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Abstract

Exotic aromatic forests, an extension of aromatic forests
into the stochastic context, play a crucial role in gen-
erating order conditions for invariant measure sampling
and in studying the algebraic properties of stochastic
integrators.  This work demonstrates practical benefits
through a new method, a generalization of the Leimkuhler-
Matthews method, which achieves order two for over-
damped Langevin dynamics with variable diffusion.

1. Stochastic differential equations

Let ¢ denote a test function RY - R. Consider a stochas-
tic differential equation with multiplicative noise with smooth
vector field F : RY - R? and smooth diffusion D : R - Rdxd;

dX = F(X)dt + cD(X)dW, X(t)€eRY,

where W(t) € R? is a standard Wiener process. The weak
Taylor expansion of the solution X (¢) is given by
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with generator, using Hessian matrix v2¢, given by
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1.1 Weak order of an integrator
An integrator X; = &, (X)) with the weak Taylor expansion

E[¢(X1)] = ¢(X0) + hA1G(Xg) + -+ hF Ay (Xp) +++, (1.1)

has weak order p if Ay = L% for k=1,...,p. [9]

1.2 Order w.r.t. the invariant measure sampling

For an ergodic model (e.g. overdamped Langevin dynam-
ics where ' = —-VV and mild assumptions) with invariant
measure yu, the solution X (¢) satisfies

lim % fo (X () dt - fR $(a)du(x), as.
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An ergodic integrator X,, » X,,,1 has order g with respect
to invariant measure sampling if
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lin —— > 6(X;) - [ é(x)du(x)

<Che,  (1.2)

Given the differential operators A;. from the weak Taylor ex-
pansion (1.1) of E[¢(X)], the condition (1.2) is satisfied if,

fRdAkqﬁ(x)du(x) 0, k=1,....q (1.3)

If the integrator has weak order p, then ¢ > p. [1, 9]

1.3 Taylor expansions are tedious to manipulate!
Third term of the weak Taylor expansion of X (h):
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and using exotic aromatic forests:
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Example taken from [5].
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2. Exotic aromatic forests

An exotic aromatic forest is a forest with edges oriented
from top to bottom. This forest can contain cycles with
edges oriented counterclockwise, and some of its vertices
may be paired. For example:

Y\/’j Yy | gﬁ)@ﬁ@/,

In these forests, vertices represent vector fields, and edges
represent directional derivatives. Cycles allow us to rep-
resent divergences, while paired vertices correspond to
Laplacians. [2, 6]

2.1 Using forests to check weak order

We write Ay, = F(Xrer, %w) and obtain the following or-
der conditions for weak order p:

a(m) = %, forall me FAF,|x| < p,

where a(7) : FAF — R is a functional coming from the in-
tegrator, o(7) is the symmetry of =, |r| is the number of
vertices, and a(7) is a number of ordered labelings.

2.2 Using forests to check inv. measure sampling order

Theorem 1 ([2, 5]). We can use integration by parts denoted
by ~ to modify A;. without changing the value of the integral
in (1.3). The order conditions become

(a0 A)(1)=0, forallTe EAT,|r|<q,

where A is an adjoint operation of the integration by parts.
For example, we obtain among the order two conditions:

(a0 A)(0) = ad) - 2a(+ @) + a(e D) %a(@ V@ @) =0,

(ao A)(q/@) = a(@{/®) — 2a(? D) +a(e ®OD) - %a(@ D) =0,

3. New order two scheme w.r.t. the inv. measure

Consider the Langevin dynamics, V : RY - R, D € R4xd,
dX = -D?*VV(X)dt + cDAW, X (t) R,

and Leimkuhler-Matthews scheme [7], &, ~ NV(0,1,),

X1 = Xp - hD?VV (X)) + Vho DY +2£”+1,

which can be rewritten in Markovian form as

Xnpt1=Xn - hDQVV(Yn) +VhoDép,

— 1
X, =X, + 5\/ﬁann.

Then, X,, - X,,.1 is second-order w.r.t the invariant mea-
sure sampling and has only one evaluation of VvV per step.

3.1 New generalization

We consider Langevin equation with variable diffusion ma-
trix D : R - R*d with D uniformly s.p.d.

dX = -D*(X)VV(X)dt + %Qdiv(DQ)(X)dt +oD(X)dW,
where D(X) is symmetric. The new scheme has the form
Xt = X+ hF () + 8P (X 4 ThF(X,10)).
X, = X+ %aﬂp(xn)gn, (3.1)
where I + &2 is a weak order 2 integrator of

dX =oD(X)dW.

Theorem 2 ([5]). The scheme X,, - X, .1 is second-order
w.r.t the invariant measure sampling and has only one eval-
uation of VV per step.
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3.2 Example model

Diffusion matrix D can be selected to aid in sampling the in-
variant measure ([8] for details). An example of a potential
(a) and eigenvectors of a diffusion matrix (b) are shown.
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( a ) Four-well potential ( b ) Diffusion matrix

Figure 1: Example model in 2D

3.3 Stability analysis of the nhew scheme
We consider the following Saito-Mitsui (1996) test model:
dX(t) = X (t)dt + uX(t)dW(t), X(0)=1.

We take \, € R and let p = b\ and ¢ = Vhu and obtain the
following mean-square stability domains (i.e. where E(X2)
IS bounded). Light gray denotes the mean-square stability
domain of the exact solution:
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Figure 2: Mean-square stability domains

Figure (b) shows the stability region of the new method with
a modified noise integrator I + &2 for better stabilization.

4. Related ongoing work

In a joint work [4] with Adrien Laurent (INRIA Rennes), we
uncover the following algebraic structures of exotic aromatic
forests:

* a free tracial pre-Lie-Rinehart algebra,
» a free D-algebra, pre-Hopf algebroid,
« a multi-pre-Lie algebra,

« a comodule-bialgebra structure,

which are essential in the description of the backward er-
ror analysis in the context of ergodic stochastic differential
equations.

In a joint work [3] with Jean-Luc Falcone (University of
Geneva), we develop a Haskell package to automate
computations involving exotic aromatic forests. GitLab:
https://gitlab.unige.ch/Eugen.Bronasco/graphalgebra.hs.
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