Rare event simulation of slow-fast systems

Carsten Hartmann (BTU Cottbus-Senftenberg), with Omar Kebiri (Cottbus), Lara Neureither (Cottbus), Lorenz Richter (Cottbus, Berlin) & Wei Zhang (Berlin)

Geneva, 29-30th January 2020

Motivation: conformation dynamics of biomolecules

Protein folding

[Noé et al, PNAS, 2009]

Motivation: conformation dynamics of biomolecules

Given a **Markov process** $X = (X_t)_{t>0}$, discrete or continuous in time, we want to estimate small probabilities $p \ll 1$, such as

$$
p=P(\tau< T),
$$

with τ some stopping time (e.g. a first passage time).

Given N independent realizations of X, the simplest way to estimate p is by

$$
\hat{\rho}_N = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{\{\tau_i < T\}}
$$

Motivation, cont'd: computational aspects

Although the na¨ıve Monte-Carlo estimator is unbiased with bounded variance $p(1-p)/N \le 1/(4N)$, the relative error is not:

$$
\delta_{\text{rel}} = \frac{\text{standard deviation}}{\text{mean}} = \frac{1}{p} \sqrt{\frac{p(1-p)}{N}}
$$

blows up as $p \to 0$.

Remark (Varadhan's large deviations principle):

$$
\frac{\mathbb{E}\big[(\hat{\rho}_N)^2\big]}{\big(\mathbb{E}[\hat{\rho}_N]\big)^2}\gg 1\ \ \text{for small}\ \rho.
$$

Motivation, cont'd: importance sampling

We can improve the estimate of p by sampling from an alternative distribution, under which the variance becomes smaller (and the event is no longer rare):

$$
P(\tau < T) = \int \mathbf{1}_{\{\tau < T\}} dP = \int \mathbf{1}_{\{\tau < T\}} \frac{dP}{dQ} dQ =: \mathbb{E}_{Q}[\mathbf{1}_{\{\tau < T\}} L^{-1}]
$$

where L^{-1} in the inverse of the likelihood ratio $L=dQ/dP$ (assuming it exists).

An optimal (i.e. zero-variance) distribution Q^* exists, but it depends on p:

$$
L^* = \frac{\mathbf{1}_{\{\tau < T\}}}{p}, \text{ i.e. } Q^* = P(\cdot | \tau < T).
$$

Motivation, cont'd: importance sampling

We can improve the estimate of p by sampling from an alternative distribution, under which the variance becomes smaller (and the event is no longer rare):

$$
P(\tau < T) = \int \mathbf{1}_{\{\tau < T\}} dP = \int \mathbf{1}_{\{\tau < T\}} \frac{dP}{dQ} dQ =: \mathbb{E}_{Q}[\mathbf{1}_{\{\tau < T\}} L^{-1}]
$$

where L^{-1} in the inverse of the likelihood ratio $L=dQ/dP$ (assuming it exists).

An optimal (i.e. zero-variance) distribution Q^* exists, but it depends on p:

$$
L^* = \frac{\mathbf{1}_{\{\tau < T\}}}{p}, \text{ i.e. } Q^* = P(\cdot | \tau < T).
$$

Approaching minimum variance (non-exhaustive list)

 \triangleright Exponential change of measures based on large deviations statistics:

$$
dQ^* \approx \exp(\gamma - \alpha \psi(X))dP \quad \text{as } \epsilon \to 0,
$$

where γ is related to the large deviations rate function.

Siegmund, Glasserman & Kou, Dupuis & Wang, Vanden-Eijnden & Weare, Spiliopoulos, ...

 \triangleright Relative entropy (Kullback-Leibler divergence) or cross-entropy minimisation:

$$
\hat{Q}^* = \underset{Q \in \mathcal{M}}{\text{argmin}} \, \textit{KL}(Q, Q^*)\,,
$$

KORKARRA ERKER EL POLO

with Q from some suitable ansatz space M .

Rubinstein & Kroese, Zhang & H, Kappen & Ruiz, Opper, Quer, ...

 \triangleright Mean squared error and work-normalised variance minimisation

Glynn & Whitt, Jourdain & Lelong, Su & Fu, Vázquez-Abad & Dufresne, ...

