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Vorticity Equations

Consider

∂tω = ν∆ω − u · ∇ω, u =

(
∂y (−∆−1)
−∂x(−∆−1)

)
ω. (1)

On the asymmetric torus

(x , y) ∈ Dδ := [0, 2πδ]× [0, 2π]

with δ ≈ 1.
Periodic boundary conditions, and viscosity 0 < ν � 1.
The relation between u and ω is known as the Biot-Savart law.
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Stochastically Forced Vorticity

∂tω = ν∆ω − u · ∇ω +
∂W
∂t

, u =

(
∂y (−∆−1)
−∂x(−∆−1)

)
ω. (2)

The noise is white in time, colored in space, and takes the form,
for k = (k1, k2) 6= (0, 0),

W(t, x , y) =
√

2ν
∑

k∈K⊂Z2\{(0,0)}

σke
i(k1x/δ+k2y)βk(t). (3)

β(t) = {βk(t)} are i.i.d. Wiener processes.

Spatial correlation σk
We assume there exist fixed positive constants C0 and α0 such that

|σk| ≤ C0e
−α0|k|2 .

Solutions then analytic in space [Mattingly 2002].
To insure the vorticity remains real valued for all times we impose

σ̄k = σ−k β̄k = β−k.

We choose σ(0,0) = 0 so property
∫
Dδ
ω = 0 is preserved.
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Deterministic equation :

I Time-asymptotic rest state of zero

I Quasi-stationary states : bars and dipoles
These rapidly attract nearby solutions and correspond to transient
structures : a key role in the long-time evolution of solutions
[Beck Cooper Spiliopoulos, Beck & Wayne ’13, Bouchet &
Simonnet ’09]
The x- and y -bar states

ωxbar (x , t) = e−
ν
δ2 t sin(x/δ), ωybar (y , t) = e−νt sin y ,

or similarly with sine replaced by cosine.
Dipoles are given by

ωdipole(x , y , t) = e−
ν
δ2 t sin(x/δ) + e−νt sin y ,

or similarly with sine replaced by cosine.
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X-bar, Y-bar and Dipoles: with δ = 1

x-bar: ωxbar = sin(x) y-bar: ωybar = sin(y)

Dipole: ωdipole = sin(x) + sin(y)
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SPDE in Fourier space :

˙̂ωk = − ν

δ2
|k|2δω̂k −

δ

2

∑
j+l=k

〈j⊥, l〉
(

1

|l|2δ
− 1

|j|2δ

)
ω̂jω̂l +

√
2νσkβ̇k,

where
|k|2δ = k2

1 + δ2k2
2 , k⊥ = (k2,−k1). (4)

I Low Modes :
x-bar states : e−

ν
δ2 t cos(x/δ) and e−

ν
δ2 t sin(x/δ)

correspond to solutions with energy only in the k = (±1, 0) modes.

y-bar states: e−νt cos(y) and e−νt sin(y),
correspond to solutions with energy only in the k = (0,±1) modes.
Dipole states : energy in both the k = (±1, 0) and k = (0,±1).
These “low modes” have lowest value of |k|δ defined by (4).
I High Mode : Any mode ω̂k with |k| > max{1, δ2}
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Stochastic Order Parameter

To measure the relative energy in the low modes, define

Zvort(t) :=
|ω̂(1,0)(t)|2

|ω̂(1,0)(t)|2 + |ω̂(0,1)(t)|2
,

I Zvort(t) ∈ [0, 1]

I If the dynamics drive Zvort(t) to increase to 1, there is more
energy in ω̂(1,0) relative to ω̂(0,1), indicating the system is in an
x-bar state.
I If Zvort(t) falls toward 0, the system would be observed to be in
a y -bar state.
I If Zvort(t) instead stays near 1/2, the system is in a dipole state
with relative energy in the low modes comparable in magnitude.
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Numerics

Similar to [Bouchet & Simonnet 09], take
∑
{k∈K} e

−α0|K|2 = 1.
Space Discretization : Fourier
Time Discretization : Finely discretized Tamed Euler-Maruyama
method (see later).

