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(A hierarchical, translation invariant generalisation of the GFF)



Randomly Perturbed Matrices 

Questions in this talk:
 How similar are
• the eigenvectors of a « pure » matrix C and those of a noisy

observation of C? (eigenvalues are well known)
• the eigenvectors of two independent noisy observations of C?
 So what?



(Free) Additive noise (Free) Multiplicative noise 
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Models of Randomly Perturbed Matrices 

 A classic multiplicative example:
• Empirical M vs. « True » covariance matrix C; 

OBOt = XXt = W(ishart), where X is a N x T white noise matrix
 The Marcenko-Pastur distribution



Object of interest: Overlaps

Eigenvector of M Eigenvector of C

Note:
• N = size of the matrices, N >> 1 in the sequel
• E[..]: average over small intervals of λ, of width >> 1/N
• The overlaps are quickly of order 1/N as a function of the perturbation (« fast » 

local equilibrium) – but with some remaining structure!

« Overlap »

(Dyson Brownian motion for eigenvectors)



Basic tools
Resolvent: 

Stieltjes transform and spectral density (or eigenvalue distribution)

Overlaps:

Note: everywhere the « resolution » η 0 but >> 1/N



Basic tools
R-Transform

e.g. the R-transform of a Wigner matrix is R(z)=σ2 z

S-Transform

e.g. the S-transform of a Wishart matrix is S(z)=1/(1+qz) with: q=N/T



A Matrix Subordination Law (Allez, Bun, Bouchaud, Potters)   

Additive noise Multiplicative noise 
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Notes:
• Results obtained using a replica representation of the resolvent + low rank HCIZ
• Taking the trace of these matrix equalities recovers the « free » convolution rules

and the corresponding spectra of eigenvalues:



Overlaps: simplified results (bulk)

Additive noise when B=Wigner (cf. Wilkinson)  

Notes:
• Tends to a delta function when σ=0 (no noise)
• Cauchy-like formula with a power-law tail for large |c – λ|  « Lévy flight » 
• Note: True for all « Wigner-like » matrices (not necessarily Gaussian)

Empirical covariance matrices (multiplicative noise) 

Notes:
• First obtained by Ledoit & Péché, can be generalized to a broader class of noise
• Tends to a delta function when q=0 (infinite T for a fixed N)

Fixed λ



From Overlaps to Rotationally Invariant Estimators

 Assume one has no prior about C
 What is the best L2 estimator of C knowing M?
 Without any indication about the directions of the eigenvectors of C, one is

stuck with those of M:

 The L2 –optimal ξ are in principle given by:

 Looks silly: the c’s and v’s are assumed to be unknown!



From Overlaps to Rotationally Invariant Estimators

 The high dimensional « miracle »

• Note : result only depends on the observable M ! (Ledoit-Péché)

 Exemple: Wishart

• Note : F2 becomes linear if C is assumed to be an Inverse-Wishart matrix  
(conjugate prior)   « Linear shrinkage »



Overlaps between independent realisations

 Extending the above tricks allows us to compute the overlap

for two independent realisations, e.g. M = C + W and M = C + W

 The result is cumbersome but explicit, both
for the multiplicative & additive cases

Overlap for a fixed λ as a function of λ

 The formula again does not depend explicitly on the (possibly unknown) C 
 It can be used to test whether M and M originate from the same (unknown) C
 Again, universal within the whole class of Wigner/Wishart like matrices

~ ~

~



Overlaps between independent realisations

 The covariance matrix in non-stationary environment
 The Hessian matrix of (slowly) evolving glassy configurations 



Overlaps between independent realisations

 The case of financial covariance matrices: is the « true » underlying correlation
structure stable in time?

(Non overlapping time periods)

 Large eigenvectors are unstable (cf. R Allez, JPB and J. Bun, A. Knowles)
 Important for portfolio optimisation (uncontrolled risk exposure to large modes)
 « Eyeballing » test: should be turned into a true statistical test



A simpler, global test: « fleeting modes » 

 Is the « true » underlying correlation structure 
stable in time?

 Consider the N x N matrix D = (Ein)-1/2 Eout (Ein)-1/2

• Where Ein is the  in-sample empirical covariance matrices, defining unit-
risk, decorrelated in-sample portfolios 

 The eigenvalues/eigenvectors of D contain relevant information, with
max λ’s  corresponding to maximally over-realizing directions

 Null-hypothesis independent of the true covariance matrix C, related to 
the Jacobi ensemble and only dependent on qin and qout

IM, MP, KT, JPB



 What is driving such time dependence?
• Long term evolutions: new firms, evolving business models, 

macroeconomic effects (e.g. Bond/Index correlation)
• Trading impacts prices « fleeting modes » reflect traded portfolios 

(e.g. momentum)
• Behavioural effects, e.g. index I(t) down drives correlations up

Correlations are time dependent

Asian crisis
(1997)

Bond/Index correlation

max λ (equities)

Wyart, JPB
(2007)



 Determining the impact of some macro-variables on correlations
• « Principal Regression Analysis »

• …and RMT again to the rescue: the significant eigenvalues of F 
determine which factors influence correlations

Correlations are time dependent

Signal: correlations
rotate towards (1,1,…1) 
in down markets

Ri(t) Rj(t) = Eij + I(t-1) Fij + noise

RA, PAR, JPB



• Overlaps: a true statistical test at large N ?
• RIE for cross-correlation SVDs (with F Benaych & M Potters)
• Overlaps for covariances matrices computed on overlapping periods?
• Beyond RIE? Prior on eigenvectors?
• Other uses of RMT in economics/finance: firm networks (and ecology), 

complex games, cone-wise linear dynamics….

Conclusions/Extensions
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 Free Random Matrices results for Stieltjes transforms can be
extended to the full resolvant matrix  access to overlaps

 Large dimension « miracles »:
• The Oracle estimator can be estimated
• The hypothesis that large matrices are generated from the same

underlying matrix C can be tested without knowing C
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Note: related to the 3d 
diffusion persistence
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Happy 60 yan !
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