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Abstract

This article proposes a new way of deriving mean-field exponents for sufficiently
spread-out Bernoulli percolation in dimensions d > 6. Among other results, we
obtain up-to-constant estimates for the full plane and half-plane two-point functions
in the critical and near-critical regimes. In a companion paper, we apply a similar
analysis to the study of the weakly self-avoiding walk model in dimensions d > 4 [?].

1 Introduction

Grasping the (near) critical behaviour of lattice models is one of the key challenges
in statistical mechanics. A possible approach involves determining the models’ critical
exponents. Performing this task is typically very challenging, as it involves the unique
characteristics of the models and the geometry of the graphs on which they are con-
structed.

A significant observation was made for models defined on the hypercubic lattice Z%:
beyond the upper-critical dimension d., the influence of geometry disappears, and the
critical exponents simplify, matching those found on a Cayley tree (or Bethe lattice) or
on the complete graph. The regime d > d. forms the mean-field regime of a model.

Prominent techniques such as the lace ezpansion [BS85] and the rigorous renor-
malisation group [BBS14, BBS15a, BBS15b, BBS19] have been developed to analyze the
mean-field regime. However, a significant drawback of these approaches is their pre-
dominantly perturbative nature, necessitating the identification of a small parameter
within the model. It has been established, using lace expansion, that in several con-
texts [HS90a, Sak07, Har08, Sak15, FvdH17, Sak22] this small parameter can be taken to
be é, meaning that mean-field behaviour was recovered in these setups in dimensions
d>1.

In the example of the nearest-neighbour (meaning that bonds are pairs of vertices
separated by unit Euclidean distance) Bernoulli percolation, mean-field behaviour was
established in dimensions d > 10 [HS90a, Har08, FvdH17]. This leaves a gap to fill to
reach the expected upper critical dimension of the model d. = 6. It is however possible
to provide rigorous arguments to identify d. by introducing an additional perturbative
parameter in the model. In the spread-out Bernoulli percolation model, the bonds are
pairs of vertices separated by distance between 1 and L, where L is taken to be sufficiently
large. According to the deep conjecture of universality, the critical exponents of these



two models should match. This makes spread-out Bernoulli percolation the natural test
ground to develop the analysis of the mean-field regime of Bernoulli percolation.

Lace expansion was successfully applied to study various spread-out models in sta-
tistical mechanics, including Bernoulli percolation [HS90a, HHS03], lattice trees and an-
imals [HS90b], the Ising model [Sak07,Sak22], and even some long-range versions of the
aforementioned examples [CS15, CS19]. Much more information on the lace expansion
approach can be found in [Sla06].

In this paper, we provide an alternative argument to obtain mean field bounds on the
two-point function of sufficiently spread-out Bernoulli percolation in dimensions d > 6.
This technique extends to a number of other (spread-out) models after relevant modifi-
cations. In a companion paper [?], we provide a treatment of the weakly self-avoiding
walk model. However, the strategy developed there does not apply mutatis mutandis
to the setup of spread-out Bernoulli percolation, and the presence of long finite range
interactions requires an additional care.

Notations Consider the hypercubic lattice Z? and let y ~ z denote the fact that 3 and
z are neighbors in Z%. Set e; to be the unit vector with j-th coordinate equal to 1. Write
x; for the j-th coordinate of x, and denote its £*° norm by |z| := max{|z;| : 1 < j < d}.
Set Ay, == {zr € Z¢: |z| < n} and for x € Z%, A, (x) := A, +z. Also, set H,, := —ne; +H,
where H := Z, x Z371 = {0,1,...} x Z%~1. Let S be the boundary of the set S given
by the vertices in S with one neighbor outside S. Finally, introduce the set of generalized
blocks of Z°,

d
B:= { [T{ai. .., bi} € Z% such that Vi < d, —00 < a; <0 < b; < oo}. (1.1)
=1

If A and B are two percolation events, we write Ao B the event of disjoint occurrence
of A and B.

1.1 Definitions and statement of the results

Let L > 1. Since L will be fixed for the whole article, we omit it from the notations.
We will consider the Bernoulli percolation measure Pg such that for every u,v € Ze,

Puv(B) := Pgluv is open] = 1 — exp(—FJuy) = 1 — Pgluwv is closed], (1.2)

where Jyy = ¢(L)11<jy—y|<1, and ¢(L) is a normalization constant which guarantees that
|J| == S ,ezadox = 1 (ie. ¢(L) = (JAL| —1)~'). Much more general choices can be
made for J (see e.g. [HS90a,HS02, HHS03]) but we restrict our attention to the above for
simplicity.

We are interested in the model’s two-point function which is, for A C Z¢, the proba-
bility Pglx & y]. When A = Z%, we simply write Pglz < y] = Pslz &, yl. Tt is well
known that this model undergoes a phase transition for the existence of an infinite cluster
at some parameter . € (0,00). Moreover, for f < f., Pglz <= y| decays exponentially
fast in |z — y|, see [AN84, AB87, DCT16]

Our main result is a near-critical estimate of the two-point function in the full space
and in the half space H.

It is convenient to use as a correlation length the sharp length L defined below (see
also [DCT16,Pan23, ?] for a study of this quantity in the context of the Ising model).



