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� Study the mean field limit of weakly interacting diffusions:
� The Dasai-Zwanzing model in a 2-scale potential:

dXi = −V ′(Xi, Xi/ε) dt− θ

(
Xi
t −

1
N

N∑
j=1

Xj
t

)
dt+

√
2β−1 dW i

t .

� Noisy Kuramoto oscillators:

ẋi = −
1
N

N∑
j=1

sin(xi − xj) +
√

2β−1Ẇi.

� Models for opinion formation:

ẋi =
1
N

N∑
j=1

aij(|xi − xj |)(xi − xj) +
√

2β−1Ẇi.
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� Study the mean field limits of weakly interacting diffusions:
� Interacting non-Markovian Langevin dynamics (with H. Duong)

q̈i = −
∂V

∂qi
−

1
N

N∑
j=1

U ′(qi−qj)−
N∑
j=1

∫ t

0
γij(t−s) q̇j(s) ds+Fi(t), i = 1, . . . N,

(1)
� where F (t) = (F1(t), . . . FN (t)) is a mean zero, Gaussian, stationary process

with autocorrelation function E(Fi(t)Fj(s)) = β−1γij(t− s).
� Langevin dynamics driven by colored noise (with S. Gomes and U. Vaes)

ẋi = −V ′(xi)−
1
N

N∑
j=1

W ′(xi − xj) + ηi, (2a)

η̇i = −ηi +
√

2β−1Ḃi (2b)

� applications: Models for systemic risk (Garnier, Papanicolaou...), clustering in
the Hegselmann-Krause model (Chazelle, E, .....)
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� These models exhibit phase transitions.

� Goal: Characterize phase transitions, estimate basins of attraction.

� Study the effect of colored, non-Gaussian, multiplicative noise.

� Solve the mean field PDE using spectral methods (with S. Gomes and U.
Vaes).

� Study fluctuations around the mean field limit, in particular past the phase
transition (with R. Gvalani and M. Delgadino).

� Develop optimal control strategies for the mean field dynamics–application to
models for opinion formation (with D. Kalise and U. Vaes)

� Applications: algorithms for sampling and optimization (with N. Kantas and
P. Parpas).
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� We consider a system of weakly interacting diffusions moving in a 2-scale
locally periodic potential:

dXi
t = −∇V ε(Xi

t)dt−
1
N

N∑
j=1

∇F (Xi
t −Xj

t )dt+
√

2β−1dBit, i = 1, .., N,

(3)

� where
V ε(x) = V0(x) + V1(x, x/ε). (4)

� Our goal is to study the combined mean-field/homogenization limits.

� In particular, we want to study bifurcations/phase transitions for the
McKean-Vlasov equation in a confining potential with many local minima.
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Figure: Bistable potential with (left) separable and (right) nonseparable fluctuations,
V ε(x) = x4

4 −
x2

2 + δ cos
(
x
ε

)
and V ε(x) = x4

4 −
(
1− δ cos

(
x
ε

))
x2

2 .
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Elastic Stochastic Gradient Descent (Zhang et al 2015, Chaudhari et al (2016))

� Our goal is to minimize the loss function V (x).

� Distributed training of deep neural networks: minimize the communication
overhead between a set of workers that together optimize replicated copies of
the original function V .

� Consider N distinct workers (x1, . . . , xN ) and define the average
x = 1

N

∑N

j=1 xj .

� Define the modified loss function (γ is a regularization parameter)

min
x

1
N

N∑
j=1

(
V (xi) + 1

2γ |xi − x|
2
)
.

� The distributed optimization algorithm corresponds to the following system of
interacting agents.

dxi(t) = −∇V (xi(t)) dt−
1
γ

(
xi − x

)
+
√

2β−1 dWi.
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McKean-Vlasov Dynamics in a Bistable Potential

� Consider a system of interacting diffusions in a bistable potential:

dXi
t =

(
−V ′(Xi

t)− θ

(
Xi
t −

1
N

N∑
j=1

Xj
t

))
dt+

√
2β−1 dBit. (5)

� The total energy (Hamiltonian) is

WN (X) =
N∑
`=1

V (X`) + θ

4N

N∑
n=1

N∑
`=1

(Xn −X`)2. (6)

� We can pass rigorously to the mean field limit as N →∞ using, for example,
martingale techniques, (Dawson 1983, Gartner 1988, Oelschlager 1984).

