Exotic B-series and S-series: algebraic structures and

UNIVESTITÉ
DE GENEVE
order conditions for invariant measure sampling
DE GENĖVE
FACULTY OF SCIENCE

Eugen Bronasco

University of Geneva
Eugen.Bronasco@unige.ch

Acknowledgements: Dominique Manchon (Univ. Clermont-Auvergne), Gilles Vilmart (Univ. Geneva).

Abstract

\section*{Abstract}

B-series and generalizations are a powerful tool for the analysis of numerical integrators. An extension named ex otic S-series permits us to study the order conditions for sampling the invariant measure of ergodic SDEs. We study the natural composition laws on exotic S-series and apply this algebraic framework to the derivation of order conditions for a class of stochastic Runge-Kutta methods.

\section*{1. Setting: invariant measure sampling with Runge-Kutta methods}

We consider the overdamped Langevin equation

$$
d X(t)=f(X(t)) d t+\sqrt{2} d W(t)
$$

where $X(t) \in \mathbb{R}^{d}$ is a stochactic process with d being arbitrarily large and $f=-\nabla V$ being a gradient of a smooth po tential V. Langevin dynamics are widely used in molecular dynamics and are ergodic under appropriate assumptions.
1.1 Approximation of invariant measure

We say that a problem is ergodic if there exists a unique in variant measure μ satisfying for all deterministic initial conditions X_{0} and all smooth test functions ϕ

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \phi(X(s)) d s=\int_{\mathbb{R}^{d}} \phi(x) d \mu(x), \quad \text { almost surely. }
$$

We are interested in studying the numerical integrators that approximate the invariant measure of the overdamped Langevin equation. The accuracy of the approximation is characterized by the order of the integrator with respect to the invariant measure. For example, order p w.r.t. invariant measure μ is

$$
\left|\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{n=0}^{N} \phi\left(X_{n}\right)-\int_{\mathbb{R}^{d}} \phi(x) d \mu(x)\right| \leq C h^{p},
$$

where C is independent of h assumed small enough.

1.2 Stochastic Runge-Kutta (SRK) methods

Let $a_{i j}, b_{i}, d_{i}^{(k)}$ be the coefficients defining the stochastic Runge-Kutta scheme, and $\xi_{n}^{(k)} \sim \mathcal{N}\left(0, I_{d}\right)$ be independent Gaussian random vectors. Then, the stochastic RungeKutta scheme has the form:

$$
\begin{aligned}
Y_{i} & =X_{n}+h \sum_{j=1}^{s} a_{i j} f\left(Y_{j}\right)+\sum_{k=1}^{l} d_{i}^{(k)} \sqrt{h} \sqrt{2} \xi_{n}^{(k)}, \\
X_{n+1} & =X_{n}+h \sum_{i=1}^{s} b_{i} f\left(Y_{i}\right)+\sqrt{h} \sqrt{2} \xi_{n}^{(1)} .
\end{aligned}
$$

We shall assume for simplicity that $l=1$.
1.3 Order conditions w.r.t. invariant measure Given an SRK method $X_{1}=\Psi\left(X_{0}\right)$, we have

$$
\mathbb{E}\left[\phi\left(X_{1}\right) \mid X_{0}=x\right]=\phi(x)+h \mathcal{A}_{1} \phi(x)+h^{2} \mathcal{A}_{2} \phi(x)+\cdot
$$

where $\mathcal{A}_{i}, i=1,2, \ldots$, are linear differential operators

Theorem 1. [4] (related work in \mathbb{T}^{d} : [2])

Under technical assumptions, if for every test function ϕ,

$$
\int_{\mathbb{R}^{d}}\left(\mathcal{A}_{j} \phi\right) \rho_{\infty} d x=0, \quad j=1, \ldots p
$$

then the scheme has order p for the invariant measure
Remark. The scheme has weak order q if $\mathcal{A}_{j}=\frac{\mathcal{L}^{(j)}}{j!}$ where

$$
\mathcal{L} \phi=f \cdot \nabla \phi+\Delta \phi, \quad \text { with } \Delta \phi=\sum_{i=1}^{d} \frac{\partial^{2} \phi}{\partial x_{i}^{2}}
$$

Moreover, we have $p \geq q$.

> 2. B-series and S-series framework: new normalization and the extension of Connes-Kreimer coproduct on trees

We generalize the B-series framework [3] and obtain grafted B-series by Taylor expanding the SRK methods.

$$
\begin{align*}
X_{1} & =B\left(a, X_{0}\right)=X_{0}+\sum_{\tau \in T_{g}} h^{|\tau|} \frac{a(\tau)}{\sigma(\tau)} F(\tau)\left(X_{0}\right) \\
& =X_{0}+F\left(\sqrt{h} \times+h \sum_{i=0}^{S} b_{i} \bullet+h \sqrt{h} \sum_{i=0}^{s} b_{i} d_{i} \times+\right. \tag{0}
\end{align*}
$$

with T_{g} being the set of grafted trees, $|\tau|$ the size of $\tau, \sigma(\tau)$ the symmetry coefficient of τ, and $a: T_{g} \rightarrow \mathbb{R}$ is an appro priately defined functional. Some values are listed in the following Table 1.

