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B Study the mean field limit of weakly interacting diffusions:

B The Dasai-Zwanzing model in a 2-scale potential:

N

) 1 . )

dX; = =V'(Xi, Xi/e)dt =0 | X}~ = E X7 | dt+ /28~ 1 aw}.
i=1

B Noisy Kuramoto oscillators:

N
1
_NZsin(aci —x;)+ /26~

j=1
B Models for opinion formation:

Zam i — 1) (w1 — w5) + /28"
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B Study the mean field limits of weakly interacting diffusions:

B Interacting non-Markovian Langevin dynamics (with H. Duong)

N N
av 1
== Y Uai—a;)- i (t—s)dj(s)ds+Fi(t), i=1,...N
& dq; N £ - (4i—a5) : 1/0 Yig(t=s) 45 (s) ds+F;(t), i ) ,
j= i=

(1)
B where F(t) = (Fi(t),...Fnx(t)) is a mean zero, Gaussian, stationary process
with autocorrelation function E(F;(t) F;(s)) = 8717, (t — s).
B Langevin dynamics driven by colored noise (with S. Gomes and U. Vaes)

N
1
{bi = —V/(l'i) - N Z W/((EZ — :Ej) + MNi, (23)
Jj=1
o= —mi+\/2871'B; (2b)

B applications: Models for systemic risk (Garnier, Papanicolaou...), clustering in

the Hegselmann-Krause model (Chazelle, E, .....)
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These models exhibit phase transitions.
Goal: Characterize phase transitions, estimate basins of attraction.

Study the effect of colored, non-Gaussian, multiplicative noise.

Solve the mean field PDE using spectral methods (with S. Gomes and U.
Vaes).

B Study fluctuations around the mean field limit, in particular past the phase
transition (with R. Gvalani and M. Delgadino).

B Develop optimal control strategies for the mean field dynamics—application to
models for opinion formation (with D. Kalise and U. Vaes)

B Applications: algorithms for sampling and optimization (with N. Kantas and
P. Parpas).
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B We consider a system of weakly interacting diffusions moving in a 2-scale
locally periodic potential:

N

dX}i = —VV(X})dt — %Z VE(X! — X))dt ++/28-'dB}, i=1,.., N,
j=1
3)
B where
V(z) = Vo(z) + Vi(z,x/e). (4)

B Our goal is to study the combined mean-field/homogenization limits.

B In particular, we want to study bifurcations/phase transitions for the

McKean-Vlasov equation in a confining potential with many local minima.
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Figure: Bistable potential with (left) separable and (right) nonseparable fluctuations,
2

Ve(z) = % — % + J cos (f) and Veé(z) = % — (1 — §cos (f)) =
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Elastic Stochastic Gradient Descent (Zhang et al 2015, Chaud}wéiiapcg"egj (2016))

B Our goal is to minimize the loss function V (z).

B Distributed training of deep neural networks: minimize the communication
overhead between a set of workers that together optimize replicated copies of
the original function V.

B Consider N distinct workers (z1,...,zn) and define the average
— 1 N
T=xN Zj=1 Zj-

B Define the modified loss function (7 is a regularization parameter)

N
1 1
min §’ 1 (V(xi)+a|xi—x| )
p

B The distributed optimization algorithm corresponds to the following system of
interacting agents.

dai(t) = —VV (2i(t)) dt — %(:ci —7) + /2571 AW,
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McKean-Vlasov Dynamics in a Bistable Potential
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B Consider a system of interacting diffusions in a bistable potential:

N
X} = <V’(X;') -0 (X;’ - % ZX{)) dt++/28-1dB;.  (5)
j=1

B The total energy (Hamiltonian) is

Wi (X) =D V(X + % SO (- x (6)

=1 n=1 £=1

B We can pass rigorously to the mean field limit as N — oo using, for example,
martingale techniques, (Dawson 1983, Gartner 1988, Oelschlager 1984).

