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Motivation: conformation dynamics of biomolecules

? ?Protein folding

[Noé et al, PNAS, 2009]



Motivation: conformation dynamics of biomolecules

Given a Markov process X = (Xt)t≥0, discrete or continuous in time, we want to
estimate small probabilities p � 1, such as

p = P (τ < T ) ,

with τ some stopping time (e.g. a first passage time).

Given N independent realizations of X , the simplest way to estimate p is by

p̂N =
1

N

N∑
i=1

1{τi<T}



Motivation, cont’d: computational aspects

Although the näıve Monte-Carlo estimator is unbiased with bounded variance
p(1− p)/N ≤ 1/(4N), the relative error is not:

δrel =
standard deviation

mean
=

1

p

√
p(1− p)

N

blows up as p → 0.

Remark (Varadhan’s large deviations principle):

E
[
(p̂N)2

](
E[p̂N ]

)2
� 1 for small p.



Motivation, cont’d: importance sampling

We can improve the estimate of p by sampling from an alternative distribution,
under which the variance becomes smaller (and the event is no longer rare):

P(τ < T ) =

∫
1{τ<T}dP =

∫
1{τ<T}

dP

dQ
dQ =: EQ

[
1{τ<T}L

−1
]

where L−1 in the inverse of the likelihood ratio L = dQ/dP (assuming it exists).

An optimal (i.e. zero-variance) distribution Q∗ exists, but it depends on p:

L∗ =
1{τ<T}

p
, i.e. Q∗ = P( · | τ < T ) .



Motivation, cont’d: importance sampling

We can improve the estimate of p by sampling from an alternative distribution,
under which the variance becomes smaller (and the event is no longer rare):

P(τ < T ) =

∫
1{τ<T}dP =

∫
1{τ<T}

dP

dQ
dQ =: EQ

[
1{τ<T}L

−1
]

where L−1 in the inverse of the likelihood ratio L = dQ/dP (assuming it exists).

An optimal (i.e. zero-variance) distribution Q∗ exists, but it depends on p:

L∗ =
1{τ<T}

p
, i.e. Q∗ = P( · | τ < T ) .



Approaching minimum variance (non-exhaustive list)

I Exponential change of measures based on large deviations statistics:

dQ∗ ≈ exp(γ − αψ(X ))dP as ε→ 0,

where γ is related to the large deviations rate function.
Siegmund, Glasserman & Kou, Dupuis & Wang, Vanden-Eijnden & Weare, Spiliopoulos, ...

I Relative entropy (Kullback-Leibler divergence) or cross-entropy minimisation:

Q̂∗ = argmin
Q∈M

KL(Q,Q∗) ,

with Q from some suitable ansatz space M.
Rubinstein & Kroese, Zhang & H, Kappen & Ruiz, Opper, Quer, ...

I Mean squared error and work-normalised variance minimisation
Glynn & Whitt, Jourdain & Lelong, Su & Fu, Vázquez-Abad & Dufresne, ...
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Duality of estimation and control

From dynamic programming to forward-backward SDE

Least squares regression

Importance sampling of multiscale systems
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Change of measure and the Feynman-Kac theorem

Let us be specific and consider a d-dimensional diffusion on [0,T ] governed by

dXt = b(Xt)dt + σ(Xt)dWt , X0 = x ,

with generator L. Then, for any function g > 0 bounded away from zero,

E[g(XT )] = E
[
g(XT )L−1

]
, L =

g(XT )

E[g(XT )]

Here L = exp(logψ(T ,XT )− logψ(0, x)), with ψ : [0,T ]× Rd → (0,∞) solving(
∂

∂t
+ L

)
ψ(t, x) = 0 , ψ(T , x) = g(x) .
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Change of measure and the Feynman-Kac theorem, cont’d

By construction, L > 0 defines a zero-variance change of measure via L = dQ∗/dP.

Now, using Itô’s formula, it follows that

L−1 = exp

(
−
∫ T

0
u∗t · dWt +

1

2
|u∗t |2dt

)
,

with u∗t = σ(Xt)
T∇ logψ(t,Xt).

By Girsanov’s Thm, Q∗ is generated by the previous SDE with new drift bu = b+σu∗.
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Computational aspects: some observations

I We cannot draw directly from Q∗, because we cannot simulate X ∗ as it depends
on the unknown quantity ψ via the extra drift term u∗t = σ(Xt)

T∇ logψ(t,Xt).