� Formally, using the law of large numbers we obtain the McKean SDE

dXt = −V ′(Xt) dt− θ(Xt − EXt) dt+
√

2β−1 dBt. (7)
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� The Fokker-Planck equation corresponding to this SDE is the McKean-Vlasov
equation

∂p

∂t
= ∂

∂x

(
V ′(x)p+ θ

(
x−

∫
R

xp(x, t) dx
)
p+ β−1 ∂p

∂x

)
. (8)

� The McKean-Vlasov equation is a gradient flow, with respect to the
Wasserstein metric, for the free energy functional

F [ρ] = β−1
∫
ρ ln ρ dx+

∫
V ρ dx+ θ

2

∫ ∫
F (x− y)ρ(x)ρ(y) dxdy, (9)

with F (x) = 1
2x

2.
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Critical Dynamics and Fluctuations for a Mean-Field 
Model of Cooperative Behavior 

Donald A. Dawson 1'2 

Received September 20, 1982 

The main objective of this paper is to examine in some detail the dynamics and 
fluctuations in the critical situation for a simple model exhibiting bistable 
macroscopic behavior. The model under consideration is a dynamic model of a 
collection of anharmonic oscillators in a two-well potential together with an 
attractive mean-field interaction. The system is studied in the limit as the 
number of oscillators goes to infinity. The limit is described by a nonlinear 
partial differential equation and the existence of a phase transition for this 
limiting system is established. The main result deals with the fluctuations at the 
critical point in the limit as the number of oscillators goes to infinity. It is 
established that these fluctuations are non-Gaussian and occur at a time scale 
slower than the noncritical fluctuations. The method used is based on the 
perturbation theory for Markov processes developed by Papanicolaou, Stroock, 
and Varadhan adapted to the context of probability-measure-valued processes. 

KEY WORDS: Mean field model; cooperative behavior; phase transition; 
critical fluctuations; universality; probability-measure-valued processes; 
perturbation theory. 

1. INTRODUCTION AND DESCRIPTION OF THE RESULTS 

O n e  of the  p r inc ipa l  p r o b l e m s  of  s tochas t i c  sys tem t h e o r y  is to desc r ibe  the  
b e h a v i o r  of  a sys tem wh ich  is c o m p r i s e d  of  a la rge  n u m b e r  of  i n t e r a c t i n g  
subsys tems.  I n  a d d i t i o n  an  i m p o r t a n t  f ea tu re  of  m o s t  sys tems  of  this type  is 
a degree  of  r a n d o m n e s s  i n h e r e n t  in the  m i c r o s c o p i c  subsys tems .  T h e  

i Department of Mathematics and Statistics, Carleton University, Ottawa, Canada K1S 5B6. 
2 Research supported by the Natural Sciences and Engineering Research Council of Canada. 

In addition, a part of this research was supported by SFB 123, University of Heidelberg and 
the University of Wisconsin-Madison. 
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Dynamical behavior of stochastic systems of infinitely many coupled nonlinear oscillators
exhibiting phase transitions of mean-field type: H theorem on asymptotic approach

to equilibrium and critical slowing down of order-parameter fiuctuations

Masatoshi Shiino
Department ofApp/ied Physics, Faculty of Science, Tokyo Institute of Technology, Oh okay-ama, Meguro ku-, Tokyo 152, Japan

(Received 29 September 1986)