[Duality of estimation and control](#page-8-0)

[From dynamic programming to forward-backward SDE](#page-19-0)

K ロ K イロ K イミ K K モ K ミニ や R (^

[Least squares regression](#page-25-0)

[Importance sampling of multiscale systems](#page-39-0)

[Duality of estimation and control](#page-8-0)

hanno

KOD KOD KED (ED) E DAQ

Change of measure and the Feynman-Kac theorem

Let us be specific and consider a d-dimensional diffusion on $[0, T]$ governed by

$$
dX_t = b(X_t)dt + \sigma(X_t)dW_t, \quad X_0 = x,
$$

with generator \mathcal{L} . Then, for any function $g > 0$ bounded away from zero,

$$
\mathbb{E}[g(X_{\mathcal{T}})] = \mathbb{E}[g(X_{\mathcal{T}})L^{-1}], \quad L = \frac{g(X_{\mathcal{T}})}{\mathbb{E}[g(X_{\mathcal{T}})]}
$$

$$
\left(\frac{\partial}{\partial t} + \mathcal{L}\right) \psi(t, x) = 0, \quad \psi(T, x) = g(x).
$$

Change of measure and the Feynman-Kac theorem

Let us be specific and consider a d-**dimensional diffusion** on [0, T] governed by

$$
dX_t = b(X_t)dt + \sigma(X_t)dW_t, \quad X_0 = x,
$$

with generator L. Then, for any function $g > 0$ bounded away from zero,

$$
\mathbb{E}[g(X_{\mathcal{T}})] = \mathbb{E}\big[g(X_{\mathcal{T}})L^{-1}\big] , \quad L = \frac{g(X_{\mathcal{T}})}{\mathbb{E}[g(X_{\mathcal{T}})]}
$$

Here $L = \exp(\log \psi(\mathcal{T},X_{\mathcal{T}})-\log \psi(0,x)),$ with $\psi \colon [0,\mathcal{T}] \times \mathbb{R}^d \to (0,\infty)$ solving

$$
\left(\frac{\partial}{\partial t} + \mathcal{L}\right) \psi(t, x) = 0, \quad \psi(T, x) = g(x).
$$

Change of measure and the Feynman-Kac theorem

Let us be specific and consider a d-**dimensional diffusion** on [0, T] governed by

$$
dX_t = b(X_t)dt + \sigma(X_t)dW_t, \quad X_0 = x,
$$

with generator L. Then, for any function $g > 0$ bounded away from zero,

$$
\mathbb{E}[g(X_{\mathcal{T}})] = \mathbb{E}[g(X_{\mathcal{T}})L^{-1}], \quad L = \frac{g(X_{\mathcal{T}})}{\mathbb{E}[g(X_{\mathcal{T}})]}
$$

Here $L=\exp(\log \psi(\, \mathcal{T}, \mathcal{X}_\mathcal{T}) - \log \psi(0, \mathcal{x})),$ with $\psi \colon [0, \, \mathcal{T}] \times \mathbb{R}^d \to (0, \infty)$ solving

$$
\left(\frac{\partial}{\partial t}+\mathcal{L}\right)\psi(t,x)=0\,,\quad \psi(\mathcal{T},x)=g(x)\,.
$$

Change of measure and the Feynman-Kac theorem, cont'd

By construction, $L > 0$ defines a zero-variance change of measure via $L = dQ^*/dP$.

Now, using Itô's formula, it follows that

$$
L^{-1} = \exp \left(-\int_0^T u_t^* \cdot dW_t + \frac{1}{2}|u_t^*|^2 dt\right),
$$

with $u_t^* = \sigma(X_t)^\mathsf{T} \nabla \log \psi(t, X_t)$.

By Girsanov's Thm, Q^* is generated by the previous SDE with new drift $b^u = b + \sigma u^*$.

Change of measure and the Feynman-Kac theorem, cont'd

By construction, $L > 0$ defines a zero-variance change of measure via $L = dQ^*/dP$.

Now, using Itô's formula, it follows that

$$
L^{-1} = \exp \left(-\int_0^T u_t^* \cdot dW_t + \frac{1}{2}|u_t^*|^2 dt\right),
$$

with $u_t^* = \sigma(X_t)^\mathsf{T} \nabla \log \psi(t, X_t)$.

By Girsanov's Thm, Q^* is generated by the previous SDE with new drift $b^u = b + \sigma u^*$.

Computational aspects: some observations

- ► We cannot draw directly from Q^* , because we cannot simulate X^* as it depends on the unknown quantity ψ via the extra drift term $\mu^*_t = \sigma(X_t)^{\mathcal{T}} \nabla \log \psi(t, X_t).$
- \blacktriangleright The extra drift u^* minimises the second moment of the importance sampling estimator (and hence the variance),

$$
u^* = \underset{u}{\text{argmin}} \mathbb{E}\bigg[(g(X_{\mathcal{T}}))^2 \exp\bigg(-\int_0^T u_t \cdot dW_t + \frac{1}{2}|u_t|^2 dt\bigg) \bigg],
$$

but computing it e.g. by stochastic gradient descent is notoriously difficult.

