

ciTechCare CENTER FOR INNOVATIVE CARE AND HEALTH TECHNOLOGY

0

IPCPREDICT Colonization prediction

Racha Gouareb

Content

- Introduction
 - Background
 - Objective
- Methods
 - Dataset and features
 - Models
- Results
- Conclusion and future work
 - Environmental sample data set

Background - HAI

- 1 in every 10 inpatients develop a HAI*.
- Healthcare units are one of the biggest reservoirs of Carbapenem-resistant Enterobacteriaceae (CRE).
- 1.7 million infections and 99,000 associated deaths from AMR bacteria every year.
- HAIs result in unnecessary death and prolong hospital stays.

^{*} World Health Organization (2016) Health care without avoidable infections - The critical role of infection prevention and control. World Health Organization, Geneva, Switzerland

Background - IPC

• The major goal of an IPC program is to decrease the incidence of healthcare associated infections (HAI), ideally to zero.

- World Health Organization (WHO) data demonstrates that
 - Effective IPC programs Reduce HAI rates by at least 30%
 - Surveillance contributes to a up to 57% reduction in HAIs
- WHO calls for
 - Better hand hygiene
 - Adequate environmental cleaning and disinfection
 - Adequate ventilation
- IPC strategies and measures are required to prevent or limit pathogens transmission
- High risk an inpatient faces of being colonized or infected by HCW, caregivers, other patients or visitors

Objective

• Develop new systems as alternative solution to fight infection within the healthcare.

 Develop a machine learning model-based graph that predict inpatients colonization risks.

MIMIC III

- Medical Information Mart for Intensive Care
- Data associated with 53,423 distinct hospital admissions between 2001 and 2012
- Consist of 22 tables
- Tables are linked by identifiers

The admissions table

Table source: Hospital database.

Table purpose: Define a patient's hospital admission, HADM_ID

The patients table

Table source: CareVue and Metavision ICU databases.

Table purpose: Defines each SUBJECT_ID in the database, i.e. defines a single patient.

The microbiologyevents table

Table source: Hospital database.

Table purpose: Contains microbiology information, including cultures acquired and associated sensitivities.

Number of rows: 631,726

MIMIC III - Deidentification

- Data removal :
 - Patient name
 - Telephone number
 - Address

- Data shifting: From 2001-2012 to 2100 2200
 - Dates: shifted into the future preserving intervals
 - Time of day, day of the week, and approximate seasonality were conserved during date shifting.

State of art using MIMIC

Prediction:

- Mortality[1]
- Length-of-Stay (LOS) [2]
- Phenotyping (ICD code) [3]
- Acute Respiratory Failure (ARF) [4]

Enterobacteriaceae

- Enterobacteriaceae are a large family of Gramnegative bacteria that includes E.coli and are a normal part of the gut flora.
- These pathogens can spread to the bloodstream resulting in life-threatening complications.
- Carbapenem-resistant *Enterobacteriaceae* (CRE) are *Enterobacteriaceae* that develop resistance to a group of antibiotics called carbapenems.

Escherichia coli

Klebsiella pneumoniae

Example of specimens

Specimen	Flag	Category	
SPUTUM	1	Respiratory	
BLOOD CULTURE	1	Blood	
URINE	1	Urine	
BLOOD CULTURE	1	Blood	
MRSA SCREEN	0	Other	
SEROLOGY/BLOOD	1	Blood	
EYE	1	Other	
PLEURAL FLUID	1	Respiratory	
STOOL	0	Gastro	
SWAB	1	Other	

Data preprocessing

Filter the data

Link between tables

Define relevant features

Create new features

Results – Imbalanced (RWD)

		Accuracy (%)	Precision (%)	Recall (%)	F1- score (%)	AUC (%)
Logis regre	stic ession	82.2	10.2	72.8	17.9	85.4
KNN		97.8	72.5	33.5	45.9	80.9
Rand		94.4	21.3	41	28	68.6
Catb	oost	97.8	69.1	31.5	43.2	88.5

Results – Balanced (Optimal)

	Accuracy (%)	Precision (%)	Recall (%)	F1-score (%)	AUC (%)
Logistic regression	75.64	76.78	72.06	74.35	75.57
KNN	78.94	78.14	79.13	78.63	78.94
Random forest	73.08	72.25	73.12	72.68	73.08
Catboost	80.67	79.15	82.17	80.63	80.70

Next step and future work

Graph based-model

Apply our model to long-term healthcare unit (LTHU) dataset

Predict risk of infection in addition to the risk of colonization

Graph-based model

LTHU data

- Environmental samples
- Clinical samples
- Long-term healthcare unit (LTHU)

Environmental sampling

Clinical sampling

IPCpredict Team

University of Geneva

Douglas Teodoro

Racha Gouareb

Polytechnic of Leiria

Sónia G. Pereira

Catarina Marques
PhD student

Filipa Amorim MSc student

THANK YOU