It is shown that statistical-mechanical properties as well as irreversible phenomena of stochastic
systems, which consist of infinitely many coupled nonlinear oscillators and are capable of exhibiting
phase transitions of mean-field type, can be successfully explored on the basis of nonlinear Fokker-
Planck equations, which are essentially nonlinear in unknown distribution functions. Results of two
kinds of approaches to the study of their dynamical behavior are presented. Firstly, a problem of
asymptotic approaches to stationary states of the infinite systems is treated. A method of Lyapunov
functional is employed to conduct a global as well as a local stability analysis of the systems. By
constructing an H functional for the nonlinear Fokker-Planck equation, an H theorem is proved,
ensuring that the Helmholtz free energy for a nonequilibrium state of the system decreases monotoni-
cally until a stationary state is approached. Calculations of the second-order variation of the H func-
tional around a stationary state yield a stability criterion for bifurcating solutions of the nonlinear
Fokker-Planck equation, in terms of an inequality involving the second moment of the stationary dis-
tribution function. Secondly, the behavior of critical dynamics is studied within the framework of
linear-response theory. Generalized dynamical susceptibilities are calculated rigorously from linear
responses of the order parameter to externally driven fields by linearizing the nonlinear Fokker-
Planck equation. Correlation functions, together with spectra of the fluctuations of the order param-
eter of the system, are also obtained by use of the fluctuation-dissipation theorem for stochastic sys-
tems. A critical slowing down is shown to occur in the form of the divergence of relaxation time for
the fluctuations, in accordance with the divergence of the static susceptibility, as a phase transition
point is approached.

I. INTRODUCTION

The study of dynamical behavior of systems exhibiting
thermodynamic phase transitions has been of considerable
interest for many years. ' It is well known that in a
thermodynamic system undergoing phase transitions criti-
cal anomaly such as critical slowing down is generally ex-
pected to occur at its transition points. Recently the con-
cept of phase transition has been extended to include
nonthermodynamic or nonequilibrium phase transi-
tions. A problem arises of how the dynamical behav-
ior of nonequilibrium phase transitions compares with the
one for phase transitions in thermodynamic systems. To
discuss this sort of problem, stochastic approaches or
models have been extensively employed, ' ' since such
stochastic methods as using Langevin equation models are
often considered to be capable of simulating the dynami-
cal behavior of phase transitions both in thermodynamic
and in nonequilibrium systems.
In particular, the Langevin equation of the form "
x =yx x'+f(t), —
(f(t)f(t') ) =ct'5(t —t')

has been one of the most popular models used to discuss
the dynamical behavior of systems undergoing phase tran-
sitions involving symmetry-breaking instabilities with
change in certain control parameters as expressed by y in
Eq. (1.1). We must however be cautious of the use of this
equation. Although the ordinary differential equation ob-

tained by omitting the random force f(t) in Eq. (1.1) can
exhibit a bifurcation at y=O, the stochastic differential
equation (1.1) has nothing to do with bifurcations nor
phase transitions in that a stationary distribution for the
random variable x is always uniquely determined irrespec-
tive of the values of y and o.. This is because the corre-
sponding linear Fokker-Planck equation

Q 2
Q2—p (t,x)=— (yx —x )p (t,x)+ p (t,x)Bx ' 2

(1.2)

is con6rmed to have the property of global stability with
respect to its uniquely determined stationary solution, as
will be noted later. Thus, one cannot expect any critical
divergence at y=O for such physical quantities as the
variance or relaxation time for the variable x in Eq.
(1.1). In fact, the finiteness of the variance is easily
checked with use of the stationary solution of Eq. (1.2)
and the absence of critical divergence of the relaxation
time was shown through the investigation of the eigen-
values of Eq. (1.2). ' ' In view of the fact that changes in
the shape of the stationary distribution for Eq. (1.2) sure-
ly occur at y=O, however, the term "phase transition"
seems to have been extensively used in a somewhat wider
sense to describe a qualitative change in most probable
values as well as shapes of a distribution function accom-
panied by changes in control parameters, in the study of
symmetry-breaking instabilities observed in far-from-

36 2393 Q~ 1987 The American Physical Society
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� The finite dimensional dynamics (5) is reversible with respect to the Gibbs
measure

µN (dx) = 1
ZN

e−βWN (x1,...xN ) dx1 . . . dxN , ZN =
∫
RN

e−βWN (x1,...xN ) dx1 . . . dxN

(10)

� where WN (·) is given by (6).