 \triangleright So we have replaced a difficult rare event estimation problem by a **potentially**

[Bardou, PhD Thesis, 2005], [H & Schütte, JSTAT, 2012]

Computational aspects: some observations

- ► We cannot draw directly from Q^* , because we cannot simulate X^* as it depends on the unknown quantity ψ via the extra drift term $\mu^*_t = \sigma(X_t)^{\mathcal{T}} \nabla \log \psi(t, X_t).$
- \blacktriangleright The extra drift u^* minimises the second moment of the importance sampling estimator (and hence the variance),

$$
u^* = \underset{u}{\text{argmin}} \mathbb{E}\bigg[(g(X_T))^2 \exp\bigg(-\int_0^T u_t \cdot dW_t + \frac{1}{2}|u_t|^2 dt\bigg) \bigg],
$$

but computing it e.g. by stochastic gradient descent is notoriously difficult.

 \triangleright So we have replaced a difficult rare event estimation problem by a **potentially** more difficult PDE numerics or variational problem.

[Bardou, PhD Thesis, 2005], [H & Schütte, JSTAT, 2012]

Computational aspects: some observations

- ► We cannot draw directly from Q^* , because we cannot simulate X^* as it depends on the unknown quantity ψ via the extra drift term $\mu^*_t = \sigma(X_t)^{\mathcal{T}} \nabla \log \psi(t, X_t).$
- \blacktriangleright The extra drift u^* minimises the second moment of the importance sampling estimator (and hence the variance),

$$
u^* = \underset{u}{\text{argmin}} \mathbb{E}\bigg[\big(g(X_{\mathcal{T}})\big)^2 \exp\bigg(-\int_0^T u_t \cdot dW_t + \frac{1}{2}|u_t|^2 dt\bigg)\bigg],
$$

but computing it e.g. by stochastic gradient descent is notoriously difficult.

 \triangleright So we have replaced a difficult rare event estimation problem by a **potentially** more difficult PDE numerics or variational problem.

[Bardou, PhD Thesis, 2005], [H & Schütte, JSTAT, 2012]

Computational aspects: more observations

 \blacktriangleright - log ψ is the value function of the **linear-quadratic optimal control problem**

$$
-\log \psi(t,x) = \min_{u} \mathbb{E}\left[\frac{1}{2}\int_{t}^{T} |u_{s}|^{2} ds - \log g(X_{T}^{u})\right| X_{t}^{u} = x\right]
$$

under the controlled dynamics

$$
dX_t^u = (b(X_t^u) + \sigma(X_t^u)u_t) dt + \sigma(X_t^u) dW_t.
$$

F The necessary and sufficient condition for optimality is that $v = -\log \psi$ is a (sufficiently regular) solution of the semilinear dynamic programming equation

$$
\left(\frac{\partial}{\partial t} + \mathcal{L}\right)v + h(x, v, \sigma^T \nabla v) = 0, \quad v(T, x) = g(x)
$$

KORK STRATER STRAKES

with the nonlinearity $h(x,y,z) = \mathsf{min}_{\alpha} \left\{ \alpha \cdot z + \frac{1}{2} \right\}$ $\frac{1}{2}|\alpha|^2$ } = $-\frac{1}{2}$ $\frac{1}{2}|z|^2$.

[Fleming & Soner, 2006]

Computational aspects: more observations

 \blacktriangleright - log ψ is the value function of the **linear-quadratic optimal control problem**

$$
-\log \psi(t,x) = \min_{u} \mathbb{E}\left[\frac{1}{2}\int_{t}^{T} |u_{s}|^{2} ds - \log g(X_{T}^{u})\right| X_{t}^{u} = x\right]
$$

under the controlled dynamics

$$
dX_t^u = (b(X_t^u) + \sigma(X_t^u)u_t) dt + \sigma(X_t^u) dW_t.
$$

Figure 1 The necessary and sufficient condition for optimality is that $v = -\log \psi$ is a (sufficiently regular) solution of the semilinear dynamic programming equation

$$
\left(\frac{\partial}{\partial t} + \mathcal{L}\right) v + h(x, v, \sigma^T \nabla v) = 0, \quad v(T, x) = g(x)
$$

with the nonlinearity $h(x,y,z) = \mathsf{min}_{\alpha} \left\{ \alpha \cdot z + \frac{1}{2} \right\}$ $\frac{1}{2}|\alpha|^2$ } = $-\frac{1}{2}$ $\frac{1}{2}|z|^2$.

