FUTUREVOLC: A European supersite project on an integrated monitoring network for Icelandic eruptions

Magnús T. Gudmundsson¹ on behalf of the FUTUREVOLC² Team

 Nordvulk, Institute of Earth Sciences, University of Iceland
FUTUREVOLC Team - 27 partners from 10 countires: 14
Universities, 6 Research and Monitoring Institutions, 1 Civil Protection Agency and 6 SMEs

2nd IUGG-WMO workshop on**Ash dispersal forecast and civil aviation** World Meteorological Organization, Geneva, Switzerland, Nov. 18-20, 2013

Eyjafjallajökull 14 April 2010 Photo: Þórdís Högnadóttir

FUTUREVOLC: 27 partners in 10 countries

Iceland:

University of Iceland, Institute of Earth Sciences (leading) Icelandic Meterological Office (leading) Icelandic Civil Protection – the National Police Commissioner Miracle (SME) Samsýn (SME)

UK:

British Geological Survey UK Met Office Univ. Cambridge Univ. Bristol Univ. Leeds Guralp Systems (SME)

Italy:

Univ. Florence Univ. Palermo Univ. L'Aquila Himet (SME) iTEM (SME) Ireland: Univ. College Dublin

Germany: DLR – German Aerospace Center GFZ, Potsdam Univ. Würzburg

France: Univ. Clermont-Ferrand

Norway: NILU – Norsk Inst. Luftforskning Nicarnica Aviation (SME)

Switzerland: Univ. Geneva

Netherlands: Delft University

Sweden: Univ. Uppsala Chalmers Tech. Univ.

Hekla 1947

Grímsvötn 2011

Photo: Sæmundur Þórðarson

Eyjafjallajökull 2010

Photo: Björn Oddsson

1-4-1-1-1

Katla ?

Volcanic eruptions in Iceland in the last 100 years Red = Explosive Black = Effusive Blue = Subglacial

Year	Volcano	VEI	note	style of activity
2011	Grímsvötn	4	ice	explosive
2010	Eyjafjallajökull	3	ice	explosive/effusive
2004	Grímsvötn	3	ice	explosive
2000	Hekla	3		effusive <mark>/explosive</mark>
1998	Grímsvötn	3	ice	explosive
1996	Gjálp (Grímsvötn)	3	ice	subglacial-explosive
1991	Hekla	3		effusive/explosive
1983	Grímsvötn	2	ice	explosive
1980-81	Hekla	3		effusive/explosive
1975-84	Krafla fires (9 eruptions)	1		effusive
1973	Heimaey	2		effusive/ <mark>explosive</mark>
1970	Hekla	3		effusive/explosive
1963-67	Surtsey	3	ocean	explosive/effusive
1961	Askja	2		effusive
1947-48	Hekla	4		effusive <mark>/explosive</mark>
1938	Gjálp (Grímsvötn)	-	ice	subglacial
1934	Grímsvötn	3	ice	explosive
1922-29	Askja (5-6 eruptions)	2	(lake)	effusive/explosive
1922	Grímsvötn	3	ice	explosive
1918	Katla	4	ice	explosive
1913	Hekla	1		effusive

Volcanic eruptions in Iceland in the last 100 years Red = Explosive Black = Effusive Blue = Subglacial

		Year	Volcano	VEI	note	style of activity
		2011	Grímsvötn	4	ice	explosive
		2010	Eyjafjallajökull	3	ice	explosive/effusive
စ်	5	2004	Grímsvötn	3	ice	explosive
JI	C.	2000	Hekla	3		effusive <mark>/explosive</mark>
i n	air	1998	Grímsvötn	3	ice	explosive
1	20	1996	Gjálp (Grímsvötn)	3	ice	subglacial-explosive
e F	<u>J</u>	1991	Hekla	3		effusive/explosive
0	le l	1983	Grímsvötn	2	ice	explosive
ge	JSC	1980-81	Hekla	3		effusive/explosive
2	d	1975-84	Krafla fires (9 eruptions)	1		effusive
		1973	Heimaey	2		effusive/ <mark>explosive</mark>
		1970	Hekla	3		effusive/explosive
		1963-67	Surtsey	3	ocean	explosive/effusive
		1961	Askja	2		effusive
		1947-48	Hekla	4		effusive <mark>/explosive</mark>
		1938	Gjálp (Grímsvötn)	-	ice	subglacial
		1934	Grímsvötn	3	ice	explosive
		1922-29	Askja (5-6 eruptions)	2	(lake)	effusive/ <mark>explosive</mark>
		1922	Grímsvötn	3	ice	explosive
		1918	Katla	4	ice	explosive
		1913	Hekla	1		effusive