� the McKean dynamics (7) can have more than one invariant measures, for
nonconvex confining potentials and at sufficiently low temperatures
(Dawson1983, Tamura 1984, Shiino 1987, Tugaut 2014).

� The density of the invariant measure(s) for the McKean dynamics (7) satisfies
the stationary nonlinear Fokker-Planck equation

∂

∂x

(
V ′(x)p∞ + θ

(
x−

∫
R

xp∞(x) dx
)
p∞ + β−1 ∂p∞

∂x

)
= 0. (11)
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� For the quadratic interaction potential a one-parameter family of solutions to
the stationary McKean-Vlasov equation (11) can be obtained:

p∞(x; θ, β,m) = 1
Z(θ, β;m)e

−β(V (x)+θ( 1
2x

2−xm)), (12a)

Z(θ, β;m) =
∫
R

e−β(V (x)+θ( 1
2x

2−xm)) dx. (12b)

� These solutions are subject, to the constraint that they provide us with the
correct formula for the first moment:

m =
∫
R

xp∞(x; θ, β,m) dx =: R(m; θ, β). (13)
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� This is the selfconsistency equation:

m = R(m; θ, β).

� The critical temperature can be calculated from

Varp∞(x)
∣∣∣
m=0

= 1
βθ
. (14)
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� We consider a system of weakly interacting diffusions moving in a 2-scale
locally periodic potential:

dXi
t = −∇V ε(Xi

t)dt−
1
N

N∑
j=1

∇F (Xi
t −Xj

t )dt+
√

2β−1dBit, i = 1, .., N,

(15)

� where
V ε(x) = V0(x) + V1(x, x/ε).

� The full N -particle potential is

U(x1, . . . , xN , y1, . . . , yN ) =
N∑
i=1

V0(xi)+
1

2N

N∑
i=1

N∑
j=1

F (xi−xj)+
N∑
i=1

V1(xi, yi).

� The homogenization theorem applies to the N -particle system.
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� The homogenized equation is

dXi
t =−M(Xi

t)

(
∇V0(Xi

t) + 1
N

∑
i 6=j

∇F
(
Xj
t −X

i
t

)
+∇ψ(Xi

t)

)
dt

+ β−1∇ ·M(Xi
t)dt+

√
2β−1M(Xi

t)dW
i
t ,

(16)

� for i = 1, . . . , N , where

ψ(x) = −β−1∇ lnZ(x), with Z(x) =
∫

Td
e−βV1(x,y) dy.

� The stochastic integral in (16) can be interpreted in the Klimontovich sense:

dXt = −M(Xt)∇U(Xt) dt+
√

2β−1M(Xt) ◦Klim dWt.

The dynamics is ergodic with respect to the Gibbs measure
µβ(dx) = 1

Ẑ
e−βU(x) dx.

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuations19



� The diffusion tensor M : Rd → Rd×dsym is defined by

M(x) = 1
Z(x)

∫
Td

∫
(I +∇yθ(x, y))e−βV1(x,y)dy, x ∈ Rd,

� and where, for fixed x ∈ Rd, θ is the unique mean zero solution to

∇ ·
(
e−βV1(x,y)(I +∇yθ(x, y)

)
= 0, y ∈ Td, (17)
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� We can pass to the mean field limit N → +∞ using the results from e.g.
Dawson (1983), Oelschlager (1984) to obtain the
McKean-Vlasov-Fokker-Planck equation:

∂p

∂t
= ∇·

(
M(∇V0p+∇Ψp+(∇F ∗p)p)+β−1∇·Mp+β−1∇·(Mp)

)
. (18)

� The mean field N → +∞ and the homogenization ε→ 0 limits commute
over finite time intervals.

� This is a nonlinear equation and more than one invariant measures can exist,
depending on the temperature. Eqn (18) can exhibit phase transitions.

� The number of invariant measures depends on the number of solutions of the
self-consistency equation.
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� The phase/bifurcation diagrams can be different depending on the order with
which we take the limits. For example:

V ε(x) = x2

2 + cos(x/ε).