I The extra drift u∗ minimises the second moment of the importance sampling
estimator (and hence the variance),

u∗ = argmin
u

E
[

(g(XT ))2 exp

(
−
∫ T

0
ut · dWt +

1

2
|ut |2dt

)]
,

but computing it e.g. by stochastic gradient descent is notoriously difficult.

I So we have replaced a difficult rare event estimation problem by a potentially
more difficult PDE numerics or variational problem.

[Bardou, PhD Thesis, 2005], [H & Schütte, JSTAT, 2012]
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Computational aspects: more observations

I − logψ is the value function of the linear-quadratic optimal control problem

− logψ(t, x) = min
u

E
[

1

2

∫ T

t
|us |2ds − log g(X u

T )

∣∣∣∣X u
t = x

]
under the controlled dynamics

dX u
t = (b(X u

t ) + σ(X u
t )ut) dt + σ(X u

t )dWt .

I The necessary and sufficient condition for optimality is that v = − logψ is a
(sufficiently regular) solution of the semilinear dynamic programming equation(

∂

∂t
+ L

)
v + h(x , v , σT∇v) = 0 , v(T , x) = g(x)

with the nonlinearity h(x , y , z) = minα
{
α · z + 1

2 |α|
2
}

= −1
2 |z |

2.

[Fleming & Soner, 2006]
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Illustrative example (with a slight abuse of the previous formalism)

I Hitting probability: g = 1τ<T :

− logP(τ < T ) = min
u

E
[

1

2

∫ τ∧T

0
|us |2ds − log 1τ<T

]
under the tilted dynamics

dX u
t = (ut −∇V (X u

t )) dt + dWt

I Optimally tilted potential

U∗(x , t) = V (x)− u∗t x

with non-stationary feedback u∗t = c(t,X ∗t ).
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[H et al, JSTAT, 2012], [H. et al, Entropy, 2014]
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A wish list

Solving either the dynamic programming or the Feynman-Kac PDE is not an option!
Hence we seek a reformulation of the problem, such that the problem

1. remains numerically tractable in high dimensions,

2. is amenable to model reduction when multiple scales are present,

3. can be solved iteratively by adaptively improving the control,

4. does not require too much expert-knowledge (e.g. specific basis functions).



From dynamic programming to a pair of SDE

The semilinear dynamic programming equation(
∂

∂t
+ L

)
v + h(x , v , σT∇v) = 0 , v(T , x) = g(x)

is equivalent to the uncoupled forward-backward SDE (FBSDE)

dXs = b(Xs)ds + σ(Xs)dWs , Xt = x

dYs = −h(Xs ,Ys ,Zs)ds + Zs · dWs , YT = g(XT ) ,

in dimension d + 1 and on a finite time horizon [0,T ] where

Ys = v(s,Xs) , Zs = σ(Xs)T∇v(s,Xs).

[Pardoux & Peng, LNCIS 176, 1992], [Kobylanski, Ann Probab, 2000]



From dynamic programming to a pair of SDE: sketch of derivation

By Itô’s Lemma and the dynamic programming PDE, we have for s ∈ (t,T ):

dYs =

(
∂

∂t
+ L

)
v(s,Xs) +∇v(s,Xs) · σ(Xs)dWs

= −h(Xs ,Ys ,Zs) + Zs · dWs .

where L is the generator of the uncontrolled SDE.

For s = T , the process Y satisfies the terminal condition

YT = v(T ,XT ) = g(XT ) .

Remark
The solution to an FBSDE is a triplet (X ,Y ,Z ) where (Ys ,Zs) is adapted to the
filtration generated by (Xu)u≤s . Consequently, Yt = v(t, x) is deterministic.
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Remark

A BSDE is not a time-reversed SDE in the sense of Yt = f (XT−t): the FBSDE

dXs = dWs , dYs = Zs · dWs ,

with terminal condition YT = XT has two possible formal solutions

(Xs ,Ys ,Zs) = (Ws ,Ws , 1) and (X̃s , Ỹs , Z̃s) = (Ws ,XT , 0) ,

but only one of them is adapted.

This observation has two important
consequences: (a) for the numerics and (b) for the
multiscale analysis of our optimal control problem.
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Numerical discretisation of FBSDE

The FBSDE is decoupled and an explicit time stepping scheme can be based on

X̂n+1 = X̂n + ∆t b(X̂n) +
√

∆t σ(X̂n)ξn+1

Ŷn+1 = Ŷn −∆t h(X̂n, Ŷn, Ẑn) +
√

∆t Ẑn · ξn+1

with boundary values
X̂0 = x , ŶN = g(X̂N)

Solution to stochastic two-point boundary value problem:

I least-squares Monte Carlo Gobet & Turkedjev, Bender et al., Kebiri et al.

