On Random Matrices Arising in Deep Neural Networks

L. Pastur

B. Verkin Institute
for Low Temperature Physics and Engineering Kharkiv, Ukraine
Institute des Hautes Etudes Scientifiques
Bur sur Ivette, France

Random Matrices and Random Landscapes
Conference in honour of Yan Fyodorov's 60th birthday
CSF, Ascona, Switzerland, 25 - 29 July 2022

Outline

- Introduction
- Main Result
- Proof (outline)
- Numerical Results
- Summary

Introduction

Neural Networks

Artificial Neural Networks (NN) are très à la mode. There are various architectures, a typical is fully connected feed forward NN. It consists of
(1). Iteration scheme (NN dynamics). Given:

- x^{0}, the input, x^{L}, the output,
$-x^{\prime}=\left\{x_{j l}^{\prime}\right\}_{j=1}^{n}, I=0, \ldots L$, the state of NN at the lth layer,
$-b^{\prime}=\left\{b_{j}^{\prime}\right\}_{j_{l=1}}^{n}, I=1, \ldots L$, biases,
- $W^{\prime}=\left\{W_{j_{l}, j_{l-1}}^{\prime}\right\}_{j_{l}, j_{l-1}=1}^{n}, I=1, \ldots L$, (synaptic) weights,

Introduction

Neural Networks

consider the recursion of width n and of depth L

$$
y^{\prime}=W^{\prime} x^{I-1}+b^{\prime}, \quad x_{j_{l}}^{\prime}=\varphi\left(y_{j_{l}}^{\prime}\right), I=1, \ldots, L
$$

where the nonlinearity (activation function) $\varphi: \mathbb{R} \rightarrow \mathbb{R}$, usually a piece-wise differentiable sigmoid, e.g. $\varphi=\tanh , \tan ^{-1}$,

$$
\text { HardTanh }=2^{-1}(|x+1|-|x-1|)
$$

If the number of layers $L>1, \mathrm{NN}$ is called deep neural network (DNN).
(2). Training. Updates the weigh matrix on the every step of the iteration procedure to reduce the misfit between the output data and the prescribed data by using certain optimization procedures, usually of the least mean square type.

Introduction

Jacobian

An important DNN characteristic is the $n_{L} \times n_{0}$ input-output Jacobian

$$
\begin{gathered}
J^{L}:=\left\{\frac{\partial x_{j}^{L}}{\partial x_{j 0}^{0}}\right\}_{j_{0}, j=1}^{n}=D^{L} W^{L} \cdots D^{1} W^{1}, \\
D_{n}^{\prime}=\operatorname{diag}\left\{\varphi^{\prime}\left(\left(W^{\prime} x^{\prime-1}\right)_{j_{i}}+b_{j_{j}^{\prime}}^{\prime}\right)\right\}_{j_{i=1}=1}^{n} .
\end{gathered}
$$

Of particular interest are the singular values of J^{L}, i.e., the square roots of eigenvalues of the positive definite matrix

$$
M_{n}^{L}=J_{n}^{L}\left(J_{n}^{L}\right)^{T}
$$

in the large width limit $n \rightarrow \infty$, in particular, the Normalized Counting Measure (NCM) of eigenvalues of M_{n}^{L} (a good DNN characteristic)

$$
\nu_{M_{n}^{L}}=n^{-1} \sum_{t=1}^{n} \delta_{\lambda_{t, M \Lambda}^{L}}
$$

Introduction

Untrained DNN

Modern theory operates also with untrained and even random parameters $\left\{W_{n}^{l}, b_{n}^{l}\right\}_{l=1}^{L}$ of the DNN architecture, hence, RMT (although non-linear if $\varphi \neq x$).
It is usually assumed that $\left\{W_{n}^{l}, b_{n}^{\prime}\right\}_{l=1}^{L}$ are i.i.d. in I and either
(i) $W_{n}^{\prime}=n^{-1 / 2} X_{n}^{\prime}$, the entries of X_{n}^{\prime} are i.i.d. of zero mean and unit variance and the components of b_{n}^{\prime} are i.i.d. of zero mean and variance σ_{b}^{2};
or
(ii) $W_{n}^{\prime}=O_{n}^{\prime} \in S O(n)$ is the Haar distributed, b_{n}^{\prime} are as in (i).

We will deal with the "untrained random" case (i) in the infinite width limit $n \rightarrow \infty$.

