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Vorticity Equations

Consider

Ohw=vAw—u-Vu, u= (f)yx((__AA_lf)> w. (1)

On the asymmetric torus
(x,y) € Ds :=[0,274] x [0, 27]

with § =~ 1.
Periodic boundary conditions, and viscosity 0 < v < 1.
The relation between u and w is known as the Biot-Savart law.
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Stochastically Forced Vorticity

B ow _(9,(—AY)
Otw—qu—u-Vw—l—W, u= <—8X(—A1) w. (2)

The noise is white in time, colored in space, and takes the form,
for k = (k1, k2) # (0, 0),
W(tx,y)=vVor Y ad/RIg (). (3)
kekcz2\{(0,0)}
B(t) = {Bk(t)} are i.i.d. Wiener processes.
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Stochastically Forced Vorticity

B ow _{ 9,(-A)
Otw—qu—wVw—l—W, u= <—8X(—A1) w. (2)

The noise is white in time, colored in space, and takes the form,
for k = (k1, k2) # (0, 0),
W(tx,y)=vVor Y ad/RIg (). (3)
ke CZ2\{(0,0)}

B(t) = {Bk(t)} arei.i.d. Wiener processes.
Spatial correlation oy
We assume there exist fixed positive constants Cp and «g such that

|O’k‘ < Coeiao“qz.
Solutions then analytic in space [Mattingly 2002].
To insure the vorticity remains real valued for all times we impose
ok =0k Bk= 0k

We choose o0y = 0 so property fD(; w = 0 is preserved. )26



Deterministic equation :

» Time-asymptotic rest state of zero
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Deterministic equation :

» Time-asymptotic rest state of zero

» Quasi-stationary states : bars and dipoles

These rapidly attract nearby solutions and correspond to transient
structures : a key role in the long-time evolution of solutions
[Beck Cooper Spiliopoulos, Beck & Wayne '13, Bouchet &
Simonnet '09]

The x- and y-bar states

Wapar (X, t) = €82 sin(x/4), wWybar(y, t) = € isiny,

or similarly with sine replaced by cosine.
Dipoles are given by

Waipole(X, ¥, t) = € 9" sin(x/6) + e 'siny,
or similarly with sine replaced by cosine.
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X-bar, Y-bar and Dipoles: with 6 =1

E———eee—
0 H x X 2

x-bar: wypar = sin(x) y-bar: wypar = sin(y)
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X-bar, Y-bar and Dipoles: with 6 =1

0 T 3
o B x 3 2

x-bar: wypar = sin(x) y-bar: wypar = sin(y)

Dipole: wgipote = sin(x) + sin(y)
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SPDE in Fourier space :

. 1 1\ . . .
Wk = 52 |k|5Wk > Z i (2 2) Wi + V2v0ox P,
5 |J’5

j+I=k
where
k2= K2+ 6%K2, kT = (ko, —ka). (4)

> Low Modes : )
x-bar states : e 52 cos(x/d) and e” 52" sin(x/4)
correspond to solutions with energy only in the k = (£1,0) modes.
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SPDE in Fourier space :

A 1 1
Wk = 52|k|5wk 2 Z J 3 <I§ | ’2) ij| + v 21/0.k6k7

j+I=k

where
k2= K2+ 6%K2, kT = (ko, —ka). (4)

» Low Modes :

x-bar states : e_é%tcos(x/é) and e_é%tsin(x/é)

correspond to solutions with energy only in the k = (£1,0) modes.
y-bar states: e ! cos(y) and e "' sin(y),

correspond to solutions with energy only in the k = (0, £1) modes.
Dipole states : energy in both the k = (£1,0) and k = (0, £1).
These "low modes” have lowest value of |k|s defined by (4).

» High Mode : Any mode & with |k| > max{1,§?}
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Stochastic Order Parameter

To measure the relative energy in the low modes, define

11,0 (1)]2

Zyort(t) i= — -~ ,
() = o OF + Ben@F

> Zort(t) €[0,1]
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Stochastic Order Parameter

To measure the relative energy in the low modes, define

11,0 (1)]2
(1,0 ()% + |@¢0,1) ()2

Zvort(t) =

> Zort(t) €[0,1]

» If the dynamics drive Z,o(t) to increase to 1, there is more
energy in (1 o) relative to &g 1), indicating the system is in an
x-bar state.