[Fleming & Soner, 2006]

Illustrative example (with a slight abuse of the previous formalism)

▶ Hitting probability:
$$
g = \mathbf{1}_{\tau < \tau}
$$
:

$$
-\log P(\tau < T) = \min_{u} \mathbb{E}\bigg[\frac{1}{2}\int_0^{\tau \wedge T} |u_s|^2 ds - \log \mathbf{1}_{\tau < T}\bigg]
$$

under the tilted dynamics

$$
dX_t^u = (u_t - \nabla V(X_t^u)) dt + dW_t
$$

 \triangleright Optimally tilted potential

$$
U^*(x,t)=V(x)-u_t^*x
$$

with **non-stationary** feedback $u_t^* = c(t, X_t^*)$

[H et al, JSTAT, 2012], [H. et al, Entropy, 2014]

KED KAP KED KED E LOQO

Solving either the dynamic programming or the Feynman-Kac PDE is not an option! Hence we seek a reformulation of the problem, such that the problem

- 1. remains numerically tractable in high dimensions,
- 2. is amenable to model reduction when multiple scales are present,
- 3. can be solved iteratively by adaptively improving the control,
- 4. does not require too much expert-knowledge (e.g. specific basis functions).

From dynamic programming to a pair of SDE

The semilinear dynamic programming equation

$$
\left(\frac{\partial}{\partial t} + \mathcal{L}\right) v + h(x, v, \sigma^T \nabla v) = 0, \quad v(T, x) = g(x)
$$

is equivalent to the uncoupled forward-backward SDE (FBSDE)

$$
dXs = b(Xs)ds + \sigma(Xs)dWs, Xt = x
$$

$$
dYs = -h(Xs, Ys, Zs)ds + Zs \cdot dWs, YT = g(XT),
$$

in dimension $d + 1$ and on a finite time horizon [0, T] where

$$
Y_s = v(s, X_s), \quad Z_s = \sigma(X_s)^T \nabla v(s, X_s).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

[Pardoux & Peng, LNCIS 176, 1992], [Kobylanski, Ann Probab, 2000]

From dynamic programming to a pair of SDE: sketch of derivation

By Itô's Lemma and the dynamic programming PDE, we have for $s \in (t, T)$:

$$
dY_s = \left(\frac{\partial}{\partial t} + \mathcal{L}\right) v(s, X_s) + \nabla v(s, X_s) \cdot \sigma(X_s) dW_s
$$

= $-h(X_s, Y_s, Z_s) + Z_s \cdot dW_s.$

where $\mathcal L$ is the generator of the uncontrolled SDE.

For $s = T$, the process Y satisfies the **terminal condition**

$$
Y_T = v(T, X_T) = g(X_T).
$$

The solution to an FBSDE is a $\mathsf{triplet}\; (X,Y,Z)$ where (Y_s,Z_s) is adapted to the filtration generated by $(X_u)_{u\leq s}.$ Consequently, $Y_t = v(t,x)$ is <code>deterministic</code>.

From dynamic programming to a pair of SDE: sketch of derivation

By Itô's Lemma and the dynamic programming PDE, we have for $s \in (t, T)$:

$$
dY_s = \left(\frac{\partial}{\partial t} + \mathcal{L}\right) v(s, X_s) + \nabla v(s, X_s) \cdot \sigma(X_s) dW_s
$$

= $-h(X_s, Y_s, Z_s) + Z_s \cdot dW_s.$

where $\mathcal L$ is the generator of the uncontrolled SDE.

For $s = T$, the process Y satisfies the **terminal condition**

$$
Y_T = v(T, X_T) = g(X_T).
$$

Remark

The solution to an FBSDE is a $\mathsf{triplet}\; (X,Y,Z)$ where (Y_s,Z_s) is adapted to the filtration generated by $(X_u)_{u\leq s}$. Consequently, $Y_t = v(t,x)$ is <code>deterministic</code>.

Remark

A BSDE is not a time-reversed SDE in the sense of $Y_t = f(X_{T-t})$: the FBSDE

$$
dX_s = dW_s, \quad dY_s = Z_s \cdot dW_s,
$$

with terminal condition $Y_T = X_T$ has two possible formal solutions

$$
(X_s, Y_s, Z_s) = (W_s, W_s, 1) \quad \text{and} \quad (\tilde{X}_s, \tilde{Y}_s, \tilde{Z}_s) = (W_s, X_T, 0),
$$

but only one of them is adapted.

This observation has two important consequences: (a) for the numerics and (b) for the multiscale analysis of our optimal control problem.