Introduction

RMT Reminder

The case where

$$
D_{n}^{\prime}=\operatorname{diag} D_{j_{l}}^{\prime}=\left\{\varphi^{\prime}\left(\left(n^{-1 / 2} X^{\prime} x^{I-1}\right)_{j_{l}}+b_{j_{l}}^{\prime}\right)\right\}_{j_{l}=1}^{n}, I=1, \ldots, L
$$

are replaced by \mathbf{D}_{n}^{\prime}, non-random or even random but independent of W_{n}^{\prime} (frozen, quenched), thus

$$
J_{n}^{L} \text { is replaced by } \mathbf{J}_{n}^{L}:=\mathbf{D}_{n}^{L} W_{n}^{L} \cdots \mathbf{D}_{n}^{1} W_{n}^{1}
$$

is known in RMT, see e.g.
G. Akemann et al 2011, F. Goetze et al 2015, R. Mueller 2002. A particular case with $L=1$ (single layer) dates back to Marchenko and P. 1967.

Introduction

Previous DNN Results

Claim (J. Pennington et al, arxiv:1802.09979):

$$
\lim _{n \rightarrow \infty} \nu_{M_{n}^{L}}=\lim _{n \rightarrow \infty} \nu_{\mathbf{M}_{n}^{L}}
$$

where

$$
\mathbf{M}_{n}^{L}=\mathbf{J}_{n}^{L}\left(\mathbf{J}_{n}^{L}\right)^{T}, \mathbf{J}_{n}^{L}=\mathbf{D}_{n}^{L} W_{n}^{L} \ldots \mathbf{D}_{n}^{1} W_{n}^{1}
$$

with

$$
\left.\left(\mathbf{D}_{n}^{\prime}\right)_{j_{l}}=\varphi^{\prime}\left(n^{-1 / 2} \mathbf{X}_{n}^{\prime} x_{n}^{I-1}\right)_{j_{l}}+b_{j_{l}}^{\prime}\right), I=1, \ldots, L
$$

and \mathbf{X}_{n}^{\prime} in $\mathbf{D}_{n}^{\prime} I=1, \ldots, L$ are independent of X_{n}^{\prime} (frozen, quenched) but have the same probability distribution, i.e., \mathbf{X}_{n}^{L} and X_{n}^{L} are stochastically equivalent.

A reason: analogy with the mean field approximation (ideology) of many-body physics.

Introduction

Previous RMT Results

Write

$$
\mathbf{M}_{n}^{\prime}=\mathbf{D}_{n}^{\prime} X_{n}^{\prime} \mathbf{M}_{n}^{I-1}\left(X_{n}^{\prime}\right)^{\top} \mathbf{D}_{n}^{\prime}
$$

and observe that \mathbf{M}_{n}^{I-1} is independent of X_{n}^{\prime} (a matrix Markov chain). According to RMT, if the NCM's

$$
\nu_{\mathbf{K}_{n}^{\prime}}, \quad \nu_{\mathbf{M}_{n}^{\prime-1}}
$$

of $\mathbf{K}_{n}^{\prime}:=\left(\mathbf{D}_{n}^{\prime}\right)^{2}$ and \mathbf{M}_{n}^{l-1} converge weakly (with probability 1 if random) as $n \rightarrow \infty$ to non random measures $\nu_{\mathbf{K}^{\prime}}$ and $\nu_{\mathbf{M}^{\prime-1}}$, then the same holds for $\nu_{\mathbf{M}_{n}^{\prime}}$ and its non random a.s. limit

$$
\nu_{\mathbf{M}^{\prime}}=\lim _{n \rightarrow \infty} \nu_{\mathbf{M}_{n}^{\prime}}
$$

is related to $\nu_{\mathbf{K}^{\prime}}$ and $\nu_{\mathbf{M}^{\prime-1}}$ via an analytic procedure (RMT, FP):

$$
\nu_{\mathbf{M}^{\prime}}=\nu_{\mathbf{K}^{\prime}} \diamond \nu_{\mathbf{M}^{\prime-1}} \Rightarrow \nu_{\mathbf{M}^{\prime}}=\nu_{\mathbf{K}^{\prime}} \diamond \cdots \diamond \nu_{\mathbf{K}^{1}}
$$

Main Result

Our work provides a rigorous proof of the claim by updating the conventional RMT techniques (see, e.g. L.Pastur, M. Shcherbina, Eigenvalue Distribution of Large Random Matrices, AMS, 2011).
L.Pastur, On random matrices arising in deep neural networks: Gaussian case, Pure and Appl. Funct. Anal. 5 1395-1424 (2020), arxiv.org:2001.06188
L.Pastur and V. Slavin, On random matrices arising in deep neural networks: general i.i.d. case, RMTA (to appear), arxiv:2011.11439 L.Pastur, On random matrices arising in deep neural networks: orthogonal case, JMP (to appear), arxiv:2201.04543.