B Formally, using the law of large numbers we obtain the McKean SDE

dX, = ~V'(X))dt — (X, — EX,)dt + /26~ dB,. )
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B The Fokker-Planck equation corresponding to this SDE is the McKean-Vlasov

% = % <V/(:r)p+9 <:c — /]Rxp(x,t) da:) p—O—B_IgZ) . (8)

B The McKean-Vlasov equation is a gradient flow, with respect to the

equation

Wasserstein metric, for the free energy functional

=8 /plnpdx+/Vpda7+ // (z — y)p(2)p(y) dedy, (9)

with F(z) = L2

2
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Journal of Statistical Physics, Vol. 31, No. 1, 1983

Critical Dynamics and Fluctuations for a Mean-Field
Model of Cooperative Behavior

Donald A. Dawson'?

Received September 20, 1982

The main objective of this paper is to examine in some detail the dynamics and

fluctuations in the critical situation for a simple model exhibiting bistable

macroscopic behavior. The model under consideration is a dynamic model of a

collection of anharmonic oscillators in a two-well potential together with an

attractive mean-field interaction. The system is studied in the limit as the

number of oscillators goes to infinity. The limit is described by a nonlinear

partial differential equation and the existence of a phase transition for this

limiting system is established. The main result deals with the fluctuations at the

critical point in the limit as the number of oscillators goes to infinity. It is

established that these fluctuations are non-Gaussian and occur at a time scale
29 January, 2020 "'r fidid tlomitch éorryvéok|! Hngcdiffersio b ibkoms i elalysis and fluctuationd2
and Varadhan adapted to the context of probability-measure-valued processes.
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PHYSICAL REVIEW A VOLUME 36, NUMBER $§ SEPTEMBER 1, 1987
Dy ical behavior of hasti of infinitely many led li oscillators

exhibiting phase transitions of mean -field type: H theorem on asymptotic approach
to equilibrium and critical slowing down of order-parameter fluctuations

Masatoshi Shiino
Department of Applied Physics, Faculty of Science, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152, Japan
(Received 29 September 1986)

It is shown that statistical-mechanical properties as well as irreversible phenomena of stochastic
systems, which consist of infinitely many coupled nonlinear oscillators and are capable of exhibiting
phase transitions of mean-field type, can be successfully explored on the basis of nonlinear Fokker-
Planck equations, which are essentially nonlinear in unknown distribution functions. Results of two
kinds of approaches to the study of their dynamical behavior are presented. Firstly, a problem of
asymptotic approaches to stationary states of the infinite systems is treated. A method of Lyapunov
functional is employed to conduct a global as well as a local stability analysis of the systems. By
constructing an H functional for the nonlinear Fokker-Planck equation, an H theorem is proved,
ensuring that the Helmholtz free energy for a nonequilibrium state of the system decreases monotoni-
cally until a stationary state is C: of the d-order variation of the H func-
tional around a stationary state yield a stability criterion for bifurcating solutions of the nonlinear
Fokker-Planck equation, in terms of an inequality involving the second moment of the stationary dis-
Inbullon function. Secondly, the behavior of critical dynamms is studied wlthln the framework of

theory. Gi are g y from linear
responses of the order parameter to externally driven fields by linearizing the nonlinear Fokker-
Planck equation. Correlation functions, together with spectra of the fluctuations of the order param-
eter of the system, are also obtained by use of the fluctuation-dissipation theorem for stochastic sys-
tems. A critical slowing down is shown to occur in the form of the divergence of relaxation time for
the in with the 8¢ of the static ibility, as a phase transition
point is approached.

I INTRODUCTION tained by omitting the random force /(1) in Eq. (1.1) can
exhibit a at y=0, the
The study of dynamical behavior of systems exhibiting  equation (1.1) has nothing to do with bifurcations nor
th ic phase itions has been of consi oh itions_in_that i isteibuti
29 January, 2020‘“35‘ for many yenten fidldisiried fe Dyt ti iffusiori i itiof medatysipend fluctuationd3
ic system ing phase itions criti- tive of the values of ¥ and o. This is because the corre-

cal anomaly such as critical slowmg down is generally ex-  sponding linear Fokker-Planck equation

teed fm i s See b
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B The finite dimensional dynamics (5) is reversible with respect to the Gibbs

measure

() = PN 1 N g :/ o PWn ™) 1
ZN RN
(10)
B where Wi (-) is given by (6).