For >0 and S C Z4, let

S
05(5) = D Psl0 > ylpy=(5). (1.3)
yeSs
z¢S
y~z
The sharp length Lg is defined as follows:
Lg:=inf{k >1:pg(Ax) <1/e} € [1,00]. (1.4)
Also, let fy be such that ¢g,({0}) = 1.
Theorem 1.1. Let d > 6. There exists Ly = Lo(d) > 0 such that for every L > Lg the
following holds. There exist ¢, C > 0 such that for all 8 < [,

C L d—2 J
< - S — .
P3[0 <= z] < dp(z) + 7d (L\/ |x) exp(—clx|/Lg) Vo € Z°%, (1.5)
P50 <> ]<5()+C(L )dl (—c|z1]/L3) Vo € H (1.6)
3 z] < 8o(@) + 73 IV o] exp(—cl|z1|/Lg x . )

The second main theorem of this article is a set of lower bounds matching the bounds
in Theorem 1.1 up to uniform multiplicative constants.

Theorem 1.2. Let d > 6. There exists Lo = Lo(d) > 0 such that for every L > Lg the
following holds. There exist c,C' > 0 such that for all By < B < S,

C L 2
5[0Hx] de (L\/‘ |> exp(—C’\x!/ ﬁ) VT € s ( I)
5[0 <= «] T (]ac Y L) exp(—Clz|/Lg) Vo € H with 1 = || (1.8)

A direct consequence of Theorem 1.1 is the finiteness at criticality of the so-called
triangle diagram, which plays a central role in the study of the mean-field regime of
Bernoulli percolation, see [AN84, HS90a, BA91].

Corollary 1.3 (Finiteness of the triangle diagram). Let d > 6. There exists Ly =
Lo(d) > 0 such that for every L > Ly,

V(B) := Z P3,[0 <= z]Pg, [z <= y|Ps [y <= 0] < 0. (1.9)
Ry

We now describe how to recover the mean-field behaviour of the susceptibility and
the correlation length £z defined for § < . by

X(B) = Psl0 ], &= lim — 7 logPs[0 «— ney). (1.10)
reZd

Corollary 1.4. Let d > 6. There exists Lo = Lo(d) > 0 such that for every L > Lg the
following holds. There exist c¢,C' > 0 such that for all By < 5 < B,

c(Be—B) " <x(B) < CBe—B) Y, (1.11)
c(Be—B) < g5 < C(B.— B2, (1.12)
c(Be—B) M2 < Ly < C(B.— )V, (1.13)

Proof. Let d > 6 and Ly be given by Corollary 1.3. Again using Corollary 1.3, we find
that V(8.) < oo which implies by [AN84] the bounds of (1.11). The bounds (1.12) and
(1.13) are obtained using (1.11) and Theorems 1.1 and 1.2 twice: one time to get that
& =< Lg and a second time to get x(f5) = LQB, where =< means that the quantities are
bounded away from each other by constants that are independent of 5. O



1.2 Strategy of the proof

A crucial role will be played by the following two inequalities. We include the proof
of this statement in the Appendix.

Lemma 1.5. For0 < < f.,0€ S CA, andxz € A,

A S S A
Pslo <= z] < Pglo <= z] + Z Pslo <= ylpy-(B)Ps[z <= ], (1.14)
es
zzA\S
Pg[oéx]ng[oéx]—i— Z Pg[oéy]pyz(ﬁ)szHx ZE (o;u ’UPB[UA)ZL‘].
yes u€eS
zeA\S veEA
(1.15)
where for u € S and v € A,use diagram not for next
SA S s A A
B3 (05u,v) == Lyes Z Pslo <= u|Pglu <= y|py.(B8)Pslz <= v]Pglv <= u] (1.16)
es
ng\S
S S S
+ ]lveA\S' Z Z Pﬁ[o — U]Pﬁ[u — yﬂpﬁ[u A 3}pyv(/8)psv(6) (117)
UES y#seS

+ Y Palo S ulPslu S yPslu S slpy. (B)pst (B)Bslz < o]Pst £ 0]

y,8€S
y7Fs
z,teA\S
zF#t
(1.18)
S A A
+ 0o (u) Z Pglo <= y|py-(8)pye(8)Pslz <= v]Pg[t <= v]. (1.19)
es
Z,tyEA\S
zF#t
In particular, if S = {o}, for allv € A,
o A A
Eg b (0;0,v) Z Poz(B)Pslz Ao |+ Z Doz(B)pot(B)Pg[z <= v]Ps[t <= v].
ZGA\{O} z,teA\{o}
zF#t
(1.20)
When o = 0, we simply write E‘g’A(u, v) 1= EE’A(O; u,v).
If S 3 0, the quantity A
= By (u,v) (1.21)
u€esS
vEA

will be referred to as the error amplitude. One of the pivotal steps of our argument is a

proof that Egn’zd and EHB{"’Zd are finite and small (in terms of L). This is also where the
assumption d > 6 becomes crucial.

Remark 1.6. The correction term or “error” term in the lower bound of Lemma 1.5
(illustrated in Figure 1) differs from the corresponding one for the weakly self-avoiding
walk model at different levels. We first notice that it makes appear (1.16) that is rem-
iniscent of the triangle diagram of percolation. The terms (1.17)-(1.19) come from the



possibility of finding multiple candidates for the “first” edge leaving S. Then, (1.18)-
(1.19) are “non-local” in the sense that they have a non-zero contribution for v ¢ S+ Ay.
Local errors (like in the case of the weakly self-avoiding walk) are more convenient as
they allow for bounds of the type

A
Z Eg’A(o; u,v)Pglv & x] < EE’A - max {Pﬁ[w —rxjiweS+ AL} . (1.22)

u€es
veS+AL

Such a bound is not immediately available for the remaining terms in the error. However,
in the proof, we will argue that in the cases of interest, v will typically be “close” to S.
This will allow to treat this additional error term as being “local”, at least in average.