The volcanoes of south Iceland

Hekla - 18 eruptions since 1104

Eldgjá 19 km³ eruption in ~934 AD

Eyjafjallajökull ~ 920 1612 1821-23 2010

Katla 20 eruptions in last 1100 years Last eruption in 1918 Source of major jökuhlaups

10 km

Katla eruptions 900-2000 AD

From Larsen and Eiríksson (2008)

Challenges in eruption source magnitude determination

Eruption rate – example of Eyjafjallajökull 2010 – first explosive phase

Method	MER (kg/s)	Reference
Ground sampling Temporal distribution using scaled Mastin eq.	0.5-1 x 10 ⁶	Gudmundsson et al. (2012)
Plume model (wind effect) Plume model (wind effect)	>1 x 10 ⁷ 5-9 x 10 ⁶	Bursik et al. (2012) Woodhouse et al. (2012)

Mapping of mass of erupted material does not support the high eruption rates

Challenges in eruption source magnitude determination

Magnitudes of <30 µm ash emitted from volcano

Method	mass of <30µm	Reference	
Ground sampling + grain size distributions	80 Tg	Gudmundsson et al. (2012)	
Satellite derived	8 Tg	Stoll et al., (2011) Schumann et al. (2011)	

An order of magnitude discrepancy – work needed to resolve the differences

FUTUREVOLC approach – better and faster estimates of ongoing processes – before eruptions and during eruptions

Long term magma tracking

Imminent eruptive activity, eruption onset and early warning

Determination and evolution or eruption source parameters

- In real-time or near real-time provide quantiative estimates of mass eruption rate
- Fast delivery of composition, grain size distribution and volatile emission
- Explosive, effusive and subglacial eruptions

Distribution and description of eruptive products

• Fast quantitative information on atmospheric ash and sulphur dioxide concentrations in near and far field

Futurevolc: Sensors, types of volcanic eruptions, and contribution to multi-parameter system for near real time determination of eruption source parameters.

Method/sensor	Observed parameters	Explosive	Eff- usive	Sub- glacial	Data streaming
Infrasound	Acoustic waves	х	(X)		real time
Cameras	Optical and infrared	х	х	(X)	real time
Electric field sensors	Electric field gradients	х	(X)		real time
Radiosondes	Data on ambient atmosphere	х			near-real time
Tephra sampler and analyser	fallout magnitude and grain sizes	х			real time
Gas monitoring systems	release of volatiles	х	х	Х	real time
Radars	microwave reflection signals	х			real time
Lightning detection system	electric field spikes	х			real time
Mobile field lab.	magma type, grain sizes	х	х		near-real time
Aircraft observations	visual, optical, infrared, SAR radar	х	х	Х	near-real time
Empirical plume model calibration	plume height – mass discharge	х			calibration of system
Physics-based plume models	plume – vent – mass discharge	х			calibration of system
Multi-parameter system	All above	х	х	Х	real time / near- real time

Futurevolc plan for observations of plumes – determination of MER In near real time

Airborne observations - SAR radar – comparison with photo

17 April 2010, 11:28

18 April 2010, 13:06

Airborne observations:

- Visual observations
- SAR radar clouds and plume transparent
- Infrared cameras

Multi-parameter system estimating mass eruption rate using data from all sensors

Ash transport for long distances – FUTUREVOLC enhancement: Satellite data:

- Visual
- Infrared attenuation of thermal radiation from earth's surface
- Used to update **starting from estimated MER**

Improved MER estimates – FUTUREVOLC approach

- Interdisciplinary multi-component bringing together physical volcanologists, geophysicists, geochemists and atmospheric scientists
- Provide a fast automated system for MER, based on a large variety of sensors
- Use well-tested methods together with new approaches
- Innovation with development of new sensors
- System tested with synthetic data or a real eruption