 QQ

Numerical discretisation of FBSDE

The **FBSDE** is decoupled and an explicit time stepping scheme can be based on

$$
\hat{X}_{n+1} = \hat{X}_n + \Delta t \ b(\hat{X}_n) + \sqrt{\Delta t} \ \sigma(\hat{X}_n) \xi_{n+1}
$$

$$
\hat{Y}_{n+1} = \hat{Y}_n - \Delta t \ h(\hat{X}_n, \hat{Y}_n, \hat{Z}_n) + \sqrt{\Delta t} \ \hat{Z}_n \cdot \xi_{n+1}
$$

with boundary values

$$
\hat{X}_0 = x\,,\quad \hat{Y}_N = g(\hat{X}_N)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Solution to stochastic two-point boundary value problem:

- ▶ least-squares Monte Carlo Gobet & Turkedjev, Bender et al., Kebiri et al.
- \blacktriangleright deep neural network approach E, Han & Jentzen, H. et al.

Solution by least-squares Monte-Carlo

Numerical discretisation of FBSDE

Euler-discretised FBSDE:

$$
\hat{X}_{n+1} = \hat{X}_n + \Delta t \ b(\hat{X}_n, t_n) + \sqrt{\Delta t} \ \sigma(\hat{X}_n) \xi_{n+1}
$$

$$
\hat{Y}_{n+1} = \hat{Y}_n - \Delta t \ h(\hat{X}_n, \hat{Y}_n, \hat{Z}_n) + \sqrt{\Delta t} \ \hat{Z}_n \cdot \xi_{n+1}
$$

Since \hat{Y}_n **is adapted** we have $\hat{Y}_n = \mathbb{E}\big[\hat{Y}_n | \mathcal{F}_n\big]$ and thus

$$
\hat{Y}_n = \mathbb{E}\big[\hat{Y}_{n+1} + \Delta t \; h(\hat{X}_n, \hat{Y}_n, \hat{Z}_n)|\mathcal{F}_n\big] \approx \mathbb{E}\big[\hat{Y}_{n+1} + \Delta t \; h(\hat{X}_n, \hat{Y}_{n+1}, \hat{Z}_{n+1})|\mathcal{F}_n\big]
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

where $\mathcal{F}_n=\sigma(\hat{X}_0,\ldots,\hat{X}_n)$ and we used that \hat{Z}_n is independent of $\xi_{n+1}.$

[Gobet et al, AAP, 2005], [Bender & Steiner, Num Meth F, 2012], [Kebiri et al, Proc IHP, 2018]

Numerical discretisation of FBSDE, cont'd

The conditional expectation

$$
\hat{Y}_n := \mathbb{E}\big[\hat{Y}_{n+1} + \Delta t \; h(\hat{X}_n, \hat{Y}_{n+1}, \hat{Z}_{n+1}) | \mathcal{F}_n\big]
$$

can be computed by least-squares:

$$
\mathbb{E}\big[S|\mathcal{F}_n\big] = \underset{Y \in L^2, \mathcal{F}_n\text{-measurable}}{\text{argmin}} \mathbb{E}[|Y - S|^2].
$$

Specifically,

$$
\hat{Y}_n \approx \underset{Y = Y_K(\hat{X}_n)}{\text{argmin}} \frac{1}{M} \sum_{m=1}^M \left| Y - \hat{Y}_{n+1}^{(m)} - \Delta t \, h(\hat{X}_n^{(m)}, \hat{Y}_{n+1}^{(m)}, \hat{Z}_{n+1}^{(m)}) \right|^2,
$$

KORK ERRY ABY CHANNEL

where $Y_K(x) = \alpha_1 \phi_1(x) + \ldots + \alpha_K \phi_K(x)$ is a parametric representation of Y.

Numerical discretisation of FBSDE, cont'd

The conditional expectation

$$
\hat{Y}_n := \mathbb{E}\big[\hat{Y}_{n+1} + \Delta t \; h(\hat{X}_n, \hat{Y}_{n+1}, \hat{Z}_{n+1}) | \mathcal{F}_n\big]
$$

can be computed by least-squares:

$$
\mathbb{E}\big[S|\mathcal{F}_n\big] = \underset{Y \in L^2, \mathcal{F}_n\text{-measurable}}{\text{argmin}} \mathbb{E}[|Y - S|^2].
$$

Specifically,

$$
\hat{Y}_n \approx \underset{Y=Y_K(\hat{X}_n)}{\text{argmin}} \frac{1}{M} \sum_{m=1}^M \left| Y - \hat{Y}_{n+1}^{(m)} - \Delta t \; h(\hat{X}_n^{(m)}, \hat{Y}_{n+1}^{(m)}, \hat{Z}_{n+1}^{(m)}) \right|^2 \;,
$$

KORKA SERKER ORA

where $Y_K(x) = \alpha_1 \phi_1(x) + \ldots + \alpha_K \phi_K(x)$ is a parametric representation of Y.