Proof (Outline)

Generalities

We have

$$
M_{n}^{\prime}=D_{n}^{\prime} W_{n}^{\prime} M_{n}^{\prime-1}\left(W_{n}^{\prime}\right)^{T} D_{n}^{\prime}, W_{n}^{\prime}=n^{-1 / 2} X_{n}^{\prime}
$$

Denote

$$
M_{n}^{I-1}=: R_{n}^{\prime}=\left(S_{n}^{\prime}\right)^{2}, K_{n}^{\prime}=\left(D_{n}^{\prime}\right)^{2}
$$

write, omitting the superindex I,

$$
M_{n}=\left(D_{n} W_{n} S_{n}\right)\left(D_{n} W_{n} S_{n}\right)^{T}
$$

and introduce

$$
\mathcal{M}_{n}=\left(D_{n} W_{n} S_{n}\right)^{T}\left(D_{n} W_{n} S_{n}=S_{n} W_{n}^{T} K_{n} W_{n} S_{n}\right.
$$

It is important that \mathcal{M}_{n} and M_{n} have the same NCM's.

Proof (Outline)

Random Case

Recall that $W_{n}=n^{-1 / 2} X_{n}$ where the entries $\left\{X_{j \alpha}\right\}_{j, \alpha=1}^{n}$ of X_{n} are i.i.d. random variables with zero mean, unit variance and finite fourth moment $m_{4}<\infty$ and that

$$
K_{n}=\left\{K_{j n} \delta_{j k}\right\}_{j, k=1}^{n}, K_{j n}=\left(\varphi^{\prime}\left(n^{-1 / 2}\left(X_{n} x_{n}\right)_{j}+b_{j}\right)\right)^{2}
$$

is diagonal and write \mathcal{M}_{n} as

$$
\begin{gathered}
\mathcal{M}_{n}=\sum_{j=1}^{n} K_{j n} L_{j}, \quad L_{j}=Y_{j} \otimes Y_{j}, \\
Y_{j}=n^{-1 / 2} S_{n} X_{j}, X_{j}=\left\{X_{j \alpha}\right\}_{\alpha=1}^{n} \in \mathbb{R}^{n},
\end{gathered}
$$

i.e., as the sum of rank-one and independent matrices.

Proof (Outline)

Reduction to the Expectation

Use the martingale-difference techniques to get the bounds:
(i) for any n-independent interval $\Delta \in \mathbb{R}$

$$
\mathbf{E}\left\{\left|\nu_{\mathcal{M}_{n}}(\Delta)-\mathbf{E}\left\{\nu_{\mathcal{M}_{n}}(\Delta)\right\}\right|^{4}\right\} \leq C_{1} / n^{2}
$$

(ii) for the resolvent $G(z)=\left(\mathcal{M}_{n}-z\right)^{-1}$, any $n \times n$ matrix A and $\xi>0$

$$
\operatorname{Var}\left\{s_{n}(\xi)\right\} \leq C_{2}\|A\|^{2} / n \xi^{2}, s_{n}(\xi)=n^{-1} \operatorname{Tr} A G(-\xi)
$$

Bound (i) and the Borel-Cantelli lemma reduce the problem on random $\nu_{\mathcal{M}_{n}}$ to that on $\bar{\nu}_{\mathcal{M}_{n}}=\mathbf{E}\left\{\nu_{\mathcal{M}_{n}}\right\}$ and then, by spectral theorem,

$$
f_{\mathcal{M}_{n}}(z):=\int_{0}^{\infty} \frac{\bar{\nu}_{\mathcal{M}_{n}}(d \lambda)}{\lambda-z}=\mathbf{E}\left\{n^{-1} \operatorname{Tr} G(z)\right\}
$$

showing that it suffices to find $\lim _{n \rightarrow \infty} f_{\mathcal{M}_{n}}(z)$ uniform on a finite interval of $\mathbb{C} \backslash \mathbb{R}_{+}$.