Z̄vort(t) =
1

N

N∑
i=1

Z i
vort(t),

Time averages of these Monte Carlo averages:
Introduce a “burn-in time”, tburn
Define this time average for any function f (t) defined on
tburn ≤ t ≤ T to be

A(f , tburn) :=
1

T − tburn

∫ T

tburn

f (t) dt.
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I δ = 1 : dipole solution
I δ > 1 : x-bar solution
I δ < 1 : y -bar solution
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Vorticity : δ > 1
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An individual trajectory transitions among quasi-stationary states.
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On average, the system is close to an x-bar state.
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Vorticity : δ = 1.1

0 100 200 300 400 500 600 700 800 900 1000

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Z̄vort(t) with 95% confidence interval.

Average contour plot of vorticity.
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Vorticity: δ = 1
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Vorticity: δ = 0.9
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Vorticity : δ = 1.1, δ = 1.0, δ = 0.9
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Finite Dimensional system

Use lowest eight Fourier modes:

ω1 := ω̂(1,0), ω2 := ω̂(−1,0), ω3 := ω̂(0,1), ω4 := ω̂(0,−1),

ω5 := ω̂(1,1), ω6 := ω̂(−1,1), ω7 := ω̂(1,−1), ω8 := ω̂(−1,−1).

ω1,2,3,4 correspond to the low modes
ω5,6,7,8 represent the role of all the high modes.

I Since the solution ω(x , y) is real valued, the following complex
conjugacy relationship still hold,

ω1 = ω̄2, ω3 = ω̄4, ω5 = ω̄8, ω7 = ω̄8.

Based on centre manifold from deterministic case.
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SDE Model
Set α1 = (1 + δ2), α4 = (1 + 4δ2), α4 = (4 + δ2) and β = (δ2− 1)
then

ω̇1 =
− ν
δ2ω1 + 1

δα1
[ω3ω7 − ω̄3ω5] + 3δ6

2να4α2
1
ω1(|ω5|2 + |ω7|2) +

√
2νσ1Ẇ1

ω̇3 = −νω3 + δ3

α1
[ω̄1ω5−ω1ω̄7]+ 3δ2

2να4α2
1
ω3(|ω5|2 +|ω7|2)+

√
2νσ3Ẇ3

ω̇5 =

−ν α1
δ2 ω5 − β

δ ω1ω3 − δ6(3+δ2)
2να4α1

ω5|ω1|2 − 1+3δ2

2νδ2α4α1
ω5|ω3|2 +

√
2νσ5Ẇ5

ω̇7 =

−ν α1
δ2 ω7 + β

δ ω1ω̄3− δ6(3+δ2)
2να4α1

ω7|ω1|2− 1+3δ2

2νδ2α4α1
ω7|ω3|2 +

√
2νσ7Ẇ7.

Take
σ1,3 = e−α0 and σ5,7 = e−2α0 .

Order parameter for SDE model :

Zred(t) :=
|ω1(t)|2

|ω1(t)|2 + |ω3(t)|2
.
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Reduced SDEs
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=1.10

=1.05

=1.0

=0.95

=0.9

Simulation of Z̄red(t) with noise for ν = 0.001.
For δ > 1, the order parameter increases : x-bar state.
For δ < 1, the order parameter decreases : y -bar state.
When δ = 1, Z̄red(t) remains near 1/2 indicating a dipole state.
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Pertubation Analysis

Use backward Kolmogorov equation to derive PDEs for insight on
Zred(t) as δ → 1 ...
0. Set δ2 = 1± ε
1. Scale – get fast-slow system
2. Obtain backward Kolmogorov equation
3. Average out the fast variables and look at E[Zred(t)] as δ → 1
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evolves to y -bar state ε̂ = 0.1 evolves to x-bar state ε̂ = −0.1.
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Comparison SPDE & SDE :δ = 1.1, δ = 1.0, δ = 0.9
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A note on numerics...