» If Z,or(t) falls toward 0, the system would be observed to be in

a y-bar state.
» If Z,or(t) instead stays near 1/2, the system is in a dipole state
with relative energy in the low modes comparable in magnitude.
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Numerics

Similar to [Bouchet & Simonnet 09], take > iy e—oolKl? — 1.
Space Discretization : Fourier

Time Discretization : Finely discretized Tamed Euler-Maruyama
method (see later).

vort(t N Z vort

Time averages of these Monte Carlo averages:

Introduce a “burn-in time", tpum

Define this time average for any function f(t) defined on
tourn < t < T to be

1 T
A(f7 tburn) = Ti— ) / f(t) dt.
urn

thurn
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» § =1 : dipole solution
» 0 > 1: x-bar solution
> § < 1: y-bar solution
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Vorticity : 0 > 1
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An individual trajectory transitions among quasi-stationary states.

10/28



Vorticity : 0 > 1

1
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On average, the system is close to an x-bar state. )
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Vorticity : 6 = 1.1
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Vorticity: 6 =1
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Vorticity: 6 = 0.9
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Finite Dimensional system

Use lowest eight Fourier modes:

&

w1 = W(Lo), wp = (—1,0)» w3 = W((]’]_), Wwyq = (.L)(O’_]_)7

&

Ws = W), We- Wy i=W(,-1), W8 = W(-1,-1)-

(-1,1)
correspond to the low modes

W1,2,3,4
represent the role of all the high modes.

W5.6,7,8
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Finite Dimensional system

Use lowest eight Fourier modes:

(-10)) W3 =&(01), W4 = O(0,-1);

&

w1 = W), wW2i=

(-1,1), W7:= @(1,—1), wg = @(—1,—1)-

&

Ws = dj(l,l)a We -

w1,2,:3.4 correspond to the low modes
ws 6,7,8 represent the role of all the high modes.
» Since the solution w(x, y) is real valued, the following complex

conjugacy relationship still hold,
W] = W2, w3 =UwW4, Ws==wWg, W7 =Wg.

Based on centre manifold from deterministic case.
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SDE Model
Set a1 = (14 62), a* = (1+46%), ag = (4+6%) and B = (6% — 1)
then
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SDE Model
Set a1 = (14 62), a* = (1+46%), ag = (4+6%) and B = (6% — 1)

then
wy = .
— w1 + g lwswr — Gaws] + 52 azwl(‘w5|2 + w7 |?) + V2vo, Wy
W3 = —vwz+ O - [@105— w1w7]+2m4 2w3(]w5]2+|w7] )+ 2v03 Wi
ws =
6 2 .
s — Gunws — Gl — g wslwl? + V2o We
w7 - 6 2
- 0°(3+4%) 2 .
—vGwr + Buwnws — 21(,(;:0(1 7|wi)? — 2jggi‘ialcu7|w3]2 + 2o Wy,
Take
013 = e and 057 = e 200,

Order parameter for SDE model :

jwi(t)]?
lw1 (£)]12 + |ws(t)|?°

red(t) —



Reduced SDEs

(] 200 400 600 800 1000 1200 1400 1600 1800 2000
t

Simulation of Z,.4(t) with noise for v = 0.001.

For § > 1, the order parameter increases : x-bar state.

For 0 < 1, the order parameter decreases : y-bar state.

When 6 = 1, Z,q(t) remains near 1/2 indicating a dipole state.
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Pertubation Analysis

Use backward Kolmogorov equation to derive PDEs for insight on
Zed(t)as d — 1 ...

0. Set 82 =1+

1. Scale — get fast-slow system

2. Obtain backward Kolmogorov equation

3. Average out the fast variables and look at E[Z,4(t)] as § — 1

0 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

evolves to y-bar state € = 0.1 evolves to x-bar state € = —0.1.
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Comparison SPDE & SDE :0=1.1,6=1.0,0=0.9
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Comparison SPDE & SDE :0=1.1,6=1.0,0=0.9

4

oND O

900000000
NO A

T

1

4
T
I

0

o =00 aoo soo 200 1000 1200 1400 1600 1200 =000

n

bADONDO
|
1

000000000
b

n

0

o =oo aoco soo so00 1000 1200 1400 1600 1300 =000
*

-

0

oND

000000000
bahoo
T
Il

=) =00 200 soo s00 1000 1200 1400 1600 1800 =000
T

19/28



A note on numerics...

We used Tamed Euler methods and fixed steps: the S(P)DEs are
nonlinear with non-global Lipschitz drifts

du = [Au+ f(u)] dt + dW.
» What goes wrong with EM ? Consider simple 1D SDE

dX = —X3dt + odW
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A note on numerics...