I deep neural network approach E, Han & Jentzen, H. et al.



Solution by least-squares Monte-Carlo



Numerical discretisation of FBSDE

Euler-discretised FBSDE:

X̂n+1 = X̂n + ∆t b(X̂n, tn) +
√

∆t σ(X̂n)ξn+1

Ŷn+1 = Ŷn −∆t h(X̂n, Ŷn, Ẑn) +
√

∆t Ẑn · ξn+1

Since Ŷn is adapted we have Ŷn = E
[
Ŷn|Fn

]
and thus

Ŷn = E
[
Ŷn+1 + ∆t h(X̂n, Ŷn, Ẑn)|Fn

]
≈ E

[
Ŷn+1 + ∆t h(X̂n, Ŷn+1, Ẑn+1)|Fn

]
where Fn = σ(X̂0, . . . , X̂n) and we used that Ẑn is independent of ξn+1.

[Gobet et al, AAP, 2005], [Bender & Steiner, Num Meth F, 2012], [Kebiri et al, Proc IHP, 2018]



Numerical discretisation of FBSDE, cont’d

The conditional expectation

Ŷn := E
[
Ŷn+1 + ∆t h(X̂n, Ŷn+1, Ẑn+1)|Fn

]
can be computed by least-squares:

E
[
S |Fn

]
= argmin

Y∈L2,Fn-measurable

E[|Y − S |2] .

Specifically,

Ŷn ≈ argmin
Y=YK (X̂n)

1

M

M∑
m=1

∣∣∣Y − Ŷ
(m)
n+1 −∆t h

(
X̂

(m)
n , Ŷ

(m)
n+1, Ẑ

(m)
n+1

)∣∣∣2 ,
where YK (x) = α1φ1(x) + . . .+ αKφK (x) is a parametric representation of Y .

[Gobet et al, AAP, 2005], [Bender & Steiner, Num Meth F, 2012], [Kebiri et al, Proc IHP, 2018]
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Ŷn ≈ argmin
Y=YK (X̂n)

1

M

M∑
m=1

∣∣∣Y − Ŷ
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Deep learning based approximation



Numerical discretisation of FBSDE, con’t

Now consider the forward iteration

Yn+1 = Yn −∆t h(X̂n,Yn,Zn) +
√

∆t Zn · ξn+1 ,

with Yn = Yn(x ; θ) and Zn = Zn(X̂n; θ) being the (non-adapted?) deep neural net
approximation of (Ŷn, Ẑn), so that

Y0 ≈ v(x) , Zn ≈ (σT∇v)(X̂n)

The corresponding loss function is given by

`(θ) = E
[
|YN − g(X̂N)|2

]
(Note that E

[
|YT − g(XT )|2

]
= 0 for the exact solution.)

[E et al, Commun Math Stat, 2017], [H. et al, Chaos, 2019], [Pham et al. Meth. Comput. Appl. Prob., 2020]
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Remark: iterative computation of the optimal control

Both LSMC and DL methods can be improved by iterative learning of optimal
control based on the FBSDE

dXs = (b(Xs) + σ(Xs)ξs) ds + σ(Xs)dWs , X0 = x

dYs = (Zs · ξs − h(Xs ,Ys ,Zs)) ds + Zs · dBs , YT = g(XT )

that, for any measurable ξ represents the same PDE.

Observations

I variance at most MC variance

I family of zero-variance estimators

I iteration may not converge
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[Kebiri & H, Computation, 2018], [Kebiri et al, Proc. IHP, 2019], [H et al, Chaos, 2019]



More remarks

I The LSMC scheme is strongly convergent of order 1/2 in ∆t → 0 as
M,K →∞ (M: sample size, K : # basis fcts.).

I A zero-variance change of measure is given by

dQ

dP

∣∣∣∣
FT

= exp

(∫ T

0
Zs · dWs −

1

2

∫ T

0
|Zs |2 ds

)
,

for T <∞ (a.s.) and the discretisation bias can be further reduced by using
importance sampling.

I Under mild assumptions, the variance of the importance sampling estimator is no
worse than for crude MC.

I Generalisations include random time horizon, singular terminal condition, . . . .