B the McKean dynamics (7) can have more than one invariant measures, for
nonconvex confining potentials and at sufficiently low temperatures
(Dawson1983, Tamura 1984, Shiino 1987, Tugaut 2014).

B The density of the invariant measure(s) for the McKean dynamics (7) satisfies
the stationary nonlinear Fokker-Planck equation

a% (V’(z)poo +6 (a: - /]Rxpoo(:v) dm) Poo + 51881’;) =0. (11)
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B For the quadratic interaction potential a one-parameter family of solutions to

the stationary McKean-Vlasov equation (11) can be obtained:

poo(2:0,8,m) = mefﬁ(v(z)+0(%12,zm))7 (12a)

20.55m) = [ e Aenlim) g, (126)
R

B These solutions are subject, to the constraint that they provide us with the

correct formula for the first moment:

m= / TPoo (x50, 8, m) dx =: R(m;0,[). (13)
R
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B This is the selfconsistency equation:

B The critical temperature can be calculated from

1

Varp__ () » = @

(14)
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Figure: Plot of R(m; 6, 3) and of the straight line y = x for § = 0.5, 8 = 10, and

bifurcation diagram of m as a function of 3 for § = 0.5 for the bistable potential
4

V(z) =% — % and interaction potential F'(z) = %
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B We consider a system of weakly interacting diffusions moving in a 2-scale

locally periodic potential:

N
dX}i = —VV(X})dt — %Z VF(X{ — X{)dt +/28-1dB;, i=1,..,N,
= (15)
B where
Vei(z) = Vo(z) + Vi(z,z/e).
B The full N-particle potential is
N N N N
U(ZTi,. s TN, Y1y YN) = 2 Vo(a:i)—f—% 2 z; F(xi—:rj)—i-Z; Vi(xs, y:).
i= =1 j= =

B The homogenization theorem applies to the N-particle system.

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuationd 8



Imperial College
London

B The homogenized equation is

) ) ) 1 . ) )
dX; = - M(X}) [ VVo(X]) + = ) VF (X] — X}) + V(X)) | dt
( ' Ng ( ) ) (16)

+ 87V - M(X])dt + /28— M (X])dWY,
W fori=1,...,N, where
Y(x) = —B'VInZ(x), with Z(z) = / e AV gy
Td
B The stochastic integral in (16) can be interpreted in the Klimontovich sense:

dX: = —M(X.)VU(X2) dt + /2510 (X7) oK gy,

The dynamics is ergodic with respect to the Gibbs measure

pa(dx) = %eiﬂU(”) dzx.

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuationd9
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B The diffusion tensor M : R? — Rfyx,;il is defined by

1 —BVi(z,y) d
I+ V,0(z,y))e "1@Vqy 2z eRY
70 /Td/( v0(z,y)) Yy

M(x) =

B and where, for fixed z € R%, 0 is the unique mean zero solution to

v . (e—ﬁvl(way)(l + Vy0($7 y)) =0, [/AS] Td7 (17)

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuation20
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B We can pass to the mean field limit N — 400 using the results from e.g.
Dawson (1983), Oelschlager (1984) to obtain the
McKean-Vlasov-Fokker-Planck equation:

0 _ _
Z_v. (M(V%p+V‘I’p+(VF*p)p)+B V. Mp+ 8 1v-(Mp)). (18)
B The mean field N — +o00 and the homogenization € — 0 limits commute

over finite time intervals.

B This is a nonlinear equation and more than one invariant measures can exist,

depending on the temperature. Eqn (18) can exhibit phase transitions.

B The number of invariant measures depends on the number of solutions of the

self-consistency equation.

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuation21
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B The phase/bifurcation diagrams can be different depending on the order with
which we take the limits. For example:

Ve(z) = % + cos(z/e).

B The homogenization process tends to "convexify"the potential.

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuation®2
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B Consider the case F(z) = é take N — +o00 and keep ¢ fixed. The invariant
distribution(s) are:

p*(z;m,0,8) =

BV @HO(a%—am) Zs:/ —BVE(@)+0(ba®—am) g
Z i

B where
m:/mpa(x;m,ﬁ,,@) dz. (19)

B Take first ¢ — 0 and then N — +oo. The invariant distribution(s) are

1 — T T z —xrm - T T I —Trm
plasm,0,6) = e B(Vo(@)+v (2)+0(4 Dz :/ B(Vo(@)+v (2)+0(4 )

B where

m = /xp(ac;m,@,ﬁ) dz. (20)

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuation24
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B The number of invariant measures is given by the number of solutions to the
self-consistency equations (19) and (20).