� The homogenization process tends to "convexify"the potential.
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Figure: Bistable potential with additive (left) and multiplicative (right) fluctuations.
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� Consider the case F (x) = θ x
2

2 , take N → +∞ and keep ε fixed. The invariant
distribution(s) are:

pε(x;m, θ, β) = 1
Zε

e−β(V ε(x)+θ( 1
2x

2−xm)), Zε =
∫
e−β(V ε(x)+θ( 1

2x
2−xm)) dx,

� where
m =

∫
xpε(x;m, θ, β) dx. (19)

� Take first ε→ 0 and then N → +∞. The invariant distribution(s) are

p(x;m, θ, β) = 1
Z
e−β(V0(x)+ψ(x)+θ( 1

2x
2−xm)), Z =

∫
e−β(V0(x)+ψ(x)+θ( 1

2x
2−xm)) dy,

� where
m =

∫
xp(x;m, θ, β) dx. (20)
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� The number of invariant measures is given by the number of solutions to the
self-consistency equations (19) and (20).

� Separable fluctuations V0(x) + V1(x/ε) do not change the structure of the
phase diagram, since they lead to additive noise. Nonseparable fluctuations
V0(x) + V1(x, x/ε) lead to multiplicative noise and change the bifurcation
diagram.

� Rigorous results for the ε→ 0, N → +∞ limits, formal asymptotics for the
opposite limit.
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� The structure of the bifurcation diagram for the homogenized dynamics is
similar to the one for the dynamics in the absence of fluctuations.

� The critical temperature is different, but there are no additional branches and
their stability is the same as in the case V1 = 0.

� This is the case both for additive and multiplicative oscillations.

� We can study the stability of the different branches using the formula for the
free energy

F [ρ∞] = −β−1 lnZβ,θ,m + θ

2m
2.
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Finite ε: separable fluctuations
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Finite ε: nonseparable fluctuations

-2 -1 0 1 2
-2

-1

0

1

2

-2 0 2
0

2

4

0 10 20 30

-2

-1

0

1

2

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuations28



Noncommutativity: particle simulations

Figure: Histogram of N = 1000 particles for MC simulations of a convex potential with
separable fluctuations. Parameters used were θ = 2, β = 8, δ = 1. Left: ε = 0.1. Right:
homogenized system.
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Noncommutativity: McKean-Vlasov evolution
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Figure: Time evolution of p(x, t) for V0(x) = x2

2 + δ cos
(
x
ε

)
. Parameters used were

θ = 2, β = 8, δ = 1. Left: ε = 0.1. Right: homogenized system.
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non-Periodic multiwell potentials
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The McKean-Vlasov equation on the
torus
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The McKean–Vlasov equation – Setup

Nonlocal parabolic PDE

∂%

∂t
= β−1∆%+ κ∇ · (%∇W ? %) in TdL × (0, T ]

with periodic boundary conditions, %(·, 0) = %0 ∈ P(TdL), TdL=̂
(
−L2 ,

L
2

)d
� %(·, t) ∈ P(TdL) probability density of particles

� W coordinate-wise even interaction potential

� β > 0 inverse temperature (fixed)

� κ > 0 interaction strength (parameter)
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Example: The noisy Kuramoto model
The Kuramoto model: W (x) = −

√
2
L

cos
(
2πk x

L

)
, k ∈ Z

κ < κc, no phase locking κ > κc, phase locking
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H-stability

Fourier representation f̃(k) = 〈f, wk〉L2(TL) with k ∈ Zd

� A function W ∈ L2(TdL) is H-stable, W ∈ Hs, if

W̃ (k) = 〈W,wk〉 ≥ 0, ∀k ∈ Zd ,

� Decomposition of potential W into H-stable and H-unstable part

Ws(x) =
∑
k∈Nd

(〈W,wk〉)+wk(x) and Wu(x) = W (x)−Ws(x) .
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Functionals for stationary states

� Free energy functional Fκ: Driving the W2-gradient flow

Fκ(%) = β−1
∫
Td
L

% log % dx+ κ

2

x

Td
L
×Td

L

W (x− y)%(x)%(y) dx dy .

