

SMASH overview and related ash projects at University of Oxford

Elisa Carboni,

EODG, ORAC team, SMASH team

SMASH overview

Summary of SMASH products delivered:

GOME-2 SO₂ amount DLR OMI SO₂ height (assimilation) FMI MODIS VIS & TIR ash and SO₂ INGV & CGS IASI ash and SO₂ (OE retrieval and fast) Oxford

> Validation case study: Together SMASH& SACS-2

Eyjafjallajökull: April_May 2010 Grimsvötn: May 2011

Thessaloniki (SACS-2)

Etna 2011_2013 INGV (SMASH) Earlinet: ash AOD & height Aircraft: ash AOD & height, (if time concentration, r_{eff}) Brewer spectrometer: SO₂ column CALIPSO: ash AOD & height

IR camera: ash source altitude FLAME: SO₂ total amount

Retrievals

CGS

Ash detection (TIR)

Ash detection (TIR+VIS)

Ash retrieval (TIR+VIS)

INGV

ESA-Smash Validation Activities

SMASH

The validation concerns the IASI, MODIS, GOME-2 SO₂ mass retrieved Test cases selected are the 2011 Mt. Etna paroxysmal activities, Italy (lava fountains) using ground SO₂ flux measurements from FLAME monitoring network

lstituto Nazionale di Geofisica e Vulcanologia

SO2 emission inversion for the 2011 Grimsvötn eruption using the OMI satellite observations

- The atmospheric SO2 release in the 2011 Grimsvötn eruption is reconstructed with inverse modeling:
 - OMI SO2 column observations assimilated into the SILAM dispersion model
 - 4D-Var algorithm yields temporal and vertical emission profiles
 - emission top constrained by in-situ observations; no prior information on emitted amounts
- ~200 kt SO2 emitted mainly between 10-12 km ASL, shown below:

The simulated (after inversion) and observed SO2 column density (DU) in May 22-24, 2011

Credit: Julius Vira (FMI)

IASI - SO₂

CAL_LID_L1-ValStage1-V3-01.2010-05-07T13-57-06ZD

IASI SO₂ - Puyehue-Cordón Caulle eruption 5 - 30 June 2011

Total mass of SO₂ from IASI (period 2007-2012)

The total SO_2 mass present in the atmosphere is obtained summing all the values of a regularly gridded map of SO_2 amounts. Points are separated by ~12 hours.

Nabro produces the largest amount of SO_2 plume observed by IASI with a maximum of up to ~2 Tg of SO_2 .

Llaima 2-6 Jan 2008 Okmock 12-20 July 2008 Kasatochi 7-22 Aug.2008 Dalafilla 4-7 Nov. 2008 Sarychev 11-26 June 2009 Eyja April-May 2010 Merapi 4-11 Nov. 2010 Etna Nov 2007 + 2011 Congo Jan.2010, Nov.2011 Grim May 2011 Puyehue 5-30 June 2011 Nabro June 2011 Copahue 22-27 Dec. 2012

٥

٥

SO₂ retrieved from IASI data. The values are the measured amount on a particular day and vary with volcanic emission, gas removal and satellite sampling. Points are separated by ~12 hours.

SO₂ vertical distribution

SO₂ vertical distribution

SO₂ Degassing

ORAC Ash retreival- VIS/NIR/TIR from AATSR on 6 May 2010

SHIVA: Spectrally High resolution Infrared measurements for the characterisation of Volcanic Ash

to better understand the volcanic process that control eruptive activity.

Optimal estimation approach (Rodgers, 2000) to retrieve ash composition and possibly size from infrared spectral measurements. We will study ash formed from different magmas and at different stages of evolution within a volcanic plume.

one-to-one correspondence between refractive index spectra, compositions and remote sensing measurements.

ground and satellite retrievals is ash type/composition (with different size distributions) to be compared with the geochemical and petrological analysis done on ash sample for the same volcanic plume.

Ash mass - OE - NO QC 23 May 2011 SO2 mass - OE - NO QC

Summary

 <u>SMASH</u> aims to improve source term characterisation by improving satellite retrieval of ash & SO2 from UV & TIR spectrometers and radiometers.

