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Abstract

We construct a N-dimensional Gaussian landscape with multiscale, translation
invariant, logarithmic correlations and investigate the statistical mechanics of a
single particle in this environment. In the limit of high dimension N — 00 the
free energy of the system and overlap function are calculated exactly using the
replica trick and Parisi’s hierarchical ansatz. In the thermodynamic limit, we
recover the most general version of the Derrida’s generalized random energy
model (GREM). The low-temperature behaviour depends essentially on the
spectrum of length scales involved in the construction of the landscape. If the
latter consists ol K discrete values, the system is characterized by a K-step
replica symmetry breaking solution. We argue that our construction is in fact
valid in any finite spatial dimensions N = 1. We discuss implications of our
results for the singularity spectrum describing multifractality of the associated
Boltzmann—Gibbs measure. Finally we discuss several generalizations and
open problems, the dynamics in such a landscape and the construction of a
generalized multifractal random walk.

(A hierarchical, translation invariant generalisation of the GFF)



M = C - OBO'

Randomly Perturbed Matrices

Questions in this talk:

» How similar are

* the eigenvectors of a « pure » matrix C and those of a noisy
observation of C? (eigenvalues are well known)

the eigenvectors of two independent noisy observations of C?
» S0 what?



Models of Randoml

Perturbed Matrices

(Free) Additive noise

A3 14

M = C - OBO'

aun

« Pure system »  « Noise »

« Signal » B diagonal
4 O random rotation

» A classic multiplicative example:

(Free) Multiplicative noise

M = v/ COBO'vVC

/N

« Pure system » ~ « Noise »

« Signal » B diagonal
4 O random rotation

« Empirical M vs. « True » covariance matrix C;
OBO! = XX' = W(ishart), where X is a N x T white noise matrix
—> The Marcenko-Pastur distribution



Object of interest: Overlaps

D (N, ;)= @“'1 [<ui “U)ﬂ
II // \\

« Overlap » Eigenvector of M Eigenvector of C

Note:

* N =size of the matrices, N >> 1 in the sequel

« E[..]: average over small intervals of A, of width >> 1/N

 The overlaps are quickly of order 1/N as a function of the perturbation (« fast »
local equilibrium) — but with some remaining structure!

1 dt u'u (1)
d e"f = ——— : . W ?‘? [
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(Dyson Brownian motion for eigenvectors)



Basic tools

Resolvent:

Gl\"l(-?i) — (EIN — M)_l

Stieltjes transform and spectral density (or eigenvalue distribution)

1
Imgm(A —in) =Im TTr Gm(A —in)| =7 pm(N)

Overlaps:

<V..i_|1111 Gm()\ — i'}*]) |V;> ~ W,OB’I()\){I) (A C'i-)

Note: everywhere the « resolution » n = 0 but >> 1/N



Basic tools

R-Transform

Bum(gm(2)) = 2. Rm(z) == Bm(z) —

e.g. the R-transform of a Wigner matrix is R(z)=c2 z

S-Transform

2+ 1

Ta(:) = zgm(=) =1 Swle) = =

e.g. the S-transform of a Wishart matrix is S(z)=1/(1+qz) with: q=N/T



A Matrix Subordination Law (Allez, Bun, Bouchaud, Potters)

Additive noise

(Gm(2)) = Ge(Z(2))

Z(’E) — Z — RB (gM(?‘i))

Notes:

Multiplicative noise

2((Gm(2)) = Z(2)Gc(Z(2))

Z(2) = 2Sp(2gm(2) — 1)

 Results obtained using a replica representation of the resolvent + low rank HCIZ
« Taking the trace of these matrix equalities recovers the « free » convolution rules
and the corresponding spectra of eigenvalues:

RI\"I(E) = Rc (?:) -+ RB(,’E)




Overlaps: simplified results (bulk)

Additive noise when B=Wigner (cf. ilkinson)

theoretical (i=250)
251 . Al t =——a simulations (i=400) | |
|Xe 7\‘, [Pk theoretical (i=400)
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bO(N, c) =

02

(¢ = A+ 02hm(N))? + o272 pp(N)?

Notes:

* Tends to a delta function when =0 (no noise)
» Cauchy-like formula with a power-law tail for large |c — A| = « Lévy flight »
* Note: True for all « Wigner-like » matrices (not necessarily Gaussian)

Empirical covariance matrices (multiplicative noise)

D(\, ) =

qecA

(c(—q) = A+ qedbn (V)2 + > X272 pu(N)?

Notes:

« First obtained by Ledoit & Péché, can be generalized to a broader class of noise
 Tends to a delta function when g=0 (infinite T for a fixed N)




From Overlaps to Rotationally Invariant Estimators

» Assume one has no prior about C

> What is the best L, estimator =(M) of C knowing M?

» Without any indication about the directions of the eigenvectors of C, one is
stuck with those of M: N

EM) = Z $ilug) (gl

N
» The L, —optimal & are in principle given by: £ = Z(uﬁ_ \vj>2¢3,-

» Looks silly: the ¢'s and v's are assumed to be unknown!