tree	size	symmetry	functional	elem. differential
τ	$\|\tau\|$	$\sigma(\tau)$	$a(\tau)$	$F(\tau)$
\times	0.5	1	1	$\sqrt{2} \xi$
-	1	1	$\sum_{i=1}^{s} b_{i}$	f
$\stackrel{\times}{*}$	1.5	1	$\sum_{i=1}^{s} b_{i} d_{i}$	$\sqrt{2} f^{\prime} \xi$
:	2	1	$\sum_{i, j=1}^{s} b_{i} a_{i, j}$	$f^{\prime} f$
${ }^{\times}$	2	2	$\sum_{i=1}^{s} b_{i} d_{i}^{2}$	$2 f^{\prime \prime}(\xi, \xi)$
\bullet^{*}	2.5	1	$\sum_{i, j=1}^{s} b_{i} a_{i j} d_{i}$	$\sqrt{2} f^{\prime \prime}(f, \xi)$
!	2.5	1	$\sum_{i, j=1}^{s} b_{i} a_{i j} d_{j}$	$\sqrt{2} f^{\prime} f^{\prime} \xi$
$\times{ }^{\times}{ }^{\text {b }}$	2.5	6	$\sum_{i=1}^{s} b_{i} d_{i}^{3}$	$2 \sqrt{2} f^{\prime \prime \prime}(\xi, \xi, \xi)$

Table 1: Grafted trees with correspondent constants, functionals, and elementary differentials

2.1 Exotic forests and exotic S-series

We are interested in the order of SRK methods w.r.t. invariant measure, therefore, we take the expectation of Taylor expansion of $\phi\left(X_{1}\right)$ to obtain an exotic S -series
$\mathbb{E}\left[\phi\left(X_{1}\right)\right]=E S\left(a, X_{0}\right)[\phi]$

$$
\begin{align*}
& =\phi\left(X_{0}\right)+\sum_{\pi \in E F} h^{|\pi|} \frac{a(\pi)}{\sigma(\pi)} F(\pi)[\phi]\left(X_{0}\right) \\
& =\phi\left(X_{0}\right)+F\left(h \sum_{i=0}^{s} b_{i} \bullet+h^{2} \sum_{i=1}^{s} b_{i} d_{i}^{®} \unrhd+.\right. \tag{0}
\end{align*}
$$

where $E F$ is the set of exotic forests and $F(\pi)$ is a differential operator, for example,

$$
F\left(\stackrel{(1) ®^{(2)} \bigotimes^{(2)}}{\bullet}\right)[\phi]=4 \sum_{i_{1}, i_{2}=1}^{d} \phi^{\prime \prime}\left(\partial_{i_{1}} f,\left(\partial_{i_{1}} f\right)^{\prime}\left(\partial_{i_{2} i_{2}} f\right)\right) .
$$

Some values of $a(\pi),|\pi|$, and $\sigma(\pi)$ are listed in the Table 2.

tree	size	symmetry	functional	elem. differential
τ	$\|\tau\|$	$\sigma(\tau)$	$a(\tau)$	$F(\tau)$
-	1	1	$\sum_{i=1}^{S} b_{i}$	f
:	2	1	$\sum_{i, j=1}^{S} b_{i} a_{i, j}$	$f^{\prime} f$
(1) ${ }^{(1)}$	2	2	$\sum_{i=1}^{S} b_{i} d_{i}^{2}$	$2 \sum_{i=1}^{d} \partial_{i i} f$
\because	3	2	$\sum_{i, j, k=1}^{s} b_{i} a_{i j} a_{i k}$	$f^{\prime \prime}(f, f)$
- ${ }^{1}{ }^{(1)}$	3	2	$\sum_{i, j=1}^{s} b_{i} a_{i j} d_{i}^{2}$	$2 \sum_{i=1}^{d}\left(\partial_{i i} f\right)^{\prime} f$
${ }_{0}^{(1)}$		1	$\sum_{i, j=1}^{s} b_{i} a_{i j} d_{i} d_{j}$	$2 \sum_{i=1}^{d}\left(\partial_{i} f\right)^{\prime}\left(\partial_{i} f\right)$
$\overbrace{!}^{(1)}$	3	2	$\sum_{i, j=1}^{s} b_{i} a_{i j} d_{j}^{2}$	$2 \sum_{i=1}^{d} f^{\prime}\left(\partial_{i i} f\right)$

functionals, and elementary differentials

2.2 Composition of exotic S-series

Define Connes-Kreimer coproduct $\Delta_{C K}: \mathcal{E F} \rightarrow \mathcal{E F} \otimes \mathcal{E F}$ as

$$
\Delta_{C K}(\pi):=\sum_{\pi_{s} \mathcal{S}(\pi)} \pi \backslash \pi_{s} \otimes \pi_{s},
$$

where $\mathcal{S}(\pi)$ is the set of all ordered rootes subforests of π. For example,

$$
\begin{aligned}
& +\bullet{ }^{(1)} \bullet \otimes \bullet+(1)(1) \otimes \cdot{ }^{\bullet}+(1) \bullet \bullet \text {. }
\end{aligned}
$$

We list the ordered rooted subforests below.

