

Characterization of eruption source parameters through infrasound

Maurizio Ripepe, Emanuele Marchetti e Giorgio Lacanna

Department of Earth Sciences, University of Firenze, Firenze - Italy Monitoring Centre for Civil Protection - Italian Ministry of the Interiors

Infrasound : a growing research field in physics of atmosphere and volcanology

Number of published papers

- until 1998: 1 to 3 per year
- after 1998 : up to 30 per year)

Infrasound versus Seismic Records

Infrasound has lower absorption and propagates better than seismic waves

Remote Infrasonic Monitoring

ARISE Atmospheric dynamics Research InfraStructure in Europe

WP4 – Monitoring of extreme events

Marchetti et al., 2013

Infrasonic waveform can be preserved also with Arrival time of 66 minutes

Infrasonic Monitoring at Regional Scale

Infrasonic IMS & Nat. Arrays

(Matoza et al., GRL, 2009)

Acoustic Pressure in Greenland shows same variation as at the Source

Infrasonic Monitoring at Regional Scale

maximum distance of detection generally increases with the plume height,

Modelling Volcano Acoustic Source

Acoustic Pressure and Source Expansion Velocity

$$D(t) \approx U^n$$

n=2,3,4 *n*=2,3,4 *source dynamics (monopole, dipole, quadrupole)*

Acoustic pressure (p) can be linked to Volumetric Flux Q

Volumetric Flux (m³/s)

Plume Height (m)

 $H = 2 \times Q^{0.241}$

$$Q = \pi a^2 \cdot U$$

Infrasound and Mass Eruption Rate

Eyjafjallajökull

Acoustic-derived Mass Eruption Rate

$$Q = 6.76 \cdot \rho_{plume} a^{1.66} \cdot \left(\frac{rc\langle p \rangle}{\rho_o}\right)^{1/3}$$

where:

- a = 25 m source radius
- r = 8300 m distance from source
- c 330 m/s Speed of sound
- ρ_o air density
- $\rho_{plume} = 5.4 \text{ Kg/m3}$ plume density

Acoustic-Derived Mass Flux & Plume Height

Mass Eruption Rate derived by acoustic is decoupled from Plume height

Acoustic-Derived Plume Height

Plume height calculated from acoustics and Wind Profile

(Ripepe, Bonadonna, Folch, et al., EPSL, 2013)

Buoyancy Plume Theory (BPT) 1D modelling using acoustic-derived MER including wind field and temperature profiles from the ECMWF

Infrasonic Modelling Uncertainty

Infrasound Real-Time Monitoring at Etna

Infrasound has similar trend, increasing up to 3 hours before the fountaining

42/43 Lava fountains detected (97%) No FALSE Alerts in the last 4 years

Infrasonic Early-Warning System

EVENTS

#

------ Messaggio originale ------Oggetto:ETNA EARLY-WARNING Data:Tue, 5 Mar 2013 23:41:42 +0100 (CET) Mittente:labgeofisica@geo.unifi.it A:labgeofisica@unifi.it

time: 05-Mar-2013 22:41:00 GMT ALERT LEVEL: HIGH (RED) Ongoing lava fountain

Alerts automatically delivered to Italian Civil Defence by e-mails and SMS messages in average ~60 minutes before the lava fountaining

Summary

Infrasound Monitoring is ready to deliver in Real-Time

- Onset of the Eruption
- Location of the Source
- Duration of eruption

Given the appropriate Source Model can provide

- Plume exit velocity
- Volume Eruption Rate
- Plume Height

Next Challange:

• Monitoring at Regional scale and in REAL-TIME

Infrasonic Monitoring at Regional Scale

⁽Fee et al., 2010)

Infrasound recorded at IS53 @2100 km for Kasatochi eruption 6 stations ranging from 2100 to 5400 km recorded the eruption