From Overlaps to Rotationally Invariant Estimators
N

& = Z(U-s: vi)ie

j=1
» The high dimensional « miracle »

§i = /cpc(c)(b(/\i,c)dc.
| 1

— li ImTr|Gy(z2)C
A’T?Tpm()\i)z%)\lﬁ-n—l-i{jﬁr o I‘[ M( ) }

 Note : result only depends on the observable M ! (Ledoit-Péché)

» Exemple: Wishart \

B = A o) + e

* Note : F, becomes linear if C is assumed to be an Inverse-Wishart matrix
(conjugate prior) -=> « Linear shrinkage »



Overlaps between independent realisations

» Extending the above tricks allows us to compute the overlap
(A, N) := NE[(uy , 15)?]

for two independent realisations, e.g. M=C +WandM=C +W

» The result is cumbersome but explicit, both
for the multiplicative & additive cases

T
Overlap for a fixed A as a function of A

» The formula again does not depend explicitly on the (possibly unknown) C
> It can be used to test whether M and M originate from the same (unknown) C

» Again, universal within the whole class of Wigner/Wishart like matrices



Overlaps between independent realisations

» The covariance matrix in non-stationary environment
» The Hessian matrix of (slowly) evolving glassy configurations

-10{ %8 . "®gege:

|
N
O - -

with F. Lechenault, O. Dauchot, G. Biroli



Overlaps between independent realisations

» The case of financial covariance matrices: is the « true » underlying correlation
structure stable in time?

T
3.0 w

gof 25

(Non overlapping time periods) oor

1.0 —' . . .
0.0 0.5 1.0 1.5 2.0

(A, \)

401

® @ ecmpirical

== estimation

m— pstimati (g = 0.55
20l estimation (g = 0.55)

0.0 0.5 1.0 2;\0 2.5 3.0 3.5 4.0
» Large eigenvectors are unstable (cf. R Allez, JPB and J. Bun, A. Knowles)

» |Important for portfolio optimisation (uncontrolled risk exposure to large modes)
» « Eyeballing » test: should be turned into a true statistical test



Equities

A simpler, dlobal test: « fleeting modes » — e

Empirical (2021-09-01)

> |s the « true » underlying correlation structure
stable in time?

» Consider the N x N matrix D = (E, )2 E_,, (E, )20 0o 20
» Where E._isthe in-sample empirical covariance matrices, defining unit-
risk, decorrelated in-sample portfolios

» The eigenvalues/eigenvectors of ID contain relevant information, with
max A's corresponding to maximally over-realizing directions

» Null-hypothesis independent of the true covariance matrix C, related to
the Jacobi ensemble and only dependent on q,, and q_,

1— Jin ‘\/[(Amax - A')(A _ A'min)]_‘_ 4 I:l
27—[ )L(qm;L + QOut)

p(A) = —q,0] () IM. MP, KT, JPB
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Bond/Index correlation
s Asian crisis
AR A WA L (1997)
R A AN AR AR AR PRIV A IR == e W
| 1 1 1 | 1 1 T R i}a ; 1 Wyart, JPB
20086 2010 2012 2014 2016 2018 2020 2022 (2007)

1993 1998 2003

max A (equities) t (years)

Correlations are time dependent

» What is driving such time dependence?

Long term evolutions: new firms, evolving business models,
macroeconomic effects (e.g. Bond/Index correlation)

Trading impacts prices = « fleeting modes » reflect traded portfolios
(e.g. momentum)

Behavioural effects, e.g. index |(t) down drives correlations up



Signal: correlations
rotate towards (1,1,...1)
in down markets

Correlations are time dependent

» Determining the impact of some macro-variables on correlations
* « Principal Regression Analysis »

R;(t) R;(t) = E;; + I(t-1) F;; + noise

J

 ...and RMT again to the rescue: the significant eigenvalues of IF

determine which factors influence correlations
RA, PAR, JPB



» Free Random Matrices results for Stieltjes transforms can be
extended to the full resolvant matrix = access to overlaps

» Large dimension « miracles »:

» The Oracle estimator can be estimated

* The hypothesis that large matrices are generated from the same
underlying matrix C can be tested without knowing C

 Qverlaps: a true statistical test at large N ?

* RIE for cross-correlation SVDs (with F Benaych & M Potters)

* QOverlaps for covariances matrices computed on overlapping periods?

 Beyond RIE? Prior on eigenvectors?

* QOther uses of RMT in economics/finance: firm networks (and ecology),
complex games, cone-wise linear dynamics....
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Non-self-averaging Lyapunov exponent in random conewise linear systems

Théo Dessertaine ©'* and Jean-Philippe Bouchaud?
"LadHyX UMR CNRS 76406, Ecole polytechnique, 91128 Palaiseau Cedex, France
2Chair of Econophysics & Complex Systems, Ecole polytechnique, 91128 Palaiseau Cedex, France
3Capital Fund Management, 23 Rue de [’Université, 75007 Paris, France

M (Received 14 February 2022; accepted 5 May 2022; published 27 May 2022)

We consider a simple model for multidimensional conewise linear dynamics around cusplike equilibria. We
assume that the local linear evolution is either v/ = Av or Bv (with A, B independently drawn from a rotationally
invariant ensemble of symmetric N x N matrices) depending on the sign of the first component of v. We establish
strong connections with the random diffusion persistence problem. When N — co, we find that the Lyapunov
exponent is non-self-averaging, i.e., one can observe apparent stability and apparent instability for the same
system, depending on time and initial conditions. Finite N effects are also discussed and lead to cone trapping
phenomena.

Note: related to the 3d
diffusion persistence
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