The ordered rooted subforests are denoted by white vertices and borderless number vertices. We prove the composition law for exotic S-series using new normalization σ. Theorem 2. [1] Composition law
Let $a, b: E F \rightarrow \mathbb{R}$, then

$$
E S(a)[E S(b)]=E S(a * b),
$$

where $(a * b)(\pi)=\left((a \otimes b) \circ \Delta_{C K}\right)(\pi)$ for $\pi \in E F$.
For example,
 $\left.+a\left(\bullet{ }^{(1)}{ }^{\bullet}\right) b(\bullet)+a(1)(1) b\left(`_{\bullet}^{\bullet}\right)+a(1){ }^{(1)}\right) b(\bullet)$.

3. Generating order conditions w.r.t. invariant

 measure: a new systematic algorithmWe use Theorem 1 and B-series framework to describe a theoretical algorithm (omitted for brevity) that performs transformations on exotic forests. The possible transformations include: the edge-liana inversion, for example,
which uses the fact that $f=-\nabla V$, and integration by parts,
which uses the integral formula from Theorem 1. We ap ply the algorithm to the exotic S-series obtained from SRK methods to generate order conditions w.r.t. invariant measure. Every order condition corresponds to an exotic fores $\pi \in E F$ and the condition is satisfied when $\Omega(\pi)=0$. Some of the generated conditions are:

$$
\begin{aligned}
\Omega(\bullet) & =\sum_{i=1}^{s} b_{i}-1=0, \\
\Omega(\bullet \bullet) & =\frac{1}{2} \sum_{i, j=1}^{s} b_{i} b_{j}-\sum_{i=1}^{s} b_{i}+\frac{1}{2}=0, \\
\Omega(\bullet) & =\sum_{i=1}^{s} b_{i}-2 \sum_{i=1}^{s} b_{i} d_{i}+\sum_{i, j=1}^{s} b_{i} a_{i j}-\frac{1}{2}=0, \\
\Omega\left({ }^{(1)}\right) & =\sum_{i=1}^{s} b_{i}-2 \sum_{i=1}^{s} b_{i} d_{i}+\sum_{i=1}^{s} b_{i} d_{i}^{2}-\frac{1}{2}=0 .
\end{aligned}
$$

3.1 Multiplicative property of order conditions Let \sqcup_{σ} denote a renormalized concatenation product of exotic forests. We note that \sqcup_{σ} is the dual of the deshuffle coproduct. For example,

Theorem 3. [1] Multiplicative property of Ω for SRK
The order condition map Ω satisfies:

$$
\Omega\left(\pi_{1} \sqcup_{\sigma} \pi_{2}\right)=\Omega\left(\pi_{1}\right) \Omega\left(\pi_{2}\right) .
$$

For example, we see that $\Omega(\cdot \bullet)=\frac{1}{2} \Omega(\bullet)^{2}$ and

$$
\Omega\left(\bullet \bullet \bullet^{\mathbb{1}}\right)=\Omega(\cdot) \Omega\left(\stackrel{1}{\bullet}_{\bullet}^{\mathbb{1}}\right)
$$

with the corresponding order conditions being

$$
\begin{aligned}
\Omega\left(\stackrel{1}{\bullet}^{(1)}\right) & =\frac{1}{2} \sum_{i=1}^{s} b_{i} d_{i}^{2}-\sum_{i=1}^{s} b_{i} d_{i}+\frac{1}{2} \sum_{i=1}^{s} b_{i}-\frac{1}{4}=0, \\
\Omega\left(\text { • ® }^{(1)}\right) & =-\sum_{i, j=1}^{s} b_{i} d_{i} b_{j}-\frac{3}{4} \sum_{i=1}^{s} b_{i}+\frac{1}{2} \sum_{i, j=1}^{s} b_{i} b_{j} \\
& +\frac{1}{2} \sum_{i, j=1}^{s} b_{i} d_{i}^{2} b_{j}+\sum_{i=1}^{s} b_{i} d_{i}-\frac{1}{2} \sum_{i=1}^{s} b_{i} d_{i}^{2}+\frac{1}{4}=0 .
\end{aligned}
$$

The multiplicative property of the map Ω implies that the order conditions w.r.t. invariant measure corresponding to exotic forests mith more than one tree are satisfied auto matically if all lower order conditions are satisfied

4. Ongoing works

- Analysis of the substitution law for exotic aromatic Sseries;
Development of a symbolic package for manipulation of forest-like structures. In collaboration with Jean-Luc Falcone from the Comp. Science Dep. of Univ. Geneva

References

[1] E. B. Exotic B-series and S-series: algebraic structures and order conditions for invariant measure sampling, doi: 10.48550/ARXIV.2209.11046, 2022
2] A. Debussche and E. Faou. Weak backward error analysis for SDEs. SIAM J. Numer.Anal., 50(3):1735-1752, 2012
[3] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations; 2nd ed. Springer, Dordrecht, 2006,
[4] A. Laurent and G. Vilmart. Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs. Math. Comp., 89(321):169-202, 2020.