[Turkedjiev, PhD thesis, 2013], [Kruse & Popier, SPA, 2016], [Kebiri & H, Preprint, 2018]
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Example I: hitting probabilities
Probability of hitting the set C ⊂ R before time T :

− logP(τ ≤ T ) = min
u

E
[

1

4

∫ τ∧T

0
|ut |2 dt − log 1∂C (X u

τ∧T )

]
,

with τ denoting the first hitting time of C under the dynamics

dX u
t = (ut −∇V (X u

t )) dt +
√

2ε dBt

.
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[Zhang et al, SISC, 2014], [Richter, MSc thesis, 2016], [H et al, Nonlinearity, 2016]



Example I, cont’d

Probability of hitting C ⊂ R before time T , starting from x = −1:

− logP(τ ≤ T ) = min
u

E
[

1

4

∫ τ∧T

0
|ut |2 dt − log 1∂C (X u

τ∧T )

]
,

(BSDE with singular terminal condition and random stopping time)

Simulation parameters Fε
ref (0, x) F̄ε(0, x) Var

K = 8, M = 300, T = 5, ∆t = 10−3, ε = 1 0.3949 0.3748 10−3

K = 5, M = 300, T = 1, ∆t = 10−3, ε = 1 1.7450 1.6446 0.0248

K = 5,M = 400, T = 1,∆t = 10−4, ε = 0.6 4.3030 4.5779 10−3

K = 6,M = 450, T = 1,∆t = 10−4, ε = 0.5 4.5793 4.6044 5 · 10−4

with K the number of Gaussians and M the number of realisations of the forward SDE.

[Ankirchner et al, SICON, 2014], [Kruse & Popier, SPA, 2016], [Kebiri et al, Proc IHP, 2018]



Example II: High-dimensional PDE

First exit time of a Brownian motion from an d-sphere of radius r :

τ = inf{t > 0: x + Wt /∈ Sd
r }

Cumulant generating function of first exit time satisfies

− logE[exp(−ατ)] = min
u

E
[
ατu +

1

2

∫ τu

0
|ut | dt

]

I Least-squares MC w/ K = 3,M ∼ 102

d = 3 d = 10 d = 100 d = 1000
exact 1.00 1.00 1.00 1.00
CMC 0.98 0.99 1.08 1.04
LSMC 0.99 1.01 0.96 0.98

I mean first exit time E[τ ] = r2−|x |2
d

[H, et al., Chaos, 2019]



Suboptimal controls for multiscale problems



Suboptimal controls from averaging

The fact that the FBSDE is uncoupled implies that every strong approximation X gives
rise to an approximation of (Y ,Z ).

Averaged control problem: minimize

J(η) = E
[

1

2

∫ T

0
|ηs |2 ds + ḡ(xT )

]
subject to the averaged dynamics

dxηt = (Σ(xηt )ηt + B(xηt ))dt + Σ(xηt )dWt

Control approximation strategy when x = ξ(X )

u∗t ≈ ∇ξ(X ∗t )η∗t .
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[H et al, Nonlinearity, 2016],[H. et al, PTRF, 2018]; cf. [Legoll & Lelièvre, Nonlinearity, 2010], [H. et al]



Slow-fast systems: some results

I Uniform bound of the relative error using averaged optimal controls

δrel ≤ CN−1/2 ε1/8 , ε =
τfast

τslow

I Slightly stronger error bound for limit BSDE

sup{|Y δ
t − Ȳt | : 0 ≤ t ≤ T} ≤ C

√
ε

as δ → 0, analogously for Z δt (implies importance sampling O(ε1/4) error bound).

I Issues for highly oscillatory controls due to quadratic nonlinearity. Log efficiency
in this case has been proved by Dupuis, Spiliopoulos and Wang.

[Spiliopoulos et al, MMS, 2012], [Banisch & H, MCRF, 2016], [H et al, PTRF, 2018], [Kebiri & H, Computation, 2018]



Conclusions & outlook

I Adaptive importance sampling scheme based on dual stochastic control
formulation features short trajectories with minimum variance estimators.

I Optimal control problem boils down to an uncoupled FBSDE with only one
additional spatial dimension.

I Error analysis of the FBSDE algorithms for unbounded stopping time & singular
terminal condition is largely open. LSMC algorithm requires some fine-tuning.

I Numerics should be combined with dimension reduction (e.g. averaging).
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Thank you for your attention!
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