[Gobet et al, AAP, 2005], [Bender & Steiner, Num Meth F, 2012], [Kebiri et al, Proc IHP, 2018]

Deep learning based approximation

Numerical discretisation of FBSDE, con't

Now consider the forward iteration

$$
\mathcal{Y}_{n+1} = \mathcal{Y}_n - \Delta t \, h(\hat{X}_n, \mathcal{Y}_n, \mathcal{Z}_n) + \sqrt{\Delta t} \, \mathcal{Z}_n \cdot \xi_{n+1} \,,
$$

with $\mathcal{Y}_n=\mathcal{Y}_n(\mathsf{x};\theta)$ and $\mathcal{Z}_n=\mathcal{Z}_n(\hat{\mathsf{X}}_n;\theta)$ being the (non-adapted?) $\mathsf{deep\ neural\ net}$ $\mathsf{approximation}$ of $(\hat{\mathsf{Y}}_n, \hat{\mathsf{Z}}_n)$, so that

$$
\mathcal{Y}_0 \approx v(x)\,,\quad \mathcal{Z}_n \approx (\sigma^T \nabla v)(\hat{X}_n)
$$

The corresponding **loss function** is given by

$$
\ell(\theta) = \mathbb{E}\big[|\mathcal{Y}_N - g(\hat{X}_N)|^2\big]
$$

(Note that $\mathbb{E}[|Y_T - g(X_T)|^2] = 0$ for the exact solution.)

KORK STRAIN A BAR SHOP

Numerical discretisation of FBSDE, con't

Now consider the forward iteration

$$
\mathcal{Y}_{n+1} = \mathcal{Y}_n - \Delta t \, h(\hat{X}_n, \mathcal{Y}_n, \mathcal{Z}_n) + \sqrt{\Delta t} \, \mathcal{Z}_n \cdot \xi_{n+1} \,,
$$

with $\mathcal{Y}_n=\mathcal{Y}_n(\mathsf{x};\theta)$ and $\mathcal{Z}_n=\mathcal{Z}_n(\hat{\mathsf{X}}_n;\theta)$ being the (non-adapted?) $\mathsf{deep\ neural\ net}$ $\mathsf{approximation}$ of $(\hat{\mathsf{Y}}_n, \hat{\mathsf{Z}}_n)$, so that

$$
\mathcal{Y}_0 \approx v(x)\,,\quad \mathcal{Z}_n \approx (\sigma^T \nabla v)(\hat{X}_n)
$$

The corresponding **loss function** is given by

$$
\ell(\theta) = \mathbb{E}\big[|\mathcal{Y}_N - g(\hat{X}_N)|^2\big]
$$

KORKA SERKER ORA

(Note that $\mathbb{E}\big[|Y_{\mathcal{T}}-g(X_{\mathcal{T}})|^2\big]=0$ for the exact solution.)

[E et al, Commun Math Stat, 2017], [H. et al, Chaos, 2019], [Pham et al. Meth. Comput. Appl. Prob., 2020]

Remark: iterative computation of the optimal control

Both LSMC and DL methods can be improved by iterative learning of optimal control based on the FBSDE

$$
dX_s = (b(X_s) + \sigma(X_s)\xi_s) ds + \sigma(X_s)dW_s, X_0 = x
$$

$$
dY_s = (Z_s \cdot \xi_s - h(X_s, Y_s, Z_s)) ds + Z_s \cdot dB_s, Y_T = g(X_T)
$$

that, for any measurable ξ represents the same PDE.

Observations

- \blacktriangleright variance at most MC variance
- \blacktriangleright family of zero-variance estimators
- \blacktriangleright iteration may not converge

 (0.11) (0.11) (0.11) (0.11) (0.11) (0.11)

B C $2Q$

[Kebiri & H, Computation, 2018], [Kebiri et al, Proc. IHP, 2019], [H et al, Chaos, 2019]

- ► The LSMC scheme is strongly convergent of order $1/2$ in $\Delta t \rightarrow 0$ as $M, K \rightarrow \infty$ (*M*: sample size, *K*: # basis fcts.).
- \triangleright A zero-variance change of measure is given by

$$
\left. \frac{dQ}{dP} \right|_{\mathcal{F}_T} = \exp \left(\int_0^T Z_s \cdot dW_s - \frac{1}{2} \int_0^T |Z_s|^2 \, ds \right) \,,
$$

for $T < \infty$ (a.s.) and the discretisation bias can be further reduced by using importance sampling.

