
The Fyodorov-Hiary-Keating conjecture(s)

log |ζ( 1
2 + is)|, 106 ≤ s ≤ 106 + 1



Fyodorov-Hiary-Keating conjecture (2012)

Let τ be random, uniform on [0, T ]. For any real y, as T →∞ we have

P
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where F (y) ∼ Cye−2y, as y →∞.
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, if Re(s) > 1.

Analytic continuation to C, except at 1. Functional equation :

π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s).

This talk is about : Why ?
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Extremes and log-correlation
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General setting : Logarithmically-correlated fields. Metric spaces
V1 ⊂ V2 ⊂ . . . with distance d, stochastic process XN on VN satisfying

E(XN
v X

N
v′ ) = − log

(
d(v, v′) +

1

N

)
+ bounded function

Slow decay of correlations.

Superposition of independent fields on different scales, with all scales
contributing. Example, random wave model on the circle

XN
θ = Re

N∑
k=1

Nk(0, 1)√
k

e−ikθ.

Other log-correlated fields in this talk :

(i) (log |ζ( 1
2 + iτ + ih))|)0≤h≤1, [B, 2009] by a tree structure and Selberg’s

ideas.

(ii) (log |det(eiθ −UN )|)0≤θ≤2π, for UN uniform on the unitary group
[Hughes-Keating-O’Connell, 2001].
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Example 1 : the circular logarithmic REM

E [VkVm] =

{
−2 log |zk − zm| if k 6= m

2 logM if k = m
, zk = ei 2πM k.

Fyodorov-Bouchaud (2008)

As M →∞,
1√
2

maxVk = logM − 3

4
log logM +XM

where XM has limiting distribution with density 2exK0(2ex/2).

First crucial observation, based on the Selberg integral : Z(β) =
∑
e−βVk

satisfies

E [Z(β)n] ∼

{
M1+n2β2 ·O(1) if n > 1

β2

Mn(1+β2) Γ(1−nβ2)
Γ(1−β2) if n < 1

β2

.

A density which reproduces these moments is (in the range Ze � Z �M2)

1

β2

1

Z

(
Ze
Z

) 1
β2

e−(Ze/Z)1/β
2

, β < 1, Ze =
M1+β2

Γ(1− β2)
.
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Second key insight : the β > 1 regime is governed by a freezing scenario,
i.e. some observables keep the same expectation as for β = 1
(Derrida-Spohn 1988, Carpentier Le-Doussal 2001).

More precisely, define

gβ(y) = E
[
e−e

βy Z
Ze

]
Then one expects that for any β > 1 and y

gβ(y) = g1(y).

Why freezing of the whole generating function (in y) ? A beautiful duality
(Fyodorov, Le Doussal, Rosso 2009) shows that gβ(y) (β ≤ 1) is a function
of β + β−1, in particular for any y

∂β=1− gβ(y) = 0.
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Example 2 : the Branching Brownian motion.

Branching rule : After a random time
with exponential distribution, a
Brownian motion splits into two
independent ones. And so on.

d(v, v′) = et−(v∧v′).
Image : M. Roberts

McKean (1975) connected it to the Fisher-Kolmogorov-Petrovsky-Piskunov
reaction-diffusion equation,

∂tu = 1
2∂xxu+ u2 − u, with step initial condition :

u(t, x) = P(max
v

Xv(t) < x)

If et ind. Gaussians of variance t/2, the maximum ≈ t− 1
4 log t. But :

Theorem (Bramson, 1978)

The maximum ≈ t− 3
4 log t.
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Bramson’s barrier method.

Let Z = #{v : Xv(t) > t− 3
4 log t+ bt}, bt →∞ slowly.

We have EZ →∞, first sign that the branching structure matters for the
subleading order. The divergence of the expectation comes from atypical
events that inflate the expectation.

Look for Av such that Z̃ = #{v : Xv(t) > t− 3
4 log t+ bt, Av}, satisfies

E Z̃ → 0 but P(∩vAv)→ 1. A pertinent choice :

Av = {Xv(s) < s+M, s ≤ t}, M = (log t)2 for example.

Implementation requires the classical Ballot theorem :

Theorem

Conditioned on Bt = p < M , the probability that a Brownian motion
remains below M up to time t is of order

M(M − p)
t

.
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Example 3 : the 2d discrete Gaussian free field.

On a N ×N square of Z2, density

1

Z
e−

1
8

∑
v∼v′ (Xv−Xv′ )

2

with zero boundary condition.
Image : S. Sheffield

E(XN (v)XN (v′)) = Ev

[
exit time∑
k=1

1Sk=v′

]
∼ −C log

(
d(v, v′) +

1

N

)
.