B Separable fluctuations Vy(z) + Vi(z/e) do not change the structure of the
phase diagram, since they lead to additive noise. Nonseparable fluctuations
Vo(x) + Vi(x,z/¢e) lead to multiplicative noise and change the bifurcation
diagram.

B Rigorous results for the ¢ — 0, N — +oo limits, formal asymptotics for the
opposite limit.

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuation5
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B The structure of the bifurcation diagram for the homogenized dynamics is

similar to the one for the dynamics in the absence of fluctuations.

B The critical temperature is different, but there are no additional branches and
their stability is the same as in the case V1 = 0.

B This is the case both for additive and multiplicative oscillations.

B We can study the stability of the different branches using the formula for the
free energy
2

_ 0
Flpool = =B " InZs g.m + 2

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuation26



Finite ¢: separable fluctuations Imperial College
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23
2
= 1 —
1 5
-1
= 2 0g2
Eo £0
~ —R(m)=m
—B=1
-1 - 6= 1 S
—3 =10 )
) - 6=45
-2 -1 om 1 2 0 10 20 5 30 40 50
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Finite ¢: nonseparable fluctuations
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2
) P -
1S —
0 1 <
= 2 0z 2 —
£o g0
~ —R(m)=m
_5 — 1 <
1 e —
—3 =10
, R 20
2 1 om 1 2 0 10 B 20 30
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Noncommutativity: particle simulations
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t=0 t=0
025 0.25
02 02
0.15 0.15
0.1 01
0.05 0.05
0~ 0~
5 0 5 5 0 5
t=100 =100
0.2 0.25
0.15 02
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0.1
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0.05 0.05
0 0 - -
5 0 5 % 5 0 5 10
£ =5000 t=5000
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D ighies; Dbistogram of Neswriddhkpartictgsnfos-diGirsimms| atienarafioas canverx patendiafiuviifibn2o
separable fluctuations. Parameters used were 6 =2, 3 =8, § = 1. Left: e = 0.1. Right:



Noncommutativity: McKean-Vlasov evolution
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2 : ——
-t=01
t = 0.2
L5 -t=0.38

ey —t=3
g 1
~—
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non-Periodic multiwell potentials Imperial College

|
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Figure: Free energy surface as a function of 3 and the first moment m for

potential V(q) = L , but the energy barriers are uniformly randomly
Ze:—N la—ael™

distributed.
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The McKean-Vlasov equation on the

torus

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuation$2



The McKean—Vlasov equation — Setup Imperial College
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Nonlocal parabolic PDE

% =B"'Ap+kV- (VW % ) in T¢ x (0,7

vt

with periodic boundary conditions, o(-,0) = go € P(T$), T{= (—%, )d
B o(-,t) € P(T%) probability density of particles
B W coordinate-wise even interaction potential

B 3 > 0 inverse temperature (fixed)

B x > 0 interaction strength (parameter)

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuation83



Example: The noisy Kuramoto model Imperial College
The Kuramoto model: W (z) = —/Z cos (2nk%) keZ tondon

Kk < K¢, no phase locking K > K¢, phase locking

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuation84



H-Stability Imperial College
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Fourier representation f(k) = (f,wk)p2(r,) with k € z4
B A function W € L?(T¢) is H-stable, W € Hy, if

W(k) = (W,wy) >0, Vkez?,
B Decomposition of potential W into H-stable and H-unstable part

Ws(z) = Z (W, wi)) , wi(z) and Wa(z) = W(x) — W(x) .

keNd

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuation85



Functionals for stationary states
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B Free energy functional .%,: Driving the W-gradient flow
_ K
7o) =57 [ otorodst s [[ Wi - pat@otasdy
T T4 x1d
B Dissipation: % is Lyapunov-function
d 2
(0) = ——F(0) = log ————| odx ,
70 = 570 = [ [V1on ot o

L

B Kirkwood-Monroe fixed point mapping

F.(o)=0-To=0— e PrWre - with  Z(p, k) = / e PrWre g
Td

Z(o, k)

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuation$6



Characterization of stationary states: The following are equivalent

B o is a stationary state: 57 Ap + kV - (0VW x g) = 0.
B o is a root of Fi.(0).
B o is a global minimizer of J.(0).