� Dissipation: Fκ is Lyapunov-function

Jκ(%) = − d

dt
Fκ(%) =

∫
Td
L

∣∣∣∇ log %

e−βκW?%

∣∣∣2% dx ,
� Kirkwood-Monroe fixed point mapping

Fκ(%) = %−T % = %− 1
Z(%, κ)e

−βκW?% , with Z(%, κ) =
∫
Td
L

e−βκW?% dx .
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Characterization of stationary states: The following are equivalent

� % is a stationary state: β−1∆%+ κ∇ · (%∇W ? %) = 0.

� % is a root of Fκ(%).

� % is a global minimizer of Jκ(%).

� % is a critical point of Fκ(%).

⇒ %∞ ≡ L−d is a stationary state for all κ > 0.
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Existence/Uniqueness of Solutions

Theorem
Under appropriate assumptions on the potential, for %0 ∈ H3+d(U) ∩ Pac(U),
there exists a unique classical solution % of the McKean-Vlasov equation such that
%(·, t) ∈ Pac(U) ∩ C2(U) for all t > 0. Additionally, %(·, t) is strictly positive and
has finite entropy, i.e, %(·, t) > 0 and S(%(·, t)) <∞, for all t > 0.
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Exponential stability/convergence in relative entropy

Theorem
(Convergence to equilibrium) Let %(x, t) be a classical solution of the
Mckean–Vlasov equation with smooth initial data and smooth, even, interaction
potential W . Then we have:

1. If 0 < κ < 2π
3βL‖∇W‖∞ , then

∥∥%− 1
L

∥∥
2
→ 0, exponentially, as t→∞,

2. If Ŵ (k) ≥ 0 for all k ∈ Z or 0 < κ < 2π2

βL2‖∆W‖∞
, then H

(
%| 1
L

)
→ 0,

exponentially, as t→∞,

where Ŵ (k) represents the Fourier transform and H
(
%| 1
L

)
represents the relative

entropy.
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Nontrivial solutions to the stationary McKean–Vlasov equation?

� W /∈ Hs is a necessary condition for the existence of nontrivial steady states.

� Numerical experiments indicate one, multiple, or possibly infinite solutions

� What determines the number of nontrivial solutions?

� Birfurcation analysis of % 7→ Fκ(%).

Example: Kuramoto model: W (x) = −
√

2
L

cos(2πx/L)
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⇒ 1-cluster solution and uniform state %∞.
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For classical point particles in a box A with potential energy H (N) = N - 1(1/2) 
~iv~j= I V(xi, xj) we investigate the canonical ensemble for large N. We prove 
that as N - ~  oo the correlation functions are determined by the global minima of 
a certain free energy functional. Locally the distribution of particles is given by 
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1. INTRODUCTION 

Let us consider a finite box A into which more and more classical point 
particles are thrown. To keep the energy of all particles proportional to 
their number we assume a potential energy of the form 

U 
H ( N )  = N - I  1 ~ V ( x i , x j )  (1 .1 )  

i ~ j =  1 

This corresponds to a weak, as I/N, interaction. The particles are distri- 
buted inside the box according to the canonical ensemble Z ( N ) - i e x p  
[-~H(N)]. We want to know then the structure of typical particle configu- 
rations for large N. 

The motivation for this work is fourfold. 
(i) The particular case of gravitating particles, V(x,y)=- ~lx- 

y]-I ,  has been studied extensively. O-4) The canonical ensemble is expected 
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Local bifurcation result
Theorem
(Local bifurcations) Let W be smooth and even and let (1/L, κ) represent the
trivial branch of solutions. Then every k∗ ∈ Z, k > 0 such that

1. card
{
k ∈ Z, k > 0 : Ŵ (k) = Ŵ (k∗)

}
= 1 ,

2. Ŵ (k) < 0,

corresponds to a bifurcation point of the stationary McKean–Vlasov equation
through the formula

κ∗ = −
√
L

βŴ (k∗)
, (21)

with (1/L, κ∗) the bifurcation point.
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Examples of birfucation results

� Kuramoto-type of models: W (x) = −wk(x) in d = 1 with W̃ (k) = −1,
satisfying both conditions. Thus we have that κ∗ =

√
2L
β

.

