Random Matrices and Random Landscapes

Congratulations Yan and best wishes

Sparse Random Block Matrices : universality

Giovanni M. Cicuta and Mario Pernici

The ensemble.

Start with the Adjacency matrix $A_{N \times N}$ of a random graph (Erdös-Renyi), insert $d \times d$ random matrices $X_{i, j}$, obtain the ensemble of sparse random block matrices $A_{N d \times N d}$

$$
A_{N \times N}=\left(\begin{array}{ccccc}
0 & \alpha_{1,2} & \alpha_{1,3} & \ldots & \alpha_{1, N} \\
\alpha_{2,1} & 0 & \alpha_{2,3} & \ldots & \alpha_{2, N} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\alpha_{N, 1} & \alpha_{N, 2} & \alpha_{N, 3} & \ldots & 0
\end{array}\right) \quad, \quad \alpha_{j, i}=\alpha_{i, j}
$$

$\left\{\alpha_{i, j}\right\}, 1 \leq i<j \leq N$ is a set of $N(N-1) / 2$ i.i.d. random variables, with probability distribution :

$$
\begin{gathered}
P(\alpha)=\left(\frac{Z}{N}\right) \delta(\alpha-1)+\left(1-\frac{Z}{N}\right) \delta(\alpha), \quad Z=<\sum_{j=1}^{N} \alpha_{i, j}>\text { is the average connectivity. } \\
A_{N d \times N d}=\left(\begin{array}{ccccc}
0 & \alpha_{1,2} X_{1,2} & \alpha_{1,3} X_{1,3} & \ldots & \alpha_{1, N} X_{1, N} \\
\alpha_{2,1} X_{2,1} & 0 & \alpha_{2,3} X_{2,3} & \ldots & \alpha_{2, N} X_{2, N} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\alpha_{N, 1} X_{N, 1} & \alpha_{N, 2} X_{N, 2} & \alpha_{N, 3} X_{N, 3} & \ldots & 0
\end{array}\right)
\end{gathered}
$$

The goal

To evaluate all the spectral moments of the ensemble $A_{N d \times N d}$, in the limit $N \rightarrow \infty$ and the limiting spectral distribution.

More precisely. First write the spectral moments of $A_{N d \times N d}$ for $N \rightarrow \infty$ for d finite or infinite and any probability distribution of the real symmetric random blocks $X_{i, j}$. The contributions form the set S_{1} of closed walks on trees.

S_{3} is the set of Wigner paths: each travelled edge is travelled exactly twice.
S_{2} is the set of paths without the pattern ..a..b..a..b.. that is S_{2} corresponds to the non-crossing partitions.

Example

The blocks $X_{i, j}$ are i.i.d. The identification in a product is irrelevant. It is useful a relabeling of the blocks that only records if the blocks are equal or different to other ones in the product. For instance :

$$
\begin{aligned}
& X_{1,3} X_{3,1} X_{1,3} X_{3,4} X_{4,7} X_{7,4} X_{4,3} X_{3,1} \quad \text { is relabeled } \\
& \left(X_{1}\right)^{3} X_{2}\left(X_{3}\right)^{2} X_{2} X_{1}
\end{aligned}
$$

The lowest order crossing contribution appears at order 8

$$
\begin{aligned}
\frac{1}{N} \operatorname{Tr} A^{8}= & Z \operatorname{tr} X_{1}^{8}+Z^{2} \operatorname{tr}\left[8 X_{1}^{6} X_{2}^{2}+4 X_{1}^{4} X_{2}^{4}+2 X_{1}^{2} X_{2}^{2} X_{1}^{2} X_{2}^{2}\right]+ \\
& Z^{3} \operatorname{tr}\left[8 X_{1}^{4} X_{2}^{2} X_{3}^{2}+8 X_{1}^{4} X_{2} X_{3}^{2} X_{2}+8 X_{1}^{3} X_{2}^{2} X_{1} X_{3}^{2}+4 X_{1}^{2} X_{2}^{2} X_{1}^{2} X_{3}^{2}\right]+ \\
& Z^{4} \operatorname{tr}\left[8 X_{1}^{2} X_{2}^{2} X_{3} X_{4}^{2} X_{3}+4 X_{1}^{2} X_{2} X_{3} X_{4}^{2} X_{3} X_{2}+2 X_{1}^{2} X_{2}^{2} X_{3}^{2} X_{4}^{2}\right]
\end{aligned}
$$

