

Assessing the impact from earthquakes and volcanoes: What is different and what is not

Luís MARTINS

Global Earthquake Model Foundation, Pavia, IT, luis.martins@globalquakemodel.org

VOLCANOES AND EARTHQUAKES

VOLCANOES AND EARTHQUAKES

RISK ASSESSMENT 101

INTEGRATED RISK

PHYSICAL RISK

Probability of damage and loss due to natural hazards

SOCIOECONOMIC INDICES

Measuring the vulnerability of a society or economy and their ability to cope with natural hazards

Hazard

Probability of occurrence of natural hazards Description of the assets at risk

Exposure

Vulnerability

Probability of loss due to natural hazards

HAZARD

EXAMPLE: GROUND SHAKING VS ASH FALL

Map Version 5 Processed 2016-08-30 21:47:00 UTC

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Mod./Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<0.06	0.2	0.8	2.0	4.8	12	29	70	>171
PEAK VEL.(cm/s)	<0.02	0.08	0.3	0.9	2.4	6.4	17	45	>120
INSTRUMENTAL	1	11-111	IV	V	VI	VII	VIII	IX	X+
Scale based upon Fa	enza and M	lichelini, 20	10, 2011						

DIFFERENCES BETWEEN BOTH HAZARDS

EXPOSURE

• WHERE IS THE BUILDING STOCK?

Local survey (e.g. Inventory Data Capture Tools)

Satellite imagery

Night lights

EXPOSURE

How is the building stock?

How to define damage?

VULNERABI

How to correlate damage with loss?

What is the probability of loss?

How to define damage?

Undamaged

Extensive damage

WHAT'S THE PROBABILITY OF DAMAGE/LOSS?

• Example of fragility and vulnerability curves for RC ductile moment frame low rise

Fragility and vulnerability models computed using the NLTHA module of GEM's Risk Modeller's Toolkit software package (Silva et al 2015).

WHAT'S THE PROBABILITY OF DAMAGE/LOSS?

 Benchmark curves developed during the volcanic ash sub-workshop (GAR 2015)

DEVELOPING ANALYTICAL VULNERABILITY MODELS FOR ASH FALL

Deformed shape

DEVELOPING ANALYTICAL VULNERABILITY MODELS FOR ASH FALL

Deformed shape

OQ ENGINE AND RISK ASSESSMENT

WHAT HAVE WE LEARNT?

- The mathematics of risk assessment is the same for earthquakes and volcanoes;
- The majority of differences come from the building information required (i.e. exposure) and the representation of the hazard;
- Collaboration can improve the understanding of both hazards