Figure 1: An illustration of the different terms contributing to E§7A(o; u,v). The dotted
lines represent the open edges leaving S. From left to right and top to bottom, we
illustrate (1.16)—(1.19). The two configurations at the top correspond to “local” error
terms in the sense that v has to remain in S + Ay. The two configurations at the
bottom correspond to “non-local” error terms since v can potentially be far away from
S. surprised there cannot be only two terms. For instance 2 and 3 aren’t the same with
z not different from ¢t

The following definition is motivated by Remark 1.6.

Definition 1.7. Let 0 < 8 < B.. Let S C A, 0 € S, and x € A. We introduce EZ’A(O,LL'),
the non-local error term, defined by

Eg’A(o,x) = > ES’A(O;U, v)Pglv & ). (1.23)

ueS
vES+AL



When S = {0} is a singleton, we just write EE’A(O, x) = Eé\(o, x).

The random walk distribution naturally associated with ¢g(Ay) for 4> 0 and k£ >0
will play a pivotal role in our arguments.

Definition 1.8. Let 8 > 0, k > 0, and = € Z%. Define the simple random walk (XE)k>0
started at = € Z¢ and of law P%{V)v 3 given by the step distribution:

T A (z
P, ST =y = —LENE) ‘“( Z Pale <425 u)p, (8). (1.24)

When k = 0, we just write Pry ;g := Pg]\zv o5
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2 Proof of Theorem 1.1

For 8 > 0 and k > 0, define

Y(Hy) = Y Pgl0 ¢ a]. (2.1)

r€OHy

We will use a bootstrap argument (following the original idea from [Sla87]) and prove that
an a priori estimate on the half-plane two-point function can be improved for sufficiently
large L. The idea will be to observe that the two inequalities of Lemma 1.5 provide
a good control on 15(Hy), which can be interpreted as an ¢! estimate on the half-
plane two-point function at distance k. The point-wise, or £>°, (half-space) estimate will
follow from a regularity estimate which allows to compare two-point functions ending
at close points. Finally, we will deduce the full space estimate from the half-space one.
The improvement of the a priori estimates will be permitted by classical random walk
computations involving the random walk introduced in Definition 1.8.
To implement this scheme, we introduce the following parameter 5*.

Definition 2.1. Let C > 1. We define 3* = 3*(C) to be the largest real number in'
[0,2 A B.] such that for every 5 < 8%,

C
@Dﬂ(Hn) < 50(’0) + T Vn >0, (fé)
o C L d—1
P — | — H. x
0 & 2] < dofa) + 7 (va) vz € )

The first and second assumptions can be understood as ¢! and > bounds on the half-
space two-point function. Note that when C is large enough, one has g* > By where Sy

'Tt might be surprising to additionally ask 8* < 2. However, we will see that 8. = 1 + O(L™%) as L
goes to infinity.



is defined? by ¢g,({0}) = 1, as a bound by the corresponding random-walk quantities
implies that the estimates are true at § = [y (this can be seen by iterating infinitely
many times the upper bound of Lemma 1.5 with S a singleton and 8 = fy).

Our goal is to show that 8* is in fact equal to S, provided that C is large enough. The
proof goes in three steps. First, we show that we can obtain a bound on ¢g(H,) when
p < f*. This corresponds to the sum of the ¢g(H,_) for 0 < k < L — 1. Second, we
control the gradient of the two-point function. Third, we use that the two-point function
does not fluctuate too much when moving a little one of the endpoints (thanks to the
second point) to turn the bound on ¢g(H,,) into an improved bound on 1g(H,,). This last
quantity is in some sense an improvement of the ¢! bound on the half-space two-point
function, which can be use (using the second point once again) to obtain an improved
£°° bound. From these improvements, we obtain that 5* cannot be strictly smaller than
2 A B, since otherwise the improved estimates would remain true (by exponential decay)
for B slightly larger than §*, which would then contradict the definition of 8*. Thus,
B* = 2 A B.. The last step of the argument then consists of proving that §* < 2 which
immediately forces g* = ..

2.1 Obtaining bounds on ¢g(B) with B € B

The following proposition is the crucial step of our strategy: from the bounds (%)
and (£3°), we obtain a bound on ¢g(H,) that involves the range L. In some sense, for
large L this bound will be an improvement on (6}3), as we will see in Section 2.3.

Proposition 2.2. Fiz d > 6 and C > 1. There exists K = K(C,d) > 0 such that for
every f < * and B € B,

pp(B) < 1+%- (2.2)

Remark 2.3. It would be interesting to prove that such a bound holds for ¢3(S) uni-
formly on every finite set S containing 0 and not only for B € B.

We start with a number of simple bounds on the two-point function in the bulk and
in the half-space obtained thanks to the assumption that 8 < g*.