- Validation for Eyja, Girmm and Etna case study

- <u>IASI SO₂</u> scheme retrieves the **height and amount of SO₂** and provides a **comprehensive** error budget for every pixel.

- Uses the detection scheme (Walker et al. 2011, Walker et al. 20122) applied to pixels for the full retrieval (Carboni et al 2012).

- Retrieved uncertainties increase with the decreasing of altitude, nevertheless it is possible to retrieve information in the **lower troposphere and monitor volcanic degassing**.

- Thick ash can affect the retrieval, recognizable from cost >2

- Underlying **cloud don't affect the retrieval**, cloud at the same altitude or above the plume mask the SO₂ signal.

- Comparison with other satellite retrievals is undergoing

- <u>ORAC</u> (radiometer and IASI) scheme retrieves ash optical depth, effective radius (from which mass and Mode radius are estimate), and height.

- Preliminary results show the possibility to exploit the IASI spectra in order to **discern between different ash model**.

- Full optimal estimation retrievals of ash is currently under development. The IASI ash retrieval scheme development will be carried out within the new NERC SHIVA and FP7 APHORISM projects.

This work has been supported by COMET+ (National Center for Earth Observation NCEO-NERC Geohazard theme), SMASH (ESA) and SHIVA (NERC).

ORAC Ash retreival- VIS/NIR/TIR from SEVIRI on 6 May 2010

Z* / km

Credit R.Siddans

Infrared Atmospheric Sounding Interferometer - IASI

IASI is on board of METeorological OPerational satellite program (METOP-A and METOP-B), a European meteorological satellite that has been operational since 2007.

IASI is a Fourier transform spectrometer, that measures the **spectral range 645 to 2760 cm⁻¹** (3.62–15.5µm) with a spectral sampling of 0.25 cm⁻¹ and an apodised spectral resolution of 0.5 cm⁻¹. Radiometric accuracy is 0.25-0.58K. The IASI field of view (FOV) consists of four circles of 12 km diameter (at nadir) inside a square of 50 x 50 km.

It has a 2000 km swath and nominally can achieved **global coverage in 12 hours** (although there are some gaps between orbits at tropical latitudes). Radiances are collocated with the Advanced Very High Resolution Radiometer (AVHRR) that provides complementary visible/near infrared channel, for cloud and aerosol retrievals.

OPTIMAL ESTIMATION RETRIEVAL

Bayesian theory -> OPTIMAL ESTIMATION [Rodgers 2000]

Initial state estimate: x_0 A priori: x_a

Run forward model: $f(x_i)$

Compare to $J = [y - f(x_i)]S_e^{-1}[y - f(x_i)] +$ measurements (y): $[x_i - x_a]S_a^{-1}[x_i - x_a]$

Update state: $X_i \rightarrow X_{i+1}$ (Levenburg-Marquardt)

Stop when: J is small, or when i is large.

NB Optimal estimation method provides error estimate and quality control

SO₂ Retrieval scheme

best estimate of stare vector: **SO₂ amount, plume altitude**, Ts

 $y_s = F(SO_2=0)$

$$S_{y}(i,j) = \langle (y_{mi}-y_{si})-(\overline{y_{mi}-y_{si}}) \rangle \langle (y_{mj}-y_{sj})-(\overline{y_{mj}-y_{sj}}) \rangle$$

Sy Computed with billions pixels

S_y, is defined to represent the effects of atmospheric variability not represented in the forward model (FM), as well as instrument noise (cloud and trace-gases...).

The matrix is constructed from differences between FM calculations (for clear-sky) and actual IASI observations for wide range of conditions, when we are confident that negligible amounts of SO_2 are present.

Error analysis

state obtained as:

100

50

10

5

1

0.2

0.1

20

15

10

5

0

A priori values

SO2, H, s, Ts Xa=[0.5, 400, 100, 290] DXa=[100, 1000, 1, 20]

 10^{20}

DF

Ash composition from thermal infrared spectrometer

IASI simulated spectra

Volcanic plume altitude from stereo images

The main plume appears at about 15 km but descends to about 12 km quite quickly. The plume to the south is much lower - typically around 5 km in altitude.

Credit G.Thomas