B o is a critical point of % (o).

= 000 = L% is a stationary state for all & > 0.

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuation87



Existence/Uniqueness of Solutions Imperial College
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Under appropriate assumptions on the potential, for go € H**(U) N Pac(U),
there exists a unique classical solution ¢ of the McKean-Vlasov equation such that
0(-,t) € Pac(U) N C*(U) for all t > 0. Additionally, o(-,t) is strictly positive and
has finite entropy, i.e, o(-,t) > 0 and S(g(+,t)) < oo, for all t > 0.

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuation$8



Exponential stability/convergence in relative entropy
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(Convergence to equilibrium) Let o(x,t) be a classical solution of the
Mckean—Vlasov equation with smooth initial data and smooth, even, interaction
potential W. Then we have:

1. f0<k<

m then ||g i ||2 — 0, exponentially, as t — oo,

2. IFW (k) >0 forall k€ Z or 0 < < g, then H(o|£) =0,
exponentially, as t — oo,

where W (k) represents the Fourier transform and H(g|%) represents the relative

entropy.

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuation$9



J. Fac. Sci. Univ. Tokyo
Sect. 1A, Math.
34 (1987), 443-484.

Free energy and the convergence of distributions
of diffusion processes of McKean type

By Yozo TAMURA®

(Communicated by S. Kusuoka)

§1. Introduction.

In this paper, we investigate the convergence of the probability
distribution p(t) of a diffusion process of McKean type at time ¢ to an
invariant probability measure as ¢t goes to oo by using the free energy
function. The process we consider is given by the following stochastic
differential equation of McKean type on R‘:

dX(t)=dB(t)—grad @,(X(t))dt +grad O,[ X (¢), p(t)]dt,
(1.1) p(t) is the probability distribution of X(t),
the initial distribution is p,,

yptdy i tre 0 R

for weakly in eractlng dl usions: phase tra ns, multlcal analysis and fluctuationd0
{B(t); t=0} is a standard Brownian motion. We assume that the poten-

tiala B and D caticfor +hoe Fallauvrine -

29 January, 2020



Nontrivial solutions to the stationary McKean—Vlasov equation?, ... coiege

London

B W ¢ H, is a necessary condition for the existence of nontrivial steady states.
B Numerical experiments indicate one, multiple, or possibly infinite solutions
B What determines the number of nontrivial solutions?

B Birfurcation analysis of o — Fi (o).

Example: Kuramoto model: W (z) = f\gcos(%rx/L)

0.03 025
0.025
02
0.02
1 0015 015
< oot =
)
= 0.005 ot
0 0.05
-0.005
-0.01 o
2 4 6 8 10 5 0 5

= 1-cluster solution and uniform state goo.
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Journal of Statistical Physics, Vol. 29, No. 3, 1982

Statistical Mechanics of the Isothermal
Lane~Emden Equation

Joachim Messer' and Herbert Spohn’

Received January 4, 1982

For classical point particles in a box A with potential energy H") = N ~1(1/2)
2{‘;,,,V(x,.,x/-) we investigate the canonical ensemble for large N. We prove
that as N —> oo the correlation functions are determined by the global minima of
a certain free energy functional. Locally the distribution of particles is given by
a superposition of Poisson fields. We study the particular case A =[— 7L, 7L]
and V(x, y)= —Bcos(x — y), L >0, 8 >0.

KEY WORDS: Classical point particles; Lane-Emden equation; canonicai
ensemble; instable interactions; mean field limit; equilibrium states.