Lemma 2.4. Fizd > 6 and C > 1. For every p < 8*,

32/ L \%?
P50 < (—— vz € Z4\ {0
00l < o () v e 7\ {0},
(2.3)
H C?*(k+ L) ( L )d—l
P S < >k>1 H,,_,
,3[0 x]_ Tt L\/(n—k}) Vn_ > ,V.’EE@ k
(2.4)
C*k+L
3 Psl0 ¢ 4] gamnﬁ Y,k > 0.
12
r€OH, 1
(2.5)
Proof. Let us start with the first inequality. Assume that x; = |z|. If the connection

to x is not included in H, decompose according to the first left-most point z of an open

*Note that 8o > 1 since 1 = ¢g,({0}) < D weza(l— e Podozy < g, > weza Joz = Po since |J| = 1.
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Figure 2: On the left, an illustration of the decomposition of a self-avoiding path con-
necting 0 to = used in the proof of (2.3). On the right, a similar decomposition used in
the proof of (2.4).

self-avoiding path connecting 0 to z; see Figure 2. Using the BK inequality (see [Gri99]),
we get when |z| > L,

Psl0 = a] < P02+ Y Pyl & 2]Pylz £ 2] (2.6)
n>1 zeoH,
ey L\ C L a1
< = (== H,)— (—— 2.7
< wlmve) v s (s 2)
@) c 1 C? 1 (C+1)C 1
G < 2.
. |x|d_2+ 12 (d—2)|x’d_2 — L2 |x|d—2’ ( 8)
1 1

where on the last inequality, we used that |x| > L and that >
for« > 1. When 1 < |z| < L,

n>a (1)@ 1 = (d—2)ad 2

L—|z|
. C C 1 C(2C +1)
< = - — < .
]P,B[O — JU] S 7d + z_:l 1/)B(Hn) Id + Z wﬁ(Hn) L (|x| +n)d71 - Ld
n= n>L—|z|+1
(2.9)

For the second inequality, pick € 0H,,_. To bound P[0 LU x], decompose an
open self-avoiding path connecting 0 to x according to its first left-most point z; see
Figure 2. Using the BK inequality one more time, we get

k—1

Pal0 &% 2] < P05 2] + 3 Y Palz s alPylz s g (2.10)
7=0 ZeaHn,j
(Ego) C L d—1 k—1 C L d—1 H '
< ) + ( ) Pyle < ]
Ld (L\/(n—k:)) jZOzeaZHIn_de LV (n—j) B
(2.11)
@ (c  C% L a1
2= . 2.12
= (Ld+Ld+1> (L\/(n—k:)) (212)

For the third inequality, consider the same decomposition as the second one, but use
(%) twice instead of (Eé) and (£3°). Consider first the case 0 < k < n — 1. Summing

8



(2.10) (which holds for that range of k) over x € OH,,_j gives

) c  kc?

H
2 < —4+ —. .

> Psloca) < T+ I3 (2.13)

r€OH,, _1

We similarly get that for & = n,
H C nC?

P - <14 —=4—. 2.14
Z 5[0%%%]_ +L+L2 ( )

reOH

The case k > n is handled similarly by replacing P[0 Hnk, z] by Ps[0 LN x] in
(2.10). 0

We begin with a (rough) bound on ¢g(H,) when g < g*.
Lemma 2.5. Fiz d > 6 and C > 1. For every 8 < 8%, everyn > 0,
pp(H,) < 6C°. (2.15)

Proof. Let n > 0. Decompose a percolation configuration contributing to one of the
summand in ¢g(H,) according to the left-most point u along an open self-avoiding walk
connecting 0 to y. This gives

L-1 k
es(Hn) < >0 > p(B)Y. D Pﬁ[OMU]E”,@[UMy] (2.16)
k=0 yeoH,, g (=0 u€edH,,_,
z¢H,,
L-1 k
:ZZ Z P50<—>u( Z Py P5u<—>y]) (2.17)
k=0 £=0 u€OH,, _, y€OH,, i
z¢H,,
:Z Z PBO(—>U<Z Z Py= (B IP’gU(H—>y]) (2.18)
=0 uedH,,_, k=C yeoH,,_y
z¢H,,

Now, notice that for k < ¢ < L — 1 and y € OH,,_j, one has,
L k

S p(8) < (AL - (1 — e P < g7 T <, (2.19)
z¢H,
where we used that g < * < 2. It follows that,
L—1 H,_, L—1 H,_,
pa() < 3 > Beo e ul(Y Y Pluety)) (2.20)
=0 uedH,,_y k=t yeoH,,_y,
(2.5) L1 Ho_, %2 C*k—(+1L)
<Y ol Y (k0 + T) (2.21)
ZIO ueaHn_g k:ﬁ
< (1+20)% S B0y (2.22)
=0 ueH,,_y
)
< (1+2C?)(1+C) <6C3. (2.23)
This concludes the proof. O



We now turn to the estimate of the “error” in (1.15) when g < g*.

Lemma 2.6. Fiz d > 6 and C > 1. There exists K = K(C,d) > 0 such that for every

B < B* and B € B,
K
B,z
Eg" < Td (2.24)
Proof. For the first inequality, we use the pointwise bounds of Lemma 2.4. The fact that
d > 7 implies the existence of K. For completeness, we include the full computation in

Appendix 4. The second inequality follows from the first one (by changing K') since
B.74 H_,,,Z¢ H,, 24
Eg™ <) By + > E
7 i:bj<oo
by monotonocity. O
We are now equipped to prove Proposition 2.2.

Proof of Proposition 2.2. Fix B € B. Summing (1.14) over every = € Z¢ gives

ps(B)X(B) — x(B)ES™ < x(8), (2.25)

which implies the result by dividing by x(5) and using Lemma 2.2. O]

2.2 Control of the gradient

Proposition 2.2 implies a ¢!-type bound on the half-space two-point function which
involves the range L of the interaction, and which in some sense is better than (E}j) The
following regularity estimate, which will be the goal of this section, will later allow us on
to convert the bound on ¢g(H,) into improved ¢! and ¢*° bounds. We recall that B is
the set of blocks of Z¢.