Theorem (Bramson, Ding and Zeitouni, 2013)

CN max
v

XN (v) = logN − 3

4
log logN + ZN

with ZN converging in distribution. The tail is � λe−cλ up to λ <
√

logN .

For the proof, help from a branching structure behind XN obtained by
averaging the field on boxes of size 2k0−k × 2k0−k, k ≤ k0 = logN .



Back to Fyodorov-Hiary-Keating
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Fyodorov-Hiary-Keating conjecture(s). As N,T →∞,

max
θ∈[0,2π]

log |det(eiθ − UN )| = logN − 3

4
log logN +XU + oP(1),

max
|τ−u|≤1

log
∣∣ζ ( 1

2 + iu
)∣∣ = log log T − 3

4
log log log T +Xζ + oP(1).

XU, Xζ have the same right tail

P(Xζ > y) ∼ Cye−2y, y →∞.

XU has density

2exK0(2ex/2)

(sum of two Gumbel, cf Subag).

Shown for the Gaussian model by
Rémy.

Numerics : Fyodorov, Hiary, Keating. T = 1028 !
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Why this leading order ?

Approximate
Gaussianity+Log-correlation.

Theorem (Selberg, 1946)

log |ζ( 1
2 +iτ)|√

1
2 log log T

→ N (0, 1) as T →∞.

Selberg’s proof proceeds in two steps :

1. Key : cut the tail in the Euler product

1

T

∫ T

0

∣∣∣∣∣∣log ζ(1/2 + is)−
∑
p≤T

p−is

√
p

∣∣∣∣∣∣
2

ds < C.

2. Then quantify the fact that (Up’s independent on the unit circle)

E

∏
p∈I

(piωT )αppiωT
βp

 ≈ E

∏
p∈I

Uαpp Up
βp


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What about the full maximum ?
There are two compelling conjectures concerning the maximal size of ζ.

Conjecture 1

max
0<t<T

log |ζ( 1
2 + it)| = (C + o(1))

log T

log log T

Conjecture 1 would mean that the known upper bounds are close to the
truth.

Conjecture 2

max
0<t<T

log |ζ( 1
2 + it)| = (

√
2 + o(1))

√
log T log log T

Conjecture 2 is consistent with log |ζ( 1
2 + iτ)| having Gaussian tail with

wide uniformity.
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This exponential decay seems to suggest that Conjecture 1 is the right
order, i.e. the tail in Selberg’s CLT is exponential instead of Gaussian.

This extrapolation is not correct. A more precise conjecture is : uniformly
in 1 < y < log log T ,

P
(

max
|τ−u|≤1

∣∣ζ ( 1
2 + iu

)∣∣ > log T

(log log T )3/4
· ey
)
� Cy−2ye−

y2

log log T ,

a Gaussian decay supporting Conjecture 2.

Remark. Why considering the maximum on intervals of size of order 1 ?
This maximum is the building block of maxima on other scales, see the
analogy with branching processes in 10min.
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Why this correspondence ?

Assume the Riemann hypothesis, and
let 1

2 ± itn be the ζ zeros.

wn =
tn
2π

log
tn
2π

Theorem (Montgomery, 1972)

If f is a Schwartz function with Fourier transform supported on (−1, 1),
then

1

x

∑
1≤j,k≤x,j 6=k

f(wj − wk) −→
x→∞

∫ ∞
−∞

dy f(y)

(
1−

(
sinπy

πy

)2
)
.

All orders correlations coincide : Rudnick, Sarnak (1996), for restricted
Fourier support.
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Mathematical contributions to the FHK conjecture, for U(N).

max
θ∈[0,2π]

log |det(eiθ − UN )| = logN − 3

4
log logN +XU + oP(1).

Why this conjecture ? Some moments of
∫
|det(eiθ − UN )|βdθ calculated

based on the Fisher-Hartwig asymptotics and coincide with those in the
circular logarithmic REM.

Theorem (Chhaibi, Najnudel, Madaule, 2016)

The random variable maxθ∈[0,2π] log |det(eiθ − UN )| − (logN − 3
4 log logN)

is tight (and extension to circular β-ensemble).

Related results for β = 2 by

- Arguin Belius B (first order, freezing of the partition function, 2015)

- Paquette and Zeitouni (second order, 2016).
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Mathematical contributions to the FHK conjecture, for ζ.

Fyodorov-Keating : It is not at this stage completely clear to us how, if at
all, the arithmetic will modify these (random matrices) expressions, but
there are reasons to believe that it will not influence them at leading order.

Leading order proved by Joseph Najnudel and ABBRS (2016), upper
bound up to log4 T -error by Adam Harper (2019).