- I Under mild assumptions, the variance of the importance sampling estimator is **no** worse than for crude MC.
-

- ► The LSMC scheme is strongly convergent of order $1/2$ in $\Delta t \rightarrow 0$ as $M, K \rightarrow \infty$ (*M*: sample size, *K*: # basis fcts.).
- \triangleright A zero-variance change of measure is given by

$$
\left. \frac{dQ}{dP} \right|_{\mathcal{F}_{\mathcal{T}}} = \exp \left(\int_0^T Z_s \cdot dW_s - \frac{1}{2} \int_0^T |Z_s|^2 \, ds \right) \,,
$$

for $T < \infty$ (a.s.) and the discretisation bias can be further reduced by using importance sampling.

- I Under mild assumptions, the variance of the importance sampling estimator is **no** worse than for crude MC.
- \triangleright Generalisations include random time horizon, singular terminal condition, \dots

- ► The LSMC scheme is strongly convergent of order $1/2$ in $\Delta t \rightarrow 0$ as $M, K \rightarrow \infty$ (*M*: sample size, *K*: # basis fcts.).
- \triangleright A zero-variance change of measure is given by

$$
\left. \frac{dQ}{dP} \right|_{\mathcal{F}_\mathcal{T}} = \exp \left(\int_0^T Z_s \cdot dW_s - \frac{1}{2} \int_0^T |Z_s|^2 \, ds \right) \,,
$$

for $T < \infty$ (a.s.) and the discretisation bias can be further reduced by using importance sampling.

- I Under mild assumptions, the variance of the importance sampling estimator is **no** worse than for crude MC.
- \triangleright Generalisations include random time horizon, singular terminal condition, \dots

- ► The LSMC scheme is strongly convergent of order $1/2$ in $\Delta t \rightarrow 0$ as $M, K \rightarrow \infty$ (*M*: sample size, *K*: # basis fcts.).
- \triangleright A zero-variance change of measure is given by

$$
\left. \frac{dQ}{dP} \right|_{\mathcal{F}_\mathcal{T}} = \exp \left(\int_0^T Z_s \cdot dW_s - \frac{1}{2} \int_0^T |Z_s|^2 \, ds \right) \,,
$$

for $T < \infty$ (a.s.) and the discretisation bias can be further reduced by using importance sampling.

- I Under mild assumptions, the variance of the importance sampling estimator is **no** worse than for crude MC.
- **Generalisations include** random time horizon, singular terminal condition, \dots

[Duality of estimation and control](#page-8-0)

[From dynamic programming to forward-backward SDE](#page-19-0)

ロトメ 伊 トメ 老 トメ 差点

 290

ă.

Least regression

[Importance sampling of multiscale systems](#page-39-0)

Example I: hitting probabilities

Probability of **hitting the set** $C \subset \mathbb{R}$ before time T :

$$
-\log \mathbb{P}(\tau \leq \mathcal{T}) = \min_{u} \mathbb{E}\bigg[\frac{1}{4}\int_0^{\tau \wedge \mathcal{T}} |u_t|^2 dt - \log \mathbf{1}_{\partial C}(X_{\tau \wedge \mathcal{T}}^u)\bigg],
$$

with τ denoting the first hitting time of C under the dynamics

$$
dX_t^u = (u_t - \nabla V(X_t^u)) dt + \sqrt{2\epsilon} dB_t
$$

[Zhang et al, SISC, 2014], [Richter, MSc thesis, 2016], [H et al, Nonlinearity, 2016]

 $A \equiv \mathbf{1} \times \mathbf{1} + \mathbf{1} \oplus \mathbf{1} \times \mathbf{1} + \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1}$ \Rightarrow $2Q$

Example I, cont'd

Probability of **hitting** $C \subset \mathbb{R}$ before time T, starting from $x = -1$:

$$
-\log \mathbb{P}(\tau \leq T) = \min_{u} \mathbb{E}\bigg[\frac{1}{4}\int_0^{\tau \wedge T} |u_t|^2 dt - \log \mathbf{1}_{\partial C}(X_{\tau \wedge T}^u)\bigg],
$$

(BSDE with singular terminal condition and random stopping time)

with K the number of Gaussians and M the number of realisations of the forward SDE.