Proposition 2.7 (Regularity estimate at mesoscopic scales). Fiz d > 6 and C > 1. For
every n > 0, there exist 6 = d6(n,d) € (0,1/2), A= A(n,d), and Ly = Lo(n, A, C,d) such
that for every L > Lg, every 5 < [3*, every n > AL, every A D A3, every X C A\ Az,
and every u,v € Agp,

‘ ZPB[UA):L’] Pg[véﬂ‘ <17 max Z]P’gwéx] (2.26)
wEA3n
reX reX
A 3 € (2.27)
SCA3n zeX
S>w

We begin with a regularity estimate at microscopic scales of order L.

Lemma 2.8 (Regularity estimate at microscopic scales). Fizd > 6 and C > 1. For every
n > 0, there exist Ay = A1(n,d) > 0 and L1 = L1(n, A1, C,d) > 0 large enough such that
for every L > Ly, every < (%, every n > A1L, every A D Agy,, every X C A\ Az,
every u,v € A, with |u—v| < 3L,

‘ ZPg[uﬁm]—Pg[véﬂ‘ < max (nZPg[w&x]—l-Al Z Eg(w’,fb‘))-
zeX ww'€hon X ey zeX
(2.28)

10



Proof. We prove the result for X = {x}, but the general argument follows similarly. Set
¢ = g({0}). Let T' > 1 to be fixed, n > 2T'L, and assume u,v € A,, with |u —v| < 3L.
Iterating (1.15) T times with S a singleton and A gives

Polu & 2] < 05 ({0}) B us [Ps[Xr < o] (2.29)

T-1
Bolo £ 2] 2 0a({0}) Eraw s [BolXr & 2] — 15 (X @) max  Bofw & 2]

t
=0 WEA, (T 41)L

T—1
- (Z g0t> max Eg(w,x), (2.30)
=0 WEAp+TL
where K is the constant provided by Lemma 2.6.
A random-walk estimate® implies that for every n > 0, there exists T = T(n,d)
large enough such that the random walks X% and X7 can be coupled to coincide with
probability larger than 1 — n/2. This implies

Erw ., [P X1 € 2]] = Enw u[Ps[Xr € 2]] < g

max {Pg[w AN x]:w € An+TL}.
(2.31)
Furthermore, since ¢ < 1+ %, we may choose L1 = L1(n, T, K, d) large enough such that
for L > L, % ZtT:_Ol ot <n/2and ZtT:_Ol ! < 2T. The result follows by plugging these
estimates and (2.31) in the difference of (2.29) and (2.30), and setting A; := 27" O

Let AT :={zx €A, :21 >0} and H = H(L) := {v € Z*: |vy| < L}. The next result
formalizes the fact that when « € A,, most of the mass in pg(A,(z)) comes from the
side of A,, that is the closest to .

Lemma 2.9. Fiz d > 6 and C > 1. Let K be the constant of Lemma 2.6. There exist
c=c(d), Ly = Ly(C,d) > 0 such that for every L > Lo, every B < 3*, and every v € A}
with k <n/2,

£ K 2kye
S Palo 5 ylpy=(8) < (1+ ﬁ) (=) (2.32)
yeAT "

z¢ AT UH

Proof. Define (ny) by ng = n and then nyr1 = [(nys—1)/2]. We proceed by induction by
proving that for every £ > 0 and v € A®

Ny?
Ajl_ 1\¢ K\{+1
GZA+ Polo < ylpye(8) < (1- o) (1+ 7q) (2.33)
zélAﬁLjH

The case ¢ = 0 follows from Proposition 2.2. Let us transfer the estimate from ¢ to £+ 1.

Fix v € A, . Let B := Ay, —1(v). By symmetry and Lemma 2.2, we have that
B 2d—1 1 K
2 Bl rlona(8) < =5pmea(B) < (1-5) 0+ ) @3
s¢ BUH

3For full disclosure we briefly explain how to obtain it. Note that it is sufficient to suppose that u
and v differ by only one coordinate, say the first one. Consider a sequence of i.i.d real random variable

(&)i>1 of law given by P[¢; = k] = 1_r<k<r, k#o% + ﬂkzoﬁ. Consider an independent

copy (&1)i>1. Let Sk := (u1 —v1) + Zle(& — &) and write P21 for the law of the associated random
walk (started at u1 — v1). Let n > 0. It is sufficient to show that there exists a universal (in particular
independent of L) constant C' = C(n) such that for all T > C, P**7"1[ry > T] < /2, where 79 is the
hitting time of 0. This last fact can be found in [Uchl11].
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We deduce from Lemma 1.5 and the induction hypothesis that

> Bl ) < Y (X Balo B rlpna(@Bsls &5 4])py(8)

yeAt yeAt reB

2¢ AT UH 2¢ATUH s¢ BUH
B AL
= Y Plo @l X Pals 5 ylpye(8))prs(8)
reB yEA;‘;
s¢ BUH 2¢ AT UH
1\ 0-1 K\ ¢ 5
< (1 - g) (1 + ﬁ) 7%:9 Pglv <= rlprs(8)
s¢ BUH
(2.34) 10 K\ t+1

< (1—ﬁ) 1+ 7)) -
This concludes the proof by choosing L large enough so that (1 — ﬁ)(l + %) < 1 and
¢ > 0 small enough. O

We are now in a position to prove the main result of this section.