29 January, 2020 1. INTRQBUQTION for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuationg2

Let us consider a finite box A into which more and more classical point



Local bifurcation result

Imperial College

Theorem

(Local bifurcations) Let W be smooth and even and let (1/L, k) represent the
trivial branch of solutions. Then every k* € Z, k > 0 such that

Locard{k € Z,k>0: W(k)=W (")} =1,
2. W(k) <0,

corresponds to a bifurcation point of the stationary McKean—Vlasov equation
through the formula

o= ——YL_ (21)
T AWk

with (1/L, k) the bifurcation point.
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§1. Introduction

M. Kac [2] discovered the propagation of chaos for Kac’s caricature
of the Boltzmann equation for Maxwellian gas. In an analogy of this,
H.P. McKean, Jr. [3] showed that a certain class of non-linear parabolic
equations are derived from a system of w-particle diffusion processes
through the propagation of chaos; if the initial distribution of the n-
particle diffusion is u§", then for any m € N and any ¢>>0, the m-marginal
distribution of the n-particle diffusion at time ¢ converges to m-fold
direct product of w(t), where w(t) is a weak solution of the non-linear
parabolic equation with the initial data w,.

In this paper we consider a system of some class of nd-dimensional
diffusion processes X™ (n € N) treated in H. P. McKean, Jr.[3]. For fixed
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Examples of birfucation results Imperial College

London

B Kuramoto-type of models: W(z) = —wi(x) in d = 1 with W(k) =-1,
satisfying both conditions. Thus we have that . = g
B For W(z) = é holds W(k) = % satisfying both conditions for odd

2
values of k. Hence, every odd k is bifurcation point k. = %.

05

B Wi(2) == e w(e)
k=1
For s >1: W*(z) € H*(T%)

Vk > 0 : conditions (1) and (2) ok
Infinitely many bifurcation points

W(z)
°

-0.5
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Transition points: Qualitative change of minimizers
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Definition (Transition point

A parameter value k. > 0 is said to be a transition point of .%, if it satisfies the

following conditions,
1. For 0 < kK < Ke: 0oo is the unique minimiser of %, (o)
2. For k = k¢! 0o is @ minimiser of %, (o).

3. For k > k¢! 30k # 000, Such that g, is a minimiser of % (p).
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ion (Continuous and discontinuous transition point)

A transition point k. > 0 is a continuous transition point of .%,, if
1. For k = Ke¢! 0oo is the unique minimiser of %, (o).

2. For any family of minimizers {gx # 0o }r>x. it holds

lim sup||gx — 0oo|l1 = 0.

A

A transition point k. > 0 which is not continuous is discontinuous.
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Basic properties of transition points
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Summary of critical points:
B k. transition point.

B k. bifurcation point.
4
L2

B g point of linear stability, i.e.,, Ky = ————=———w
B ming W(k)/O(k)

ky = arg minW(k).

If there is exactly one ky, then k3 = K. is a bifurcation point.
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Conclusion:
B To prove a discontinuous transition: Show g at x4 is no longer global
minimizer.
B To prove a continuous transition:

If K« = Ky, sufficient to show that g at Ky is the only global minimizer and
investigate a resonance condition.
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Conditions for continuous and discontinous phase transition
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Theorem

(Discontinuous and continuous phase transitions) Let W be smooth and even and
assume the free energy %, g exhibits a transition point, k. < co. Then we have
the following two scenarios:

1. If there exist strictly positive k%, k®, k® € Z with
W (k) = W (k") = W (k®) = min, W (k) < 0 such that k% = k* + k° or
k® = 2k®, then k. is a discontinuous transition point.

2. Let k* = argmin, W (k) be well-defined with W (k*) < 0. Let W, denote the
potential obtained by multiplying all the negative W (k) except W (k*) by
some a € (0,1]. Then if o is made small enough, the transition point k. is
continuous.
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The generalized Kuramoto model Imperial College

Proposition

The generalised Kuramoto model W (x) = —wy(x), for some k € IN, k # 0
exhibits a continuous transition point at k. = k4. Additionally, for k > k., the
equation F(o, k) = 0 has only two solutions in L*(U) (up to translations). The
nontrivial one, g, minimises .#,, for k > k. and converges in the narrow topology
as k — oo to a normalised linear sum of equally weighted Dirac measures centred
at the minima of W (x).
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The noisy Hegselmann—Krause model for opinion dynamics
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B The noisy Hegselmann—Krause system models the opinions of N interacting
agents such that each agent is only influenced by the opinions of its
immediate neighbours. The interaction potential is

ot = 5((-5) )

B for some R > 0. The ratio R/L measures the range of influence of an

individual agent with R/L = 1 representing full influence.

