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Take a N x N self-adjoint Wigner matrix :
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where the random variables (x;j,1 </ < j < N) are independent
centered variables with covariance 1 outside the diagonal and 2/
on the diagonal (8 = 1 if the entries are real and 3 = 2 if they are

1
complex). We assume (\/% Jx,-j),-gj are equidistributed with law
to simplify.



Almost sure convergence of the spectrum

Let Ay < Ay_1 < -+ < A1 be the eigenvalues of Xy.
¢ Wigner’s theorem 56 :

Jim f#{, A € [a, ]} = o([a, b]) = / VA y2dy
e Fiiredi-Komlés’ theorem '81[Bai-Yin 98] If [|x|*du(x) is
finite, the largest eigenvalue A; sticks to the bulk :

[im A\ =2 a.s.
N—o00

a.s.



Large deviations

-2

Goal : Estimate for any u € P(R) and x € R

1
IP’(NZ(SA,:M) and P(\; ~x).



Concentration of measure
Theorem (G-Zeitouni '00)

Assume the entries satisfy log-Sobolev inequality or are compactly
supported. Then there exists finite constants ¢, C > 0 such that for
all f Lipschitz

( Zil: E[—Zf

Moreover

> 5Hf\|L,-p> < Ce—cN?*o®

P (A1 — E[\]| > 6) < Ce™ N’



Concentration of measure
Theorem (G-Zeitouni '00)

Assume the entries satisfy log-Sobolev inequality or are compactly
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all f Lipschitz
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Theorem (Bordenave, Caputo,Chafai '11)
For any function f with bounded total variation

(72

N 1 N
\ 2 () — Bl 2 f(A

]| > 5f||Tv> < Ce=<N




Gaussian ensembles : ;= N(0,1)

dP} (X NH\)\ exp{——NZ)\2 IT ax

,8 i<j 1<i<N

Theorem
e (Ben Arous-G '97) For any probability measure v,

Zé}\ ~ V 75N2(J(1/)7ian)

where J(v) = % [ ] 3+ y? —4log|x — y|) dv(x)dv(y).



Gaussian ensembles : ;= N(0,1)

dP} (X NH\)\ exp{——NZ)\2 IT ax

,8 i<j 1<i<N
Theorem
e (Ben Arous-G '97) For any probability measure v,
26>\ ~ V 78N2(J(1/)7ian)

where J(v) = % [ ] 3+ y? —4log|x — y|) dv(x)dv(y).
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Gaussian ensembles : ;= N(0,1)

dP} (X NH\)\ fwzv IT ax
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Theorem
e (Ben Arous-G '97) For any probability measure v,

Zé}\ ~ V 78N2(J(1/)fian)

where J(v) = % [ ] 3+ y? —4log|x — y|) dv(x)dv(y).
e (Ben Arous-Dembo-G '99) For x real, P/ (A ~ x) ~ e~ Ncoe()
where Ioe(x) = 5 [, \/y? — 4dy /fx>2 +oo if x < 2.

o (Majumdar-Schehr '13) If x < 2, P}/ (A1 ~ x) ~ o~ N281_(x)



Large deviations for "heavier” tail entries

Assume now that for some a € (0, 2), there exists a > 0 so that
for all i, j

i —limj -« > ) = —
tll>r202 it % log P(|x;| > t) a

Theorem

e (Bordenave-Caputo '12) For any probability measure p,

> oy = p) o= N2 Jaa(i)

where J, 5 is co unless i = o Bv and then = ¢, [ |x|*dv(x).
o (Augeri '15) For any x > 2,

P (A1 ~ x) ~ e N loa(x)

where I, 2(x) = ci([(x — y) tda(y)) .



Large deviations for sharp sub-Gaussian entries

p symmetric with p(x?) = 1 has a sub-Gaussian tail if there exists
A > 1 such that for all t

[N

/etxd,u(x) < et

1t has a sharp subgaussian tail iff A= 1.The Gaussian law,
Rademacher law %5_1 + %5+1 and the uniform measure on
[—v/3, /3] have sharp sub-gaussian tails.



Large deviations for sharp sub-Gaussian entries

p symmetric with p(x?) = 1 has a sub-Gaussian tail if there exists
A > 1 such that for all t

[N

/etxd,u(x) < et

1t has a sharp subgaussian tail iff A= 1.The Gaussian law,
Rademacher law %5_1 + %5+1 and the uniform measure on
[—v/3, /3] have sharp sub-gaussian tails.

Theorem (G-Husson '18)

Assume the entries x;; have a sharp sub-Gaussian tail. Then the
law of \1 satisfies the same large deviation principle than in the
Gaussian case

P(A; ~ x) ~ e~ NBleoe(x)



Large deviations in the sub-Gaussian case

Assume p is symmetric, 1(x?) = 1 and sub-Gaussian :
2 tx
A =sup 2 log [ e™du(x) € [1,+00).
t

Theorem (Augeri-G-Husson '19, Cook-Ducatez-G WIP)

Assume A > 1.Under some technical hypothesis, the law of A1
satisfies large deviation estimates with good rate function |, : for
x small or large enough

P(\p = x) = e~ PN |

where |,,(x) ~ é for x large and 1,(x) = lcoe(x) for x small.