Proof of Proposition 2.7. We prove the result for X = {z}, the general case follows

similarly. Assume first that u = ke; and v = —ke; (with & < én). Consider the sets
Bt := A} and B~ := —A;. Applying Lemma 1.5 twice gives
A Bt A
Palu 0] < 3 Palu 25 ylpya(8)Pslz < al, (2.35)
yeBT
2¢Bt
_ K _
Pylv < 2] > zB: Palo ¢ ylpy(B)Psle ¢ 2] = 75 max  Pafw € 2] ~ EF M (0,2).
Y
z¢B~

(2.36)

We take the difference and use that when z € H, we may associate every pair (y, z)
in the sum in (2.35) with the pair (¢/,2’) symmetric with respect to the hyperplane
{u € Z% : u; = 0} in the sum in (2.36), see Figure 3. By doing so, we notice that z and
2" are within a distance 2L of each other. Hence, if Ay = A;(n/2) and L; are given by
Lemma 2.8, providing L > L, we get that for such pairs (y, z) and (', /),

‘]P’g[Z & z] — Pyl & x]‘ <7 max Pglw & x] + A1 max Eg(w,az). (2.37)

2 wehay, wEA2y,

Plugging this estimate in the difference of (2.35) and (2.36), and then invoking Lemma 2.9
(to the cost of potentially increasing L again), gives

Pslu < 2] — Palv & 2] (2.38)
n B+ K A
< (ﬂpg(BJr) + Z Pslu — ylpy-(8) + —d) max Pglw <= z]
2 y€B+ L weEAap
2¢ BYTUH
+¢s(B*) A1 max ES(w,z) +Ef *(v,2) (2.39)
wEN2n

<[(1+ %) (g +(20)°) + %} max Pglw <& z]

wEAgn

K A BA
+ (1 + E)Kl Jnax Es(w,z) +E5" (v, @), (2.40)

12



where we used Proposition 2.2 to obtain that pg(B1) <1 + 7 K We then write,

K B~ A
(1 + Ld)Al max Eﬁ (w,z) + E5 (v, 2) <24, Jnax max Eg E (w,x). (2.41)
SCAan
530

The proof follows by setting A = 245, choosing § = d(n) small enough, and then L large
enough.

When v = ke; and v = —(k + 1)eq, simply change B~ to —e; — A;}. The general
case follows by rotating and translating® the box. The final result follows by summing
over different coordinates and changing 7 to dn. 0

2.3 Proof of Theorem 1.1

Before moving to the improvement of the ¢! and ¢> bounds, we begin with two
useful estimates on the non-local error term Eg which appears in the regularity estimates
of Proposition 2.7 and Lemma 2.8.

Lemma 2.10. Fixd > 6, C > 1, and A > 0. Let K be the constant of Lemma 2.6. For
every B < [*, one has,

K +8C? C
Hy,
Jhax Z E;"(w,z) < —7 14 Vn > 2AL. (2.42)
z€0H,
Proof. By definition, if w € Aay,
Yo oElrwae)= Y Y pus(B)put(B)Pslz 2 v]Pg[t 2 v]Pglv £ al.
x€OHy, z€OHy, veH, \A L 2,t€H,
zF#t
(2.43)
The contribution for coming from v ¢ 0H,, is bounded by
Hy,
S S b (B)put(B)Pslz < v]Pglt v]( 3 Pyl & a:])
vEM,_1 z,teH, x€OHy,
z#t
“) ¢ « _CK
Ao,Z
< TE <oy (244)

4This explains the fact that we consider the maximum on As, instead of Agn.
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where we used Lemma 2.6 in the last inequality. Moreover,

> Y pus(Bpur(BPslz < vPslt < 0] Y Pglv < a]) (2.45)
vedH,, z,teH,, xcOH,
zF#t
(€5) C

S (7)) X X pus(Opur(B)Palz 5 Byt < 0]
vedH,, z,teH,

z#t
(2.46)
€5) C\ C H,
< (1+7) 70 X Pus(Bpu(BPslt < ol (247)
z,t€Hy,
(¢5) C\ CC 2
< (1 + f)ﬁf( ZdPOZ(ﬁ)) (2.48)
2€EZL
7402 1 C < 7803 2.49
< a(l+ ) < g (249)
where in the third inequality we used the fact that n > 2AL (which ensures that z,t ¢
OH,,). The proof follows readily. O

Lemma 2.11. Fizd > 6, C > 1. There exists D1 = D1(C,d) > 0 such that the following
holds. For every 8 < 8*, for every n > 12L, and every x € 0H,,,

Dy C
B3 (w,z) < — (2.50)

max max <S ﬁ W

weN, o, SEB
SCA, 2
S3>w

Proof. Fix w and S as above. By definition,
S,Hy,
Eg " (w,z) = (I) + (1) =

S S S H, Hy Hy,

Z Z Pslw <= u]Pglu <= y|Pglu <= s|py.(B8)pst(B)Ps[2 v|Pglt > v|Pglv < ]
uesS y,s€S
vES+AL  y#s

z,teH,\S
z#t
HTL
]

s H,, H,
+ Z Z Pslw <= ylpy=(B)pye(B)Pglz = v]Ps[t += v|Pglv > x].
vgS+AL  yes
z,t€H,\S
z#t

Bound on (I) Notice that the contribution coming from v € H,, /4 is bounded by

,C(4/3)" ' K
Lnd-1 L[4’
(2.51)
where we used (£7°) and Lemma 2.6. We turn to the contribution for v € Hy, \ Hsy, /4.
Notice that z,t contribute if they are at distance at most L from S, that is z,t €
Avjorr C Ayjognia- fp € {0,...,n/4 -1}, v € OH,,_,, and 2,t are as above, then
|z —v|, |t —v| > n/6 and

(2d)? max {]P’g[w Ho, x]w € H3n/4} - max {Egl’“zd k> 0} < (2d)