We used Tamed Euler methods and fixed steps: the S(P)DEs are
nonlinear with non-global Lipschitz drifts

du = [Au + f (u)] dt + dW .

I What goes wrong with EM ? Consider simple 1D SDE

dX = −X 3dt + σdW

The associated Euler map with stepsize ∆t for deterministic Eq.

Yn+1 = Yn −∆tY 3
n

I stable equilibrium solution at 0

I unstable two-cycle at
{
±
√

2/∆t
}

.

So the basin of attraction of the zero solution is |Y0| <
√

2/∆t.
I Outside of the basin of attraction : oscillation and growth !
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Tamed Euler-Maruyama methods
[Hutzenthaler, Jentzen, Kloeden], [Hutzenthaler,Jentzen],
[Gyongy, Sabanis, Siska], etc
I Idea : introduce higher order perturbation of the flow
Simplest : Drift-tamed Euler-Maruyama

Yn+1 = Yn +
∆t

1 + ∆t‖f (Yn)‖
f (Yn) + g(Yn)∆W n+1

Prove moment bounds

sup
n∈N

sup
n∈{0,1,...,N}

E[‖Yn‖p] <∞. (5)

Strong convergence(
E

[
sup

t∈[0,T ]
‖X (t)− Ȳt‖p

])1/p

≤ Cp∆t1/2

I but use a finite ∆t in computations.
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Adaptive Alternative
Rather than adapt the flow – adapt the timestep

Yn+1 = Yn + ∆tn+1f (Yn) + g(Yn)∆W n+1.

I ∆tn sequence random timesteps: ∆tn+1 determined by Yn.
I Let {tn :=

∑n
i=1 ∆t i}Nn=1 with t0 = 0. N random.

I Let ∆tn satisfy ∆tmin < ∆tn < ∆tmax where

∆tmax = ρ∆tmin 0 < ρ ∈ R

∆tmin : ensures finite number of time steps over [0,T ].
If ∆t < ∆tmin use backstop method.
∆tmax : prevents stepsizes from becoming too large.
I Admissible step: Take ∆tn+1 such that

‖f (Yn)‖2 ≤ R1 + R2‖Yn‖2.

For example ∆tn+1 ≤ ∆tmax‖f (Yn)‖−1.
I Convergence as ∆tmax → 0. [C. Kelly & G.L. IMAJNA 2017]
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SPDE : [S.Campbell & G. L. 2018]
Consider SPDE

du = [Au + f (u)] dt + G (u)dW .

with a mild solution

u(t) = etAu0 +

∫ t

0
e(t−s)Af (u(s))ds +

∫ t

0
e(t−s)G (u(s))ds

We take trace class noise W and write

W (t) =
∞∑
j=1

√
qjφj(x)βj(t).

For f we take : one sided Lipschitz and growth condition
‖Df (x)‖ ≤ c(1 + ‖x‖c)
For G - a global Lipschitz condition.
Under these conditions:-
Existence and bounded moments in [Jentzen and Pusnik].
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Space discretization- FE/Spectral

dX h =
(
AhX

h + PhF (X h)
)
dt + PhB(X h)dW .

Discretize mild solution in time by Exponential method:

X h
n+1 = e∆tnAhX h

n + A−1
h (e∆tnAh − I )PhF (X h

n ) + PhB(X h
n )∆Wn+1.

Theorem With admissible timestep ∆tn have strong convergence
of exponential method & for initial data X0 ∈ L2(D(A)γ/2),
0 ≤ γ ≤ 1 (

E
[
‖X (T )− YN‖2

])1/2 ≤ C (∆t
γ/2
max + hr ).
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Numerical evidence
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Numerical evidence
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Numerical evidence: timestep distribution
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Summary

1. Stochastic vorticity : see different states for δ > 1, δ = 1and
δ < 1.

2. Developed a finite dimensional SDE model

3. Numerical studies show a match on transitions between states

4. Would be interesting to take same noise paths : from SPDE
to SDE.

5. Would be interesting to look closer as δ ≈ 1.

6. Results with adaptive timestepping...
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