f, \quad u_{ma,1}^{2} = \mathcal{L}_{a}u_{1}, \quad u_{ma,2}^{2} = \mathcal{L}_{a}u_{2},$$
$$u_{ma,3}^{2} = \mathcal{L}_{a}u_{3} - \frac{1}{2^{6}}\partial_{t}^{4}\left(u_{0} - g_{ad}^{0}\right) - \frac{1}{2^{4}}\partial_{t}^{2}\partial_{x}^{2}u_{0}.$$
 (8)

The algorithm, advection diffusion step 2

$$u^{out}(x,t) + u^{2,in}_{ad}(x,t) = \sum_{j\geq 0} \nu^{j} u_{j}(x,t) + \sum_{j\geq 4} \nu^{j} U^{2,*}_{ad,j}(\frac{-x}{\nu},t).$$
(9)

The first non vanishing term in the inner expansion $u_{ad}^{2,in}$ is

$$U_{ad,4}^{2,*}(y,\cdot) = -\frac{1}{a^8} \partial_{tt} (\partial_{tt} (u_0(0,\cdot) - g_{ad}^0) + a^2 \partial_x^2 u_0(0,\cdot)) e^{-ay}.$$
(10)

Summary

$$\begin{split} u(x,t) &\approx u^{out}(x,t) + u^{in}(x,t) = \sum_{j \ge 0} \nu^{j} u_{j}(x,t) + \sum_{j \ge 2} \nu^{j} U_{j}^{*}(\frac{L_{2}-x}{\nu},t), \ x \in \Omega, \\ u_{a}^{1}(x,t) &= u_{0}(x,t), \ x \in \Omega_{2}, \\ u_{a}^{2}(x,t) &\approx u_{a}^{out}(x,t) = u_{0}(x,t) + \sum_{j \ge 1} \nu^{j} u_{a,j}^{2}(x,t), \ x \in \Omega_{2}, \\ u_{ad}^{1}(x,t) &\approx u^{out}(x,t) + u_{ad}^{1,in}(x,t) = \sum_{j \ge 0} \nu^{j} u_{j}(x,t) + \sum_{j \ge 2} \nu^{j} U_{ad,j}^{1,*}(\frac{-x}{\nu},t), \ x \in \Omega_{1}, \\ u_{ad}^{2}(x,t) &\approx u^{out}(x,t) + u_{ad}^{2,in}(x,t) = \sum_{j \ge 0} \nu^{j} u_{j}(x,t) + \sum_{j \ge 4} \nu^{j} U_{ad,j}^{2,*}(\frac{-x}{\nu},t), \ x \in \Omega_{1}, \end{split}$$

with

$$U_{2}^{*}(y,\cdot) = -\frac{1}{a^{2}}\partial_{x}^{2}u_{0}(L_{2},t)e^{-ay},$$

$$U_{ad,2}^{1,*}(y,\cdot) = -\frac{1}{a^{4}}\partial_{tt}(u_{0}-u_{a}^{1})(0,t)e^{-ay},$$

$$U_{ad,4}^{2,*}(y,\cdot) = -\frac{1}{a^{8}}\partial_{tt}(\partial_{tt}(u_{0}(0,\cdot)-g_{ad}^{0})+a^{2}\partial_{x}^{2}u_{0}(0,\cdot))e^{-ay}.$$
(11)
$$U_{ad,4}^{2,*}(y,\cdot) = -\frac{1}{a^{8}}\partial_{tt}(\partial_{tt}(u_{0}(0,\cdot)-g_{ad}^{0})+a^{2}\partial_{x}^{2}u_{0}(0,\cdot))e^{-ay}.$$

Error estimates

$$\|u - u_a^2\|_{L^2(\Omega_2 \times (0,T))} \sim \nu \|e_{a,1}^2\|_{L^2(\Omega_2 \times (0,T))},$$
(12)

$$\|u - u_{ad}^{1}\|_{L^{2}(\Omega_{1} \times (0,T))} \sim \frac{\nu^{\frac{1}{2}}}{\sqrt{2a^{9}}} \|\partial_{tt} \left(u_{0}(0,\cdot) - g_{ad}^{0}\right)\|_{L^{2}(0,T)},$$
(13)

$$\|u - u_{ad}^{2}\|_{L^{2}(\Omega_{1} \times (0,T))} \sim \frac{\nu^{\frac{9}{2}}}{\sqrt{2a^{17}}} \|\partial_{tt}(\partial_{tt}(u_{0}(0,\cdot) - g_{ad}^{0}) + a^{2}\partial_{x}^{2}u_{0}(0,\cdot))\|_{L^{2}(0,T)}$$
(14)

with $e_{a,1}^2$ defined by

$$\mathcal{L}_{a}e_{a,1}^{2} = \partial_{x}^{2}u_{0}, \quad e_{a,1}^{2}(\cdot,0) = 0, \quad e_{a,1}^{2}(0,\cdot) = 0.$$
(15)

Negative advection

$$\|u - u_a^1\|_{L^2_{\mathbf{x},\mathbf{t}}} \sim \nu \|u_1\|_{L^2_{\mathbf{x},\mathbf{t}}}, \quad \|u - u_{ad}\|_{L^2_{\mathbf{x},\mathbf{t}}} \sim \nu^2 \|u_2 - u_{ad,2}\|_{L^2_{\mathbf{x},\mathbf{t}}},$$

Comparison

 $\Omega:=(-1,1),\ \Omega_1=(-1,0),\ \Omega_2=(0,1).$

$$u_t + a u_x - \nu u_{xx} + c u = f$$

a = 1, c = 1, T = 0.5 and varying ν . I.C : $h(x) = e^{-100(x+0.5)^2}$

 $f(x,t) = f_1(t)f_2(x), f_1(t) = 10\sin^4(4\pi(t-0.05))\chi_{t>0.05} f_2(x) = -e^{-30(x-0.5)^2} + e^{-30(x-0.5)^2} + e^{-30(x-0.5)^2}$

AD : Crank-Nicolson scheme, A : implicit upwind, $\Delta t = \Delta x = 1.5625 \, 10^{-5}.$

Snapshots of the right hand side function at times $t = 10\Delta t$, $12\Delta t$, $15\Delta t$ and $24\Delta t$.