(2.3) 904 62d—4

H,, H,
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Moroever,

- (¢5) C
> Balo 5 0] = gs(H ) < o) + T (2.53)
vEH,—p
For a fixed u € S, Proposition 2.2 gives
s s 9 K\2
> Polu > yPslu & slpy:(Bpae(B) < 05(S)* < (1+ 7a) (2.54)
,SES
yy#
z,teH,\S
z#t
Finally, we use (2.3) to get C; = C1(C,d) > 0 such that
> Pglw N ul < Y Pglw = u] < Crn’. (2.55)

ues U€EA, /2

Putting all the previous displayed equations together, we obtain Co = C3(C, d) > 0 such
that

Cy C
W)= Tapas gt (2.56)
Bound on (/) This is similar and we omit the details. O

Lemma 2.12 (Improving the ¢! bound). Let d > 6 and e > 0. For every C large enough,
there exists Lo = Lo(e,C,d) such that for L > Lo and 8 < 3%,

Yp(Hy) < do(n) + — vn > 0. (2.57)

Proof. We divide our proof between large and small values of n. Since 13(H),) is increas-
ing in 3, it is sufficient to prove the result for 5y < 8 < 5* where we recall that Gy > 1
satisfies g,({0}) = 1. We let Ay, L be given by Lemma 2.8 with n = ¢/2 and assume
that L > Ll.

Case n > 4A1L Set ¢ := [L/2]. Lemma 2.8 applied to n = ¢/2, A = H,,, X = 0H,,

u=0and v € {—Lley,...,—e1} implies that for every 0 < k < ¢,
H,,) < H,_%)+ max H,+s)+A; max Elin w,x). (2.58
o) S VBt B b 5 € ). (259)

Now, The contribution for coming from v ¢ 0H,, is bounded by

> Y pu(Apu(B)Pslz > v]Pslt o 0] (D Palv ¢ )

vEH, 1 z,tEH, r€OH,
z#t
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where we used Lemma 2.6 in the last inequality. Moreover,

H,, H,, Hyp,
S Y Due(B)put(B)Pslz <25 o]Pglt £ v]( Y Plv e a:]) (2.60)
vedH, z, tiHn xz€0H,
zF#t

(£5) H H
< (1 + 7) Z Z Pwz(B)puwt(B)Pglz = v|Pg[t + v]
vedH,, z,teH,

z#t
(2.61)
(€5) C\ C
< (14 7) 70 X Pus(Bpu(BPslt < o] (2.62)
z,t€Hy,
() C\CC 2
< (1+L)LdL(ZpoZ ) (2.63)
4C2 C\ _8C?
< a1+ 7)< 1o (2.64)

where in the third inequality we used the fact that n > 2AL (which ensures that z,¢ ¢
OH.,). The proof follows readily.
Using (E}J,) and Lemma 2.10,

C /e K +8C?
hp(Hn) < Yp(Hu_g) + f(f + AlT). (2.65)
Now,
y4 l o
n—k
S r) =Y Y Pal0 "y (2.66)
k=0 k=0 y€dH,, _
< Y Pty (2.67)
yEHn\Hn7g71
< 3 Pgo Z py=(B (2.68)
yEHn\anlfl Z¢Hn
K
< dipp(H,) <41+ ﬁ). (2.69)

In the third line we used that the sum of the p,.(3) over z ¢ H, is bounded from below
by a fourth of the sum over all possible z, which is ¢g({0}) > 1 for 5 > fo.
Averaging on 0 < k < /¢, we deduce that

C (244, K180 (2.70)

— A
T + A

Yp(H,) < 74(1+ II;) +7(5 e

(+1
Providing C > 8/¢ and then L large enough, this concludes this case.
Case n < 4A1L As before, set ¢ := ¢g({0}). Let 7 be the exit time of H,,. Summing

over x € OH,, and ¢t < T the t-th iteration of (1.15) with S being a singleton and A = H,,
gives

¥a(Hy) < o(n) + max{y' : t < T}Erw,0,8N] + 0({0}) Erw,0,8[ts(Hy—(xp, )]17(>T]7 )
2.71
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where N := {1 <t < T A7:X; € 0H,}|
Classical random walk estimates give the existence of Agpw = Arw(A41,d) > 0 and
T =T(e, A1, d) large enough,

Arw

Erwos[N] < 7, (2.72)

Prw,0,5(7 > T] < (2.73)

| o

Assume that L > Ly = Lo(T, K, d) be such that (1 + KL~%)T < 2. Corollary 2.2 gives
max{op' : t<T}<(1+ KL HT <2 Wt <T. (2.74)

Collecting the above work yields

2Apw | €C
L 2L°
The result follows by choosing C > 4Agrw /€. O

Pa(Hy,) < do(n) + (2.75)

Lemma 2.13 (Improving the ¢> bound). Let d > 6, C > 0. For every C large enough,
there exists Lo = Lo(d, C) such that for L > Ly and < ¥,

I C L d—1
P n < — | — > H,,. 2.
5[0(—)1‘]_50(%)+2Ld (L\/n) Vn > 0, Vz € 0H,, ( 76)

Proof. Let n,e to be fixed later. Again, we divide our proof between large and small
values of n. Let § = d(n) and A = A(n) be given by Proposition 2.7.

