Publications
-
Intra- vs Intermolecular Photoinduced Electron Transfer Reactions of a Macrocyclic Donor-Acceptor Dyad
Evan G. Moore, Paul V. Bernhardt, Alexandre Fürstenberg, Mark J. Riley, and Eric Vauthey
J. Phys. Chem. A 2005, 109(51), 11715-11723
The synthesis, structural characterization, and photophysical behavior of a 14-membered tetraazamacrocycle with pendant 4-dimethylaminobenzyl (DMAB) and 9-anthracenylmethyl groups is reported (L3, 6-((9-anthracenylmethyl)amino)-trans-6,13-dimethyl-13-((4-dimethylaminobenzyl)amino)-1,4,8,11-tetraazacyclotetradecane). In its free base form, this compound displays rapid intramolecular photoinduced electron transfer (PET) quenching of the anthracene emission, with both the secondary amines and the DMAB group capable of acting as electron donors. When complexed with Zn(II), the characteristic fluorescence of the anthracene chromophore is restored as the former of these pathways is deactivated by coordination. Importantly, it is shown that the DMAB group, which remains uncoordinated and PET active, acts only very weakly to quench emission, by comparison to the behavior of a model Zn complex lacking the pendant DMAB group, [ZnL2]2+ (Chart 1). By contrast, Stern−Volmer analysis of intermolecular quenching of [ZnL2]2+ by N,N-dimethylaniline (DMA) has shown that this reaction is diffusion limited. Hence, the pivotal role of the bridge in influencing intramolecular PET is highlighted.
DOI: 10.1021/jp0547414
Archive ouverte / Open archive: unige:3263