� For W (x) = x2

2 holds W̃ (k) = L5/2 cos(πk)
2
√

2πk2 satisfying both conditions for odd
values of k. Hence, every odd k is bifurcation point κ∗ = 4k2

βL2 .

� W s(x) = −
∞∑
k=1

1
k2s+2wk(x)

For s ≥ 1 : W s(x) ∈ Hs(TdL)
∀k > 0 : conditions (1) and (2) ok
Infinitely many bifurcation points

-5 0 5

-0.5

0

0.5
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Transition points: Qualitative change of minimizers

Definition (Transition point [Chayes & Panferov ’10])

A parameter value κc > 0 is said to be a transition point of Fκ if it satisfies the
following conditions,

1. For 0 < κ < κc: %∞ is the unique minimiser of Fκ(%)

2. For κ = κc: %∞ is a minimiser of Fκ(%).

3. For κ > κc: ∃%κ 6= %∞, such that %κ is a minimiser of Fκ(%).
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Definition (Continuous and discontinuous transition point)

A transition point κc > 0 is a continuous transition point of Fκ if

1. For κ = κc: %∞ is the unique minimiser of Fκ(%).

2. For any family of minimizers {%κ 6= %∞}κ>κc it holds

lim sup
κ↓κc

‖%κ − %∞‖1 = 0.

A transition point κc > 0 which is not continuous is discontinuous.
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Basic properties of transition points

Summary of critical points:

� κc transition point.

� κ∗ bifurcation point.

� κ] point of linear stability, i.e., κ] = − L
d
2

βmink W̃ (k)/Θ(k)
with

k] = arg min W̃ (k).

If there is exactly one k], then κ] = κ∗ is a bifurcation point.
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Conclusion:

� To prove a discontinuous transition: Show %∞ at κ] is no longer global
minimizer.

� To prove a continuous transition:
If κ∗ = κ], sufficient to show that %∞ at κ] is the only global minimizer and
investigate a resonance condition.
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Conditions for continuous and discontinous phase transition
Theorem
(Discontinuous and continuous phase transitions) Let W be smooth and even and
assume the free energy Fκ,β exhibits a transition point, κc <∞. Then we have
the following two scenarios:

1. If there exist strictly positive ka, kb, kc ∈ Z with
Ŵ (ka) = Ŵ (kb) = Ŵ (kc) = mink Ŵ (k) < 0 such that ka = kb + kc or
ka = 2kb, then κc is a discontinuous transition point.

2. Let k] = arg mink Ŵ (k) be well-defined with Ŵ (k]) < 0. Let Wα denote the
potential obtained by multiplying all the negative Ŵ (k) except Ŵ (k]) by
some α ∈ (0, 1]. Then if α is made small enough, the transition point κc is
continuous.
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The generalized Kuramoto model
Proposition

The generalised Kuramoto model W (x) = −wk(x), for some k ∈ N, k 6= 0
exhibits a continuous transition point at κc = κ]. Additionally, for κ > κc, the
equation F (%, κ) = 0 has only two solutions in L2(U) (up to translations). The
nontrivial one, %κ minimises Fκ for κ > κc and converges in the narrow topology
as κ→∞ to a normalised linear sum of equally weighted Dirac measures centred
at the minima of W (x).
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The noisy Hegselmann–Krause model for opinion dynamics

� The noisy Hegselmann–Krause system models the opinions of N interacting
agents such that each agent is only influenced by the opinions of its
immediate neighbours. The interaction potential is

Whk(x) = −1
2

((
|x| − R

2

)
−

)2

� for some R > 0. The ratio R/L measures the range of influence of an
individual agent with R/L = 1 representing full influence.

� The Fourier transform of Whk(x) is

W̃hk(k) =
(
−π2k2R2 + 2L2) sin

(
πkR
L

)
− 2πkLR cos

(
πkR
L

)
4
√

2π3k3
√

1
L

, k ∈ N, k 6= 0 .