Proof (Outline)

Rank-one Formula

Use linear agebra for $A=B+K L_{Y}, A$ and $B n \times n$ hermitian with the resolvents $G_{A}(z)$ and $G_{B}(z), K$ real and the rank one $L_{Y}=Y \times Y$ to write the rank-one perturbation formula

$$
\text { (i) } G_{A}(z)=G_{B}(z)-\frac{K G_{B}(z) L_{Y} G_{B}(z)}{1+K\left(G_{B}(z) Y, Y\right)}, \Im z \neq 0
$$

implying for any $n \times n$ matrix C

$$
\text { (ii) } n^{-1} \operatorname{Tr} G_{A}(z) C-n^{-1} \operatorname{Tr} G_{B}(z) C=-\frac{1}{n} \cdot \frac{K\left(G_{B}(z) C G_{B}(z) Y, Y\right)}{1+K\left(G_{B}(z) Y, Y\right)}
$$

and for positive definite A, B and $K \geq 0$

$$
\text { (iii) }\left|n^{-1} \operatorname{Tr} G_{A}(-\xi) C-n^{-1} \operatorname{Tr} G_{B}(-\xi) C\right| \leq\|C\| / n \xi, \xi>0 .
$$

Proof (Outline)

Basic Formula

The rank-one formula (i) and the resolvent identity for the pair $(\mathcal{M}, 0)$

$$
G=-z^{-1}+z^{-1} G \mathcal{M}_{n}=-z^{-1}+z^{-1} \sum_{j=1}^{n} K_{j n} G L_{j}
$$

lead to the basic formula:

$$
\begin{gathered}
G(z)=-z^{-1}+z^{-1} \sum_{j=1}^{n} \frac{K_{j n}}{1+K_{j n} a_{j n}(z)} G_{j}(z) L_{j} \\
G_{j}=\left.G\right|_{K_{j n}=0}, \quad a_{j n}=\left(G_{j} Y_{j}, Y_{j}\right)
\end{gathered}
$$

where $K_{j n}$ and Y_{j} (hence L_{j}) are independent of G_{j} (separation of variables!)

Proof (Outline)

 Important FactsTo find $f_{\mathcal{M}_{n}}(z)=\mathbf{E}\left\{n^{-1} \operatorname{Tr} G(z)\right\}$ for $n \rightarrow \infty$ we can make in the r.h.s. of the formula any change such that the error \mathcal{E}_{n} satisfies

$$
\triangleright \mathcal{E}\left\{n^{-1}\left|\operatorname{Tr} \mathcal{E}_{n}\right|\right\}=o(1), n \rightarrow \infty
$$

(qf) Denote $\mathbf{E}_{j}\{\ldots\}$ the (conditional) expectation over X_{j} and observe that for $Y_{j}=n^{-1 / 2} S X_{j}$ and any X_{j}-independent and bounded A

$$
\mathbf{E}_{j}\left\{\left(A Y_{j}, Y_{j}\right)\right\}=n^{-1} \operatorname{Tr} R_{n} A, R_{n}=S_{n}^{2}
$$

$$
\operatorname{Var}_{j}\left\{\left(A Y_{j}, Y_{j}\right)\right\} \leq\left(m_{4}+1\right)\|A\|^{2}\left(n^{-1} \operatorname{Tr} R^{2}\right) / n
$$

(ro) $n^{-1} \operatorname{Tr} A G_{j}=n^{-1} \operatorname{Tr} A G+\varepsilon_{n}, G_{j}=\left.G\right|_{K_{j n}=0}$ by formulas (ii)-(iii); (ml) $\operatorname{Var}_{j}\left\{n^{-1} \operatorname{Tr} A G\right\} \leq C\|A\|^{2} / n \xi^{2}$ by the martingale-type bound.

Proof (Outline)

Derivation of Main Formulas

Use the above facts to replace in the basic formula:

$$
\begin{aligned}
a_{j n}:=\left(G_{j} Y_{j}, Y_{j}\right) \stackrel{\text { qf }}{\Longrightarrow} & n^{-1} \operatorname{Tr} G_{j} R \stackrel{\mathrm{ro}}{\Longrightarrow} n^{-1} \operatorname{Tr} G R=: h_{n} \xrightarrow{\mathrm{ml}} n^{-1} \mathbf{E}\left\{h_{n}\right\}=: \bar{h}_{n} \\
& G_{j} L_{j} \xrightarrow{\text { qf }} n^{-1} G_{j} R \stackrel{\mathrm{ro}}{\Longrightarrow} n^{-1} G R,
\end{aligned}
$$

yielding

$$
G=-z^{-1}+z_{-1} k_{n} G R+\mathcal{E}_{n}, \quad(*)
$$

with

$$
\begin{align*}
k_{n}= & \sum_{j=1}^{n} \frac{K_{j n}}{1+K_{j n} \bar{h}_{n}} \text { !!DNN to RMT!! } \\
& \stackrel{L L N}{\Longrightarrow} k=\int_{0}^{\infty} \frac{\lambda \nu_{K}(d \lambda)}{\lambda h+1} \tag{I}
\end{align*}
$$