[Ankirchner et al, SICON, 2014], [Kruse & Popier, SPA, 2016], [Kebiri et al, Proc IHP, 2018]

Example II: High-dimensional PDE

First exit time of a **Brownian motion** from an d -sphere of radius r :

 $\tau = \inf\{t > 0: x + W_t \notin S_r^d\}$

Cumulant generating function of first exit time satisfies

$$
-\log \mathbb{E}[\exp(-\alpha \tau)] = \min_{u} \mathbb{E}\left[\alpha \tau^{u} + \frac{1}{2} \int_{0}^{\tau^{u}} |u_{t}| dt\right]
$$

► Least-squares MC w/
$$
K = 3, M \sim 10^2
$$

► mean first exit time $\mathbb{E}[\tau] = \frac{r^2 - |x|^2}{d}$ d

[H, et al., Chaos, 2019]

Suboptimal controls for multiscale problems

Suboptimal controls from averaging

The fact that the FBSDE is uncoupled implies that every strong approximation X gives rise to an approximation of (Y, Z) .

Averaged control problem: minimize

$$
J(\eta) = \mathbb{E}\bigg[\frac{1}{2}\int_0^T |\eta_s|^2 ds + \bar{g}(x_T)\bigg]
$$

subject to the averaged dynamics

$$
dx_t^{\eta} = (\Sigma(x_t^{\eta})\eta_t + B(x_t^{\eta}))dt + \Sigma(x_t^{\eta})dW_t
$$

Control approximation strategy when $x = \xi(X)$

$$
u_t^* \approx \nabla \xi(X_t^*) \eta_t^*.
$$

[H et al, Nonlinearity, 2016], [H. et al, PTRF, 2018]; cf. [Legoll & Lelièvre, Nonlinearity, 2010], [H. et al]

KORK STRAIN A BAR SHOP

Slow-fast systems: some results

 \triangleright Uniform bound of the relative error using averaged optimal controls

$$
\delta_{\text{rel}} \leq \mathit{CN}^{-1/2}\, \varepsilon^{1/8}\, , \quad \varepsilon = \frac{\tau_{\text{fast}}}{\tau_{\text{slow}}}
$$

 \triangleright Slightly stronger error bound for limit BSDE

$$
\sup\{|Y_t^\delta-\bar{Y}_t|:0\leq t\leq T\}\leq C\sqrt{\varepsilon}
$$

as $\delta\to 0$, analogously for Z^δ_t (implies importance sampling $\mathcal{O}(\varepsilon^{1/4})$ error bound).

 \triangleright Issues for highly oscillatory controls due to quadratic nonlinearity. Log efficiency in this case has been proved by Dupuis, Spiliopoulos and Wang.

KORKARRA ERKER EL POLO

[Spiliopoulos et al, MMS, 2012], [Banisch & H, MCRF, 2016], [H et al, PTRF, 2018], [Kebiri & H, Computation, 2018]

- \triangleright Adaptive importance sampling scheme based on **dual stochastic control** formulation features short trajectories with minimum variance estimators.
- \triangleright Optimal control problem boils down to an **uncoupled FBSDE** with only one additional spatial dimension.
- **Figure 2** Error analysis of the FBSDE algorithms for unbounded stopping time $\&$ singular terminal condition is largely open. LSMC algorithm requires some fine-tuning.

- \triangleright Adaptive importance sampling scheme based on **dual stochastic control** formulation features short trajectories with minimum variance estimators.
- \triangleright Optimal control problem boils down to an **uncoupled FBSDE** with only one additional spatial dimension.
- **Figure 2** Error analysis of the FBSDE algorithms for unbounded stopping time $\&$ singular terminal condition is largely open. LSMC algorithm requires some fine-tuning.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

In Numerics should be combined with **dimension reduction** (e.g. averaging).

- \triangleright Adaptive importance sampling scheme based on **dual stochastic control** formulation features short trajectories with minimum variance estimators.
- \triangleright Optimal control problem boils down to an **uncoupled FBSDE** with only one additional spatial dimension.
- **Error analysis** of the FBSDE algorithms for unbounded stopping time $\&$ singular terminal condition is largely open. LSMC algorithm requires some fine-tuning.

KORK STRATER STRAKES

In Numerics should be combined with **dimension reduction** (e.g. averaging).

- \triangleright Adaptive importance sampling scheme based on **dual stochastic control** formulation features short trajectories with minimum variance estimators.
- \triangleright Optimal control problem boils down to an **uncoupled FBSDE** with only one additional spatial dimension.
- **Error analysis** of the FBSDE algorithms for unbounded stopping time $\&$ singular terminal condition is largely open. LSMC algorithm requires some fine-tuning.

KORK STRATER STRAKES

In Numerics should be combined with **dimension reduction** (e.g. averaging).

Thank you for your attention!

Acknowledgement:

Ralf Banisch Omar Kebiri Lara Neurither Jannes Quer Lorenz Richter Christof Schütte Wei Zhang

German Science Foundation (DFG) Einstein Center for Mathematics Berlin (ECMath)