B The Fourier transform of Whi(z) is
(—=7°k°R® + 2L7) sin (Z42) — 2wk LR cos (=52 )
4273 K3 \/% ’

Wi (k) = keNk#0.
(22)

B the model has infinitely many bifurcation points for R/L = 1.
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B We define a rescaled version of the potential

2

Wi — ,L ( _ E)
k() = 2R3 || 5 ) )
which does not lose mass as R — 0.

For R small enough, the rescaled noisy Hegselmann—Krause model possesses a

discontinuous transition point.
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The Onsager model for liquid crystals
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B The Onsager/Maiers—Saupe model is described by the interaction potential

sin(2—ﬂ-x>
L

B with £ € IN, ¢ > 1, so that the Onsager and Maiers—Saupe potential
correspond to the cases £ = 1 and ¢ = 2, respectively.

Wo(z) = e WU)nc=)

B The Fourier transform of Wy(x) is

\/EZ%*Z cos (%k) re+1)
T (3(-k+4+2)T (3(k+€4+2))

Wo(k) = (23)

B Any nontrivial solutions to the stationary dynamics correspond to the so-called
nematic phases of the liquid crystals.
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1. The trivial branch of the Onsager model, W1 (z), has infinitely many
bifurcation points.

2. The trivial branch of the Maiers—Saupe model, W3 (x), has exactly one

bifurcation point.

3. The trivial branch of the model W (x) for { even has at least % bifurcation
points if% is even and ﬁ + % bifurcation points ifé is odd.

4. The trivial branch of the model Wy (x) for £ odd has infinitely many bifurcation
points if 13—71 is even and at least H‘Tl bifurcation points if Z_Tl is odd.

29 January, 2020 Mean field limits for weakly interacting diffusions: phase transitions, multiscale analysis and fluctuation§5



The Keller-Segel model for bacterial chemotaxis Imperial College
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B The Keller—Segel model is used to describe the motion of a group of bacteria
under the effect of the concentration gradient of a chemical stimulus, whose
distribution is determined by the density of the bacteria.

B For this system, o(z,t) represents the particle density of the bacteria and
c(z,t) represents the availability of the chemical resource.

B The dynamics of the system are then described by the following system of
coupled PDEs:

do=V-(B"'Vo+koVe) (x,t) €U x (0,00),

—(—A)’c=0p0 (z,t) € U x [0,00), (24)
o(z,0) = oo z € U x {0},
o(-,t) € C*(U) t € [0,00),

m fors € (3,1].
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B The stationary Keller-Segel equation is given by,
V- (B7'Vo+ koV®* o) =0 z€U, (25)

B with o € C?(U) and where ®° is the fundamental solution of —(—A)*.

Consider the stationary Keller-Segel equation (25). For d < 2 and s € (3, 1], it has
smooth solutions and its trivial branch (9ec, ) has infinitely many bifurcation

points.
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(a) (b)

Figure: (a). Contour plot of the Keller-Segel interaction potential ®¢ for d = 2 and
s = 0.51. The orange lines indicate the positions at which the potential is singular (b). The
associated wave numbers which correspond to bifurcation points of the stationary system.
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Fluctuations Imperial College
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B Below the phase transition the fluctuations are described by a Gaussian
random field that can be calculated by solving an appropriate stochastic heat
equation (Dawson (1983), Fernandez and Meleard (1997)).

B At the phase transition the fluctuations are non-Gaussian and the

characteristic time scale is (much) longer (critical slowing down).

B For the Kuramoto model, we can study the combined diffusive-mean field
limit: vV
lim lim M

N—+o00 t—+4o00 2t = D(8.9). (26)

B The diffusion coefficient D(3, 6) is different below and above the phase

transition.
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Conclusions

Imperial College
London

B Studied the combined homogenization mean-field limits; the limits do not

necessarily commute.

B Complete analysis of local and global bifurcations for the McKean-Vlasov
equation on the torus.

B Study the effect of memory, colored noise/non-gradient structure,
hypoellipticity etc.

B Study dynamical metastability phenomena.

Predicting phase transitions, linear response theory, optimal control.
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