Full LDP for sparse sub-Gaussian entries
1 is symmetric and such that

w(t) = 3 1og [ edu(x

is increasing e.g u = pdo + (1 — p)N(0,1).
Theorem (Cook-Ducatez-G WIP)

For all x € R
P(A1 ~ x) ~ e N(x) |

where |,,(x) < lgoe(x) for all x and
e If l,(x) = lgoe(x) forn,e > 0 small

lim P({[villc <e}{ld—x] <N7"}) =1
N—o0
e Ifl,(x) < lgoe(x), Fv(x) > 0 so that for n > 0 small

Jim P ({Illoe = 10)H{s —x < N1 =1



A key tool : Spherical integrals
The spherical integral of X is given for 6 > 0 by
(8, X) = Ec[e"eX¥)]

where e follows the uniform law on the sphere.
By (G-Maida '05), if Amax(X) — p and 5 > 6y, x) — 4

In(0, X) ~ eNI(o:10)



A key tool : Spherical integrals
The spherical integral of X is given for 6 > 0 by
In(0, X) = Eo[eN0(eXe)

where e follows the uniform law on the sphere.
By (G-Maida '05), if Amax(X) — p and 5 > 6y, x) — 4

IN(Q,X) ~ e/VJ(/),;z,,F))

Moreover, for x > 2 and 6 > 0, J(x,0) = J(x,0,0) is given by

02 0 < dU(y
J(x,0) = { 2 25

Ox — 1 [log(x — \)do () — L log(2e0) 6> 1 [ < d"(y




Proof of LDUB in the sharp sub-Gaussian case

We tilt the measure by spherical integrals : if X = X T is N x N
with i.i.d variables with law p and J(x, 6) = J(x, o, 6)
IN(Xv 0)
1)\1:x]
IN(Xv 0)
< efN(J(X,G)JrO(l))EX[IN(X’ 9)]

P\ ~x) = Ex|




Proof of LDUB in the sharp sub-Gaussian case
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Proof of LDUB in the sharp sub-Gaussian case

We tilt the measure by spherical integrals : if X = X T is N x N
with i.i.d variables with law p and J(x, 6) = J(x, o, 6)
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Proof of LDUB in the sharp sub-Gaussian case

We tilt the measure by spherical integrals : if X = X T is N x N
with i.i.d variables with law p and J(x, 6) = J(x, o, 6)

IN(Xve)l ]
In(X,0) M=

< efN(J(X,9)+O(l))]EX[IN(X’ 9)]
efN(J(X,G)Jro(l))EX [Ee[eNG(e,Xe>]]
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i<j
< o NUxO+o()R [Hee2Nee (55G)

7.]
efN(J(x,9)+o(1))+N62

P\ ~x) = Ex|

Taking N — oo and optimizing over 6 gives the upper bound.



Large deviation lower bound

/N(Xae)l ]
/N(X, 0) )\12X

_ E [/ (X,Q)]-)\ :x]
N(J(x,0)+o(1)) EX LN =X B [y (X, 0
Ex[n(X.0) x[In(X, 0)]

We need to show that for any x > 2 there exists 6 > 0 s.t.

Ex[In(X, 0)1)~x]
IEX[/N()<a 9)]

]P)(/\l ~ X) = Ex[

~ e

> e°M) and Ex[/n(X,0)] > N (0> +o(1))




Large deviation lower bound
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Lij eiex 2
.]EX[/N(X,G)] > ]Ee[].HeHxSN—lﬂ H/e2 #0v/Ne; ) d,u(X)] ~ eNG
i<



Large deviation lower bound

(X, 0) Lyyex]
In(X,0)
N(I(x.0)+0(1)) Ex[In (X, 0) 1, ~x]
Ex[In(X,0)]
We need to show that for any x > 2 there exists 6 > 0 s.t.
Ex[In(X, 0)1)~x]
Ex[In(X,0)]

]P)(AlﬁX):E [

~ e

EX[IN(Xv 6)]

> e°M) and Ex[/n(X,0)] > eN(@>+o(1))

Lizj ejejx
.]EX[/N(X,G)] > Ee[lex<N1/3H/e2 #0v/Ne; j d,u(x)] ~ eN92
i<j
Ex[IN(X 9)1>\1"‘X] in Ex[l)\lzxeNé)(e’Xe)]
ExINCO) = felwin-io B [eM0(ee]

where X has approximately the law of W + fee’ under the tilted
measure. The BBP transition insures that \; — 0 + 671 = x.




General result
Theorem (Ducatez-Cook-G. WIP)

Let ¢(t) = t 2 log [ e™dpu(x) so that ||1)||ec < co. Let >0
small. Let x > 2. Then

1
N log P(A\1 ~ x)

1
~ inf { —1 EUE N()(u,Hu)l . )—J 0
w:;;/garseégl { N & H(e [[d—a(x,0)w|2<N 7) (X7 )

where a(x,0) = \/(1 — %)), and i = (1|Ui|>N7%+nUi)1§i§N-

e the first term in the RHS can be estimated.

e When x is small, the supremum over w is taken at w =0
yielding the GOE LDP. When 1) is increasing it is taken at
(w,0,...0), yielding a RHS = /,. If 1 is compactly, for x
large enough, it is taken at (N~Y*my,...,N=/4m,.0,...,0)
with dimension v/N/m?.



Extensions/ Open problems

e LDP for the largest eigenvalue generalizes to band matrices
Yij = 0ijXij (Husson '20), to X + D (Mc Kenna '20), to
A+ UBU* (G-Maida '19), to ABA (Mergny-Potters '22), to
joint LDP with the eigenvector (Biroli-G '20), to the kth
largest eigenvalues (G-Husson 21, Husson-Ko '22)

e LDP for the spectral measure of Wigner matrices is open for
sub-Gaussian entries. It should not be universal : if the entries

are Rademacher 1

P(n =~ 60) > (5)"

but the rate function is infinite in the Gaussian case.

e LDP for the spectral measure of A+ UBU* and the diagonal
entries of UBU*, see Belinschi-Huang-G '20 and
Narayanan-Sheffield '22
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