Proof (Outline)

Derivation of Main Formulas

Apply then the operation $\mathbf{E}\left\{n^{-1} \operatorname{Tr} \ldots\right\}$ to $(*)$ and get

$$
f_{\mathcal{M}_{n}}(z)=-z^{-1}+z^{-1} \bar{k}_{n}(z) \bar{h}_{n}(z)+\bar{\varepsilon}_{n},
$$

hence, after the (sub)limit $n \rightarrow \infty$

$$
f_{\mathcal{M}}(z)=-z^{-1}+z^{-1} k(z) h(z)
$$

Proof (Outline)

Derivation of Main Formulas

Next, we have from $(*)$

$$
G(z)=\mathcal{G}(z)+\mathcal{E}_{n}, \mathcal{G}(z)=\left(\bar{k}_{n}(z) R-z\right)^{-1}
$$

Multiply it by R, apply $\mathbf{E}\left\{n^{-1} \operatorname{Tr} \ldots\right\}$ and use the independence of R, hence \mathcal{G}, on X_{n} to obtain

$$
\bar{h}_{n}(z)=\int_{0}^{\infty} \frac{\lambda \nu_{R_{n}}(d \lambda)}{\lambda \bar{k}_{n}(z)-z}+\bar{\varepsilon}_{n}
$$

and upon the (sub)limit $n \rightarrow \infty$

$$
\begin{equation*}
h(z)=\int_{0}^{\infty} \frac{\lambda \nu_{R}(d \lambda)}{k(z) \lambda-z} \tag{II}
\end{equation*}
$$

Proof (Outline)

Summary

The system

$$
\begin{align*}
& k(z)=\int_{0}^{\infty} \frac{\lambda \nu_{K}(d \lambda)}{h(z) \lambda+1} \tag{I}\\
& h(z)=\int_{0}^{\infty} \frac{\lambda \nu_{R}(d \lambda)}{k(z) \lambda-z} \tag{II}
\end{align*}
$$

is uniquely solvable in an appropriate class of functions analytic in $\mathbb{C} \backslash \mathbb{R}_{+}$, thereby determines uniquely via

$$
\text { (0) } f_{\mathcal{M}}(z)=-z^{-1}+z^{-1} k(z) h(z)
$$

the Stieltjes transform $f_{M}=f_{\mathcal{M}}$ of ν_{M}, hence, ν_{M}.
The system is equivalent to the result by Pennington et al, expressed in the free probability terms.

Numerical Results

Fig. 1: The eigenvalue density (in the semi-log scale) of the random matrix M_{n}^{L} for the Gaussian weights and biases, $L=2, n=10^{3}$. The histograms are the sample densities, the blue lines are arithmetic means ρ_{n} of $N=10^{3}$ samples and the red lines are numerical solutions of the system. a) $\varphi(x)=x$, linear activation function (RMT); b) $\varphi=$ HardTanh.

Fig. 2: a) The density ν_{K}^{\prime} of the measure ν_{K} for the indicated activation functions and the Gaussian weights and biases. b) The arithmetic means ρ_{n} (in the semi-log scale) of the sample eigenvalue densities of $M_{10^{3}}^{2}$ over $N=10^{4}$ samples for all indicated φ (macroscopic universality).

Figure 3: The arithmetic means ρ_{n} (in the semi-log scale) of the sample eigenvalue densities of M_{n}^{L} with Gaussian weights and biases for various L, n and φ. obtained by averaging over $N=10^{7}$ samples for $n=10,30, N=10^{6}$ samples for $n=10^{2}$ and $N=10^{4}$ samples for $n=10^{3}$.

The "rows" describe the variation of ρ_{n} in n and φ for a fixed $L=2,32$, while the "columns" describe the variation of ρ_{n} in n and L for a fixed φ, the linear or the HardTanh. We observe the similarity ("universality") of curves corresponding to different φ^{\prime}, the stronger dependence of curves on n and stronger fluctuations in L, especially near the upper edge of the support and for the (non-smooth) HardTanh φ.

Summary

RMT admits an extension to (untrained) DNN

In particular

- Allowing for the justification of the analog of the mean field approximation
- Extending the macroscopic universality

To YAN

HAPPY BIRTHDAY!

MANY HAPPY RETURNS!