We used Tamed Euler methods and fixed steps: the S(P)DEs are
nonlinear with non-global Lipschitz drifts

du = [Au+ f(u)] dt + dW.
» What goes wrong with EM ? Consider simple 1D SDE
dX = —X3dt + odW
The associated Euler map with stepsize At for deterministic Eq.
Yoi1 =Y, — AtY?

» stable equilibrium solution at 0

» unstable two-cycle at {:t\/Q/At}.

So the basin of attraction of the zero solution is | Yp| <1/2/At.
» Outside of the basin of attraction : oscillation and growth !

20/28



Tamed Euler-Maruyama methods
[Hutzenthaler, Jentzen, Kloeden], [Hutzenthaler,Jentzen],
[Gyongy, Sabanis, Siska], etc
» Idea : introduce higher order perturbation of the flow
Simplest : Drift-tamed Euler-Maruyama

At

Yor1 = Yo+ 7ot
i 1+ At[[f(Y,)]]

f(Yn)+8(Ya)AW i1
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Tamed Euler-Maruyama methods
[Hutzenthaler, Jentzen, Kloeden], [Hutzenthaler,Jentzen],
[Gyongy, Sabanis, Siska], etc
» Idea : introduce higher order perturbation of the flow
Simplest : Drift-tamed Euler-Maruyama

At
Yoio1 =Y+ ——————F(Y,) +g(Y,) AW,
+1 1+AtHf(Yn)H ( ) g( ) +1
Prove moment bounds
sup  sup  E[||Y,[P] < cc. (5)

neN ne{0,1,...,N}

Strong convergence

1/p
(E[ sup_[IX(¢) — Vell? ) < AT

tel0,T]

» but use a finite At in computations.
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Adaptive Alternative
Rather than adapt the flow — adapt the timestep

Yn+1 = Yn + Atn+1 f( Yn) + g( Yn)AWn—i—L
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Adaptive Alternative
Rather than adapt the flow — adapt the timestep

Yn+1 = Yn + Atn+1 f( Yn) + g( Yn)AWn—i—L

At, sequence random timesteps: At, 1 determined by Y.
Let {t, :=>.7_, At;}N_; with to = 0. N random.
> Let At, satisfy Atmin < Aty < Atmax Where

Atmax = pAtmin O<peR

Atpin : ensures finite number of time steps over [0, T].
If At < Atmin use backstop method.

Atmax : prevents stepsizes from becoming too large.

» Admissible step: Take At,y1 such that

IF(Ya)l? < R+ Rl Yal®.

For example At,y1 < Atmax|lF(Ya)|l L.
» Convergence as Atmax — 0. [C. Kelly & G.L. IMAJNA 2017]
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SPDE : [S.Campbell & G. L. 2018]
Consider SPDE

du = [Au+ f(u)] dt + G(u)dW.

with a mild solution

u(t) = ety te(t_s)A u(s))ds te(t_s) u(s))ds
() o+/0 f(())d+/0 G(u(s))d

We take trace class noise W and write
W(t) = /@i (x)Bi(t)-
j=1

For f we take : one sided Lipschitz and growth condition
IDF()] < c(1 + [Ix])

For G - a global Lipschitz condition.

Under these conditions:-

Existence and bounded moments in [Jentzen and Pusnik].
23/28



Space discretization- FE/Spectral

dxh = (A,,xh + P,,F(xh)) dt + PpB(X")dW.
Discretize mild solution in time by Exponential method:
Xh = eftnhnxh o A-L(elrtn — [)\PyF(XP) + PhB(X) AW,

Theorem With admissible timestep At,, have strong convergence
of exponential method & for initial data Xy € Ly(D(A)?/?),
0<~vy<1

(B [IX(T) = YalP])™* < C(at+ ).
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Numerical evidence

Averaged Order Parameter Z
S=1.1, z=0.1, NumTrials=1
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Numerical evidence

Averaged Order Parameter Z
S=1.1, z=0.1, NumTrials=1
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Numerical evidence: timestep distribution

0 02 04 06 08 1
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Numerical evidence: timestep distribution
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Summary

1. Stochastic vorticity : see different states for § > 1, § = land
o<1

2. Developed a finite dimensional SDE model
3. Numerical studies show a match on transitions between states

4. Would be interesting to take same noise paths : from SPDE
to SDE.

5. Would be interesting to look closer as § =~ 1.

6. Results with adaptive timestepping...
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