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Abstract

Exotic aromatic forests, an extension of aromatic forests
into the stochastic context, play a crucial role in gen-
erating order conditions for invariant measure sampling
and in studying the algebraic properties of stochastic
integrators. This work demonstrates practical benefits
through a new method, a generalization of the Leimkuhler-
Matthews method, which achieves order two for over-
damped Langevin dynamics with variable diffusion.

1. Stochastic differential equations

Let ϕ denote a test function Rd → R. Consider a stochas-
tic differential equation with multiplicative noise with smooth
vector field F ∶ Rd → Rd and smooth diffusion D ∶ Rd → Rd×d:

dX = F (X)dt + σD(X)dW, X(t) ∈ Rd,

where W (t) ∈ Rd is a standard Wiener process. The weak
Taylor expansion of the solution X(t) is given by

E[ϕ(X(h))] = ϕ(X0) + hLϕ(X0) +⋯ +
hk

k!
L○kϕ(X0) +⋯,

with generator, using Hessian matrix ∇2ϕ, given by

Lϕ = ϕ′F + σ
2

2

d

∑
a=1

ϕ′′(Da,Da) = F ⋅ ∇ϕ +
σ2

2
Tr((∇2ϕ)DDT ).

1.1 Weak order of an integrator

An integrator X1 = Φh(X0) with the weak Taylor expansion

E[ϕ(X1)] = ϕ(X0) + hA1ϕ(X0) +⋯ + hkAkϕ(X0) +⋯, (1.1)

has weak order p if Ak = 1
k!L○k for k = 1, . . . , p. [9]

1.2 Order w.r.t. the invariant measure sampling

For an ergodic model (e.g. overdamped Langevin dynam-
ics where F = −∇V and mild assumptions) with invariant
measure µ, the solution X(t) satisfies

lim
T→∞

1

T ∫
T

0
ϕ(X(t))dt = ∫

Rd
ϕ(x)dµ(x), a.s.

An ergodic integrator Xn ↦ Xn+1 has order q with respect
to invariant measure sampling if
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lim

N→∞
1

N + 1
N

∑
k=0

ϕ(Xk) − ∫
Rd
ϕ(x)dµ(x)

RRRRRRRRRRR
≤ Chq, (1.2)

Given the differential operators Ak from the weak Taylor ex-
pansion (1.1) of E[ϕ(X1)], the condition (1.2) is satisfied if,

∫
Rd
Akϕ(x)dµ(x) = 0, k = 1, . . . , q. (1.3)

If the integrator has weak order p, then q ≥ p. [1, 9]

1.3 Taylor expansions are tedious to manipulate!

Third term of the weak Taylor expansion of X(h):
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and using exotic aromatic forests:
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Example taken from [5].

2. Exotic aromatic forests

An exotic aromatic forest is a forest with edges oriented
from top to bottom. This forest can contain cycles with
edges oriented counterclockwise, and some of its vertices
may be paired. For example:

, ,

1 2 2
1

.

In these forests, vertices represent vector fields, and edges
represent directional derivatives. Cycles allow us to rep-
resent divergences, while paired vertices correspond to
Laplacians. [2, 6]

2.1 Using forests to check weak order

We write Ak = F(∑π∈Fk

a(π)
σ(π)π) and obtain the following or-

der conditions for weak order p:

a(π) = α(π)∣π∣! , for all π ∈ EAF, ∣π∣ ≤ p,

where a(π) ∶ EAF → R is a functional coming from the in-
tegrator, σ(π) is the symmetry of π, ∣π∣ is the number of
vertices, and α(π) is a number of ordered labelings.

2.2 Using forests to check inv. measure sampling order

Theorem 1 ([2, 5]). We can use integration by parts denoted
by ∼ to modify Ak without changing the value of the integral
in (1.3). The order conditions become

(a ○A)(τ) = 0, for all τ ∈ EAT, ∣τ ∣ ≤ q,

where A is an adjoint operation of the integration by parts.
For example, we obtain among the order two conditions:

(a ○A)( ) = a( ) − 2a(
1

1 ) + a( 1 1 ) − 1
2
a( 1 1 2 2 ) = 0,

(a ○A)(
1 1
) = a(

1 1
) − 2a(

1
1 ) + a( 1 1 ) − 1

2
a( 1 1 2 2 ) = 0,

. . .

3. New order two scheme w.r.t. the inv. measure

Consider the Langevin dynamics, V ∶ Rd → R,D ∈ Rd×d,

dX = −D2∇V (X)dt + σDdW, X(t) ∈ Rd,

and Leimkuhler-Matthews scheme [7], ξn ∼ N(0, Id),

Xn+1 =Xn − hD2∇V (Xn) +
√
hσD

ξn + ξn+1
2

,

which can be rewritten in Markovian form as

Xn+1 =Xn − hD2∇V (Xn) +
√
hσDξn,

Xn =Xn +
1

2

√
hσDξn.

Then, Xn → Xn+1 is second-order w.r.t the invariant mea-
sure sampling and has only one evaluation of ∇V per step.

3.1 New generalization
We consider Langevin equation with variable diffusion ma-
trix D ∶ Rd → Rd×d, with D uniformly s.p.d.

dX = −D2(X)∇V (X)dt + σ
2

2
div(D2)(X)dt + σD(X)dW,

where D(X) is symmetric. The new scheme has the form

Xn+1 =Xn + hF (Xn) + Φ̂D
h (Xn +

1

4
hF (Xn−1)),

Xn =Xn +
1

2
σ
√
hD(Xn)ξn, (3.1)

where I + Φ̂D
h

is a weak order 2 integrator of

dX = σD(X)dW.

Theorem 2 ([5]). The scheme Xn → Xn+1 is second-order
w.r.t the invariant measure sampling and has only one eval-
uation of ∇V per step.

3.2 Example model
Diffusion matrix D can be selected to aid in sampling the in-
variant measure ([8] for details). An example of a potential
(a) and eigenvectors of a diffusion matrix (b) are shown.

( a ) Four-well potential ( b ) Diffusion matrix

Figure 1: Example model in 2D

3.3 Stability analysis of the new scheme
We consider the following Saito-Mitsui (1996) test model:

dX(t) = λX(t)dt + µX(t)dW (t), X(0) = 1.
We take λ,µ ∈ R and let p = hλ and q =

√
hµ and obtain the

following mean-square stability domains (i.e. where E(X2
n)

is bounded). Light gray denotes the mean-square stability
domain of the exact solution:

( a ) new method (3.1) ( b ) stabilized (3.1)

Figure 2: Mean-square stability domains

Figure (b) shows the stability region of the new method with
a modified noise integrator I + Φ̂D

h
for better stabilization.

4. Related ongoing work

In a joint work [4] with Adrien Laurent (INRIA Rennes), we
uncover the following algebraic structures of exotic aromatic
forests:
• a free tracial pre-Lie-Rinehart algebra,
• a free D-algebra, pre-Hopf algebroid,
• a multi-pre-Lie algebra,
• a comodule-bialgebra structure,

which are essential in the description of the backward er-
ror analysis in the context of ergodic stochastic differential
equations.

In a joint work [3] with Jean-Luc Falcone (University of
Geneva), we develop a Haskell package to automate
computations involving exotic aromatic forests. GitLab:
https://gitlab.unige.ch/Eugen.Bronasco/graphalgebra.hs.
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