Theorem (Arguin B Radziwill, 2020-22)

Tightness of
(log log T )3/4

log T
· max
|τ−u|≤1

∣∣ζ ( 1
2 + iu

)∣∣ ,
and upper tail of order ye−2y up to y <

√
log log T .

The proof relies on a multiscale analysis with twisted ζ moments.



Proof
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Basic idea : Branching. Let

Y`(h) =
∑

e`−1<log p<e`

Re p−i(τ+h)

√
p

, 1 ≤ ` ≤ log log T

Sk(h) =

k∑
`=1

Y`(h)

From the prime number theorem, E
[
|Y`(h)|2

]
= 1

2 with good precision.
Moreover, log-correlation comes from

E [Y`(h1)Y`(h2)] ≈ 1
2 if |h1 − h2| � e−`, 0 if |h1 − h2| � e−`.

Figure – Illustration of the processes Sk(h1) and Sk(h2).
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Heuristics : Let n = log log T .Then Sn achieving a high value ≈ n
requires all Y`, ` ≤ n to be unusually large. These increments need to line
up and the partial sums lie in a corridor : Sk ≈ k, k ≤ n.

Analytic number theory barrier. To find h such that Sk(h) ≈ k, we
need to identify the moments of the random walk

E
[
(Sk)2q

]
= E

[
N (0, k/2)2q

]
+ O

(
exp(2qek)

T

)
up to q ≈ k.

The leading order can be identified for k < log log T − C log log log T . This
poor control on last increments is a number theory barrier ; one cannot
work directly, only, with primes.

This problem is avoided through lower barrier estimates, obtained thanks
to twisted moments of ζ : the proof relies also on the additive nature of ζ,
i.e. as a Dirichlet sum.
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Image : L.-P. Arguin
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Multiscale analysis for the upper bound

First, discretize : the maximum over log T points h is enough (Poisson
summation formula).

Let Gk be the set of h such that the walk keeps in the corridor up to time
k, and H = {h : |ζ| > en

n3/4 e
y} The key estimate is (approximately)

P(∃h ∈ H ∩Gn` ∩Gcn`+1
) ≤ ye−2y

(n− n`)2
, n` = n− log`+1 n.

Iterations then show that high points need to be in the corridor. But for
n− n` = O(1) this is unlikely by twisted moments for ζ.

These twisted moments are also used in the proof of the above inequality.
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Decoupling between primes : in a primitive version, the twisted fourth
moment states that

E
[
|(ζM(k))|4 · |Q(k)|2

]
� E

[
|(ζM(k))|4

]
· E
[
|Q(k)|2

]
,

- M(k) is a proper approximation of ζ−1(s) =
∑ µ(n)

ns which takes into
account all primes up to exp(ek)
- Q(k) is any Dirichlet series with non-trivial summands supported on
multiples of primes smaller than exp(ek)

In our case, pick k = n`+1 encode the event ”upper barrier up to n`+1,
lower barrier up to n`” into Q(n`+1). Then the final gap cannot be too
large because of the above decoupling.

It is remarkable that

(i) no higher moments than 4 are needed to obtain tightness ;

(ii) twisted moment are accessible with current number theory technology
only up to 4th order.
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Additional ideas, with inspiration from a simple, alternate proof of
Selberg’s CLT by Radziwill and Soundararajan.

Shift from the critical axis for the lower bound to have better
approximations for ζ. For us this is harmless because (ε > 0, V > 1 and
1
2 ≤ σ ≤

1
2 + (log T )−1/2−ε)

P
(

max
|τ−u|≤1

|ζ (1/2 + iu) | > V

)
≥ P

(
max
|τ−u|≤ 1

4

|ζ (σ + iu) | > 2V

)
+ o(1).

Avoid large multiplicities for the approximation of ζ−1 and Q(k),as they
hurt in large moments. This can be achieved in accordance with the
Erdős-Kac theorem, which states that N typically has log2N prime factors
(and

√
log logN normal fluctuations) :

M`(h) =
∑

p|m =⇒ p∈(T`−1,T`]

Ω`(m)≤(n`−n`−1)10
5

µ(m)

mσ+iτ+ih
,

and M(k) =
∏
`M`.



Known. At the level of extremes, the universality class of log-correlated
fields includes non-Gaussian models such as |det(z − UN )| and |ζ|.

Conjetured based on moments/freezing scenario. The proofs rely on
underlying branching structures.

For ζ, the key inputs (in a multiscale analysis involving lower barriers) are
twisted moments.

Unknown. Convergence in distribution ?

Maximum for L-functions associated to GLn, n ≥ 2 ?

Averages in families of L-functions ?

Universality of the FHK prediction in non-Gaussian models (Gaussian
fields : Ding-Roy-Zeitouni) ?



Thank you, Yan, and happy birthday !
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