The contribution $Z^{2} \operatorname{tr} 2 X_{1}^{2} X_{2}^{2} X_{1}^{2} X_{2}^{2}$ has the pattern ..a..b..a..b.. that is a crossing partition. All other contributions at this order are non-crossing. The 3 terms $Z^{4} \operatorname{tr}\left[8 X_{1}^{2} X_{2}^{2} X_{3} X_{4}^{2} X_{3}+4 X_{1}^{2} X_{2} X_{3} X_{4}^{2} X_{3} X_{2}+2 X_{1}^{2} X_{2}^{2} X_{3}^{2} X_{4}^{2}\right]$ are Wigner paths.

The results, r finite.

In the limit $d \rightarrow \infty, Z \rightarrow \infty$ with finite ratio $Z / d \geq 2$, If the rank r of the random blocks X is finite, the crossing contributions do not contribute.
The non-crossing contributions yield the same limiting moments, universality $=$ concentration of the measure, for a large class of probability distributions of the entries of the blocks (isotropy, sub-gaussian,..)
The limiting moments are the spectral moments of the Effective Medium Approximation, with parameter $t=r Z / d$. The generating function of the moments, $g(z)=\sum_{k=0} \frac{\mu_{2 k}}{z^{2 k+1}}$, is solution of the cubic equation

$$
[g(z)]^{3}+\frac{t-1}{z}[g(z)]^{2}-g(z)+\frac{1}{z}=0 \quad, \quad t=\frac{r Z}{d}
$$

Analogous results are obtained for the Sparse Laplacian Block Matrices and for the Random Regular Block Ensemble.

The results, maximal rank, $r=d$.

In the limit $d \rightarrow \infty, Z \rightarrow \infty$ with finite ratio $Z / d \geq 2$,
If the rank r of the random blocks X is full, $r=d$, the relevant contributions yield the same limiting moments, universality=concentration of the measure, for a large class of probability distributions of the entries of the blocks (isotropy, sub-gaussian,..), gaussian GOE, GUE, restricted trace, etc..

Since the crossing and the non-crossing contributions contribute in the limit, we are unable to identify the limiting spectral density.
The reason :

$$
<(\text { crossing contribution })>=\frac{r}{d}<(\text { non-crossing contribution })>
$$

Simulations, rank $r=1$.

Upper row : plots of the eigenvalue spectra of the adjacency ensemble , $d=$ $1,2,3,4,5,10,20$ and corresponding $N=15000,7500,5000,4000,3000,2000,1000$. The plots approach the spectrum of Effective Medium Approximation, for increasing d.

Lower row : plots of the eigenvalue spectra of the Laplacian ensemble, same system. The plots approach the Marchenko-Pastur distribution for increasing d.
G.M. Cicuta, J. Krausser, R. Milkus, A. Zaccone, Unifying model for random matrix theory in arbitrary space dimension, Phys. Rev.E97, 032113 (2018).
M. Pernici and G.M. Cicuta, Proof of a conjecture on the infinite dimension limit of a unifying model for random matrix theory, J.of Stat.Phys. 175 (2019) 384-401.
G. M. Cicuta and M. Pernici, Sparse random block matrices, J. Phys. A 55 (2022) 175202.
G. M. Cicuta and M. Pernici, Sparse Random Block Matrices : universality, arXiv:2206.09356 (june 2022).