(22)

� the model has infinitely many bifurcation points for R/L = 1.
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� We define a rescaled version of the potential

WR
hk(x) = − 1

2R3

((
|x| − R

2

)
−

)2

,

which does not lose mass as R→ 0.

Proposition

For R small enough, the rescaled noisy Hegselmann–Krause model possesses a
discontinuous transition point.
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The Onsager model for liquid crystals

� The Onsager/Maiers–Saupe model is described by the interaction potential

W`(x) =
∣∣∣sin(2π

L
x
)∣∣∣` ∈ L2

s(U) ∩ C∞(Ū)

� with ` ∈ N, ` ≥ 1, so that the Onsager and Maiers–Saupe potential
correspond to the cases ` = 1 and ` = 2, respectively.

� The Fourier transform of W`(x) is

W̃`(k) =
√
π2 1

2−` cos
(
πk
2

)
Γ(`+ 1)

Γ
(

1
2 (−k + `+ 2)

)
Γ
(

1
2 (k + `+ 2)

) . (23)

� Any nontrivial solutions to the stationary dynamics correspond to the so-called
nematic phases of the liquid crystals.
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Proposition

1. The trivial branch of the Onsager model, W1(x), has infinitely many
bifurcation points.

2. The trivial branch of the Maiers–Saupe model, W2(x), has exactly one
bifurcation point.

3. The trivial branch of the model W`(x) for ` even has at least `
4 bifurcation

points if `
2 is even and `

4 + 1
2 bifurcation points if `

2 is odd.

4. The trivial branch of the model W`(x) for ` odd has infinitely many bifurcation
points if `−1

2 is even and at least `+1
4 bifurcation points if `−1

2 is odd.
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The Keller–Segel model for bacterial chemotaxis

� The Keller–Segel model is used to describe the motion of a group of bacteria
under the effect of the concentration gradient of a chemical stimulus, whose
distribution is determined by the density of the bacteria.

� For this system, %(x, t) represents the particle density of the bacteria and
c(x, t) represents the availability of the chemical resource.

� The dynamics of the system are then described by the following system of
coupled PDEs:

∂t% = ∇·
(
β−1∇%+ κ%∇c

)
(x, t) ∈ U × (0,∞) ,

−(−∆)sc = % (x, t) ∈ U × [0,∞) ,

%(x, 0) = %0 x ∈ U × {0} ,

%(·, t) ∈ C2(U) t ∈ [0,∞),

(24)

� for s ∈ ( 1
2 , 1].
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� The stationary Keller–Segel equation is given by,

∇·
(
β−1∇%+ κ%∇Φs ? %

)
= 0 x ∈ U , (25)

� with % ∈ C2(Ū) and where Φs is the fundamental solution of −(−∆)s.

Theorem
Consider the stationary Keller–Segel equation (25). For d ≤ 2 and s ∈ ( 1

2 , 1], it has
smooth solutions and its trivial branch (%∞, κ) has infinitely many bifurcation
points.
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Figure: (a). Contour plot of the Keller–Segel interaction potential Φs for d = 2 and
s = 0.51. The orange lines indicate the positions at which the potential is singular (b). The
associated wave numbers which correspond to bifurcation points of the stationary system.
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Fluctuations

� Below the phase transition the fluctuations are described by a Gaussian
random field that can be calculated by solving an appropriate stochastic heat
equation (Dawson (1983), Fernandez and Meleard (1997)).

� At the phase transition the fluctuations are non-Gaussian and the
characteristic time scale is (much) longer (critical slowing down).

� For the Kuramoto model, we can study the combined diffusive-mean field
limit:

lim
N→+∞

lim
t→+∞

Var(x1(t))
2t = D(β, θ). (26)

� The diffusion coefficient D(β, θ) is different below and above the phase
transition.
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Conclusions

� Studied the combined homogenization mean-field limits; the limits do not
necessarily commute.

� Complete analysis of local and global bifurcations for the McKean-Vlasov
equation on the torus.

� Study the effect of memory, colored noise/non-gradient structure,
hypoellipticity etc.

� Study dynamical metastability phenomena.

� Predicting phase transitions, linear response theory, optimal control.
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