Extension to 2-D

Comparison

 $\sup_{x \in \Omega_1} |e(x, t)|$ as a function of time t, where e stands for the error between the viscous solution and the coupled one in the viscous domain

Summary

Coupling advection-diffusion/advection

3 New answer with paraxial operator

4 Multiscale Analysis

• Eric Dubach Contribution à la Résolution des Équations fluides en domaine non borné. Thèse Université Paris 13,1993. **Coupling 1 and 2D steady**

• M. Gander, LH, C. Japhet and V. Martin. *Viscous Problems with Inviscid Approximations in Subregions : a New Approach Based on Operator Factorization*. ESAIM Proc., 27, 2009, pp. 272–288. **Steady 1D**

• M. Gander, LH, V. Martin, A new Algorithm Based on Factorization for Heterogeneous Domain Decomposition. Numer. Algorithms, 73(1), pp 167-195, 2016. Evolution 1D.

• M. Gander, LH, V. Martin, *Multiscale analysis of heterogeneous domain decomposition methods for time-dependent advection reaction diffusion problems*. JCAM 344, pp 904-924, 2018. **Multiscale expansion**.

• P. D'Anfray, L. Halpern and J. Ryan. *New trends in coupled simulations featuring domain decomposition and metacomputing*. M2AN Vol. 36, # 5, pp 953-970, September/October 2002

• M. Borrel, LH, J. Ryan, *Euler - Navier-Stokes coupling for aeroacoustics problems*. Computational Fluid Dynamics 2010 : Proceedings of the Sixth International Conference on Computational Fluid Dynamics, ICCFD6, St Petersburg, Russia.**Schwarz waveform relaxation**.

• M. Borrel, LH, J. Ryan, *Euler/Navier-Stokes coupling for multiscale aeroacoustics problems.* 20th AIAA computational fluid dynamics conference, june 2011, Hawai. AIAA 2011-3047. "Full overlap" Schwarz waveform relaxation or chimera method

• J. Ryan, LH, M. Borrel, *Domain decomposition vs. overset Chimera grid approaches for coupling CFD and CAA*. ICCFD7, Hawai, 2012. Mixing layer

Summary

Coupling advection-diffusion/advection

3 New answer with paraxial operator

4 Multiscale Analysis

5 References

- ☑ New coupling algorithm viscous/inviscid in 1D, taking the boundary conditions into account.
- Multiscale analysis gives the exact error.
- Industrial coupling code Euler/Navier-Stokes with Schwarz Waveform relaxation, discontinuous Galerkin and RK4 and nonconformal coupling.

- ☑ New coupling algorithm viscous/inviscid in 1D, taking the boundary conditions into account.
- ☑ Multiscale analysis gives the exact error.
- Industrial coupling code Euler/Navier-Stokes with Schwarz Waveform relaxation, discontinuous Galerkin and RK4 and nonconformal coupling.

- ☑ New coupling algorithm viscous/inviscid in 1D, taking the boundary conditions into account.
- ☑ Multiscale analysis gives the exact error.
- Industrial coupling code Euler/Navier-Stokes with Schwarz Waveform relaxation, discontinuous Galerkin and RK4 and nonconformal coupling.

- New coupling algorithm viscous/inviscid in 1D, taking the boundary conditions into account.
- ☑ Multiscale analysis gives the exact error.
- Industrial coupling code Euler/Navier-Stokes with Schwarz Waveform relaxation, discontinuous Galerkin and RK4 and nonconformal coupling.

Perspectives

- ☑ Extension of the algorithm to higher dimension.
- Extension to systems.
- Apply to Euler/Navier-Stokes.
- Sponge layers for nonlinear problems.

- New coupling algorithm viscous/inviscid in 1D, taking the boundary conditions into account.
- ☑ Multiscale analysis gives the exact error.
- Industrial coupling code Euler/Navier-Stokes with Schwarz Waveform relaxation, discontinuous Galerkin and RK4 and nonconformal coupling.

Perspectives

- \checkmark Extension of the algorithm to higher dimension.
- Z Extension to systems.
- Apply to Euler/Navier-Stokes.
- Sponge layers for nonlinear problems.
Conclusions

- New coupling algorithm viscous/inviscid in 1D, taking the boundary conditions into account.
- ☑ Multiscale analysis gives the exact error.
- Industrial coupling code Euler/Navier-Stokes with Schwarz Waveform relaxation, discontinuous Galerkin and RK4 and nonconformal coupling.

Perspectives

- \checkmark Extension of the algorithm to higher dimension.
- Z Extension to systems.
- Apply to Euler/Navier-Stokes.
- ☑ Sponge layers for nonlinear problems.

Conclusions

- New coupling algorithm viscous/inviscid in 1D, taking the boundary conditions into account.
- ☑ Multiscale analysis gives the exact error.
- Industrial coupling code Euler/Navier-Stokes with Schwarz Waveform relaxation, discontinuous Galerkin and RK4 and nonconformal coupling.

Perspectives

- \checkmark Extension of the algorithm to higher dimension.
- Z Extension to systems.
- ☑ Apply to Euler/Navier-Stokes.
- ☑ Sponge layers for nonlinear problems.