Case n > 6AL Set V;, := {y € Ag, /6 : y1 = 0}. Proposition 2.7 (applied to n/6 and 7)
gives that for every § < 8%, every x € OH,, and y € V,,,

P5[0 Hny (x—y)] =Psly JLIN z] > Pg[0 JLIN x] — nmax {Pg[w JLIN z]rw e An/Q}

S7H7L
_Awglﬁfﬂ max E; (w, ). (2.77)
SCA, s
S>w

Using Lemma 2.11, we may choose L large enough such that

S H,,
Awrélfi(m max E; (w,z) < Td=T" (2.78)
SCAy 2
Ssw
Averaging over y gives and choosing L even larger (in terms of ¢) yields
eC 1 (257 1 1 H,,
— 7 2 m¥s(ln) > == ) Psl0 (- y)] (2.79)
LVl = Vi Val 22
(5 C C
> Pyl0 < 2] (2.80)

L2y "Ipd1
At this stage, consider n = 27, and then ¢ < §%/2. Choosing C = C(¢) large enough
and then L large enough, we find

C

Hr
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Case n < 6AL As before, set ¢ := pg({0}). Let 7 be the exit time of H,,. Summing
over t < T the t-th iteration of (1.14) with S being a singleton and A = H, gives

Hp, H,
P[0 < ] < do(x) + max{p': 0 <t < T}Erw 0,8M] + @TERWQ”B {IP’[XT 2 z]]lT>T},

(2.82)

where M = {1 < ¢t < T A7 : X, = x}|. Classical random walk estimates give the
existence of Crw = Crw (A4, d) > 0 such that

E M] < Crw ( L )dl (2.83)
RW,0,3 = Ld LVn ) .
Crw

Assuming again that L is chosen so large that (1 + KL~%)7 < 2, we finally obtain

H, 24pw [ L 41 2C,
Pol0 25 ] < bo(a) + 28 (M> + 20, (2.85)

Choosing T large enough that (6A4)*17-(1-2/2 < é and providing C > 8 Arw, we find
again

H C L d—1
P30 +— <4 — : 2.86
510 2 o) < o) + 57 () (2.86)
O
We are now in a position to prove the following proposition.
Proposition 2.14. Fix d > 6. There exist K and Lg such that for every L > Ly,
K
Be <1+ 73, (2.87)
K
0. (B) <1+ Td VB e B, (2.88)
K
B,Z
Eg" < Td VB € B, (2.89)
K
g, (Hy) < do(n) + T Vn >0, (2.90)
K L d—2
P <= z? 2.91
w0l < 5 (7m7) veez\ {0},  (291)
H K L d—1
P < —— H . 2.92
w0 &l < 5 (750) va € H\ {0} (2.92)
Proof. By Lemmata 2.12 and 2.13, we find that if C and L are large enough, for every
B <p
C
Vs(Hn) < So(n) + 57 Vn >0, (2.93)
Psl0 <2 ]<5()+C(L>d_1 Vn >0, Vo € OH (2.94)
8 v <do(@) + 57 (10, n >0, Vx n- .

By taking the supremum we find that those bounds still hold true at g = 5*.
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Let us now assume by contradiction that 5* < 2 A B.. Consider 5** € (5*,2 A S.).
Exponential decay of correlations imply the existence of N = N(8**, C) such that

Vg (Hy) < % Vn > N, (2.95)
H, C L d—1

Using continuity for n < N and |z| € Ay, we deduce that some € (8*, 3**) satisfies
(%) and (£3°), thus contradicting the definition of 5*.

From all of this, we obtain that * = 2 A 8. and that in addition the properties hold
until 2 A B.. Also, note that Proposition 2.2 implies the right bound on the ¢g(H,,) and
0g(Ay) for every B < f*. Taking the supremum over 3 < * implies the bounds at 3*.

It remains to show that 5* = .. For that, it suffices to notice that for L large enough
p* < 2. Indeed, the bound on ¢g«({0}) implies that for L large enough,

2K
gr <1+ T (2.97)
This concludes the proof by choosing L so large that i—lg < 1. O

We conclude this section by proving Theorem 1.1.

Proof of Theorem 1.1. The previous proposition implies the estimates for |x| < Lg (chang-
ing the constant C' to eC'). We now turn to the case of |z| > Lg. Below, A denotes either
Z® or the half-space H. Tterating (1.14) k := [|z|/Lg| — 1 times (or ||z1|/Lg| — 1 times
in the half-space case), we get that

P[0 < 2] < p(Ar,)  max (Pl < y] 1y ¢ Ar, (@)} (2.98)

We then invoke the definition of Lg and the bounds (2.91) or (2.92) to conclude. O

3 Proof of Theorem 1.2

In this section, we assume that C and L are large enough such that Proposition 2.14
holds. Let also K = K(C,d) be given by Proposition 2.14.

3.1 Lower bound on ¢3(H,)

We start with our basic estimate for this section. It is a strengthening of the lower
bound corresponding to the upper bound on 3(H,) obtained in the previous section.
Recall that [y is such that goﬁo({O}) = 1. Introduce for n,k > 1,

= 3 Pylo &g, (3.1)
r€OH,
|z|<k
Lemma 3.1. There exists ¢ > 0 such that for every L large enough, every By < 5 < S,
and every 1 <n < Lg,

¥s(Ha) = ¥ (H,) > 7. (3.2)

Proof. The first inequality is clear, we therefore focus on the second one. Let n > 0 to be
fixed. We divide the proof between the case n > 4A;L and n < 4A4; L, where A = A;(n)
is provided by Lemma 2.8. We begin with the former as it is the most interesting one.
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Case n > 4A;L Reproducing the argument of (2.22),

An
ps(Ay) < 2d > Ps[0 < ylpy-(B) (3.3)
yeA,
y1€{n—L+1,...,n}
z¢H,
- k H H
n—=~0 n—~¢
<2d Z Z Py=(53) Z Z P3[0 «—— u|Pg[u +—— y] (3.4)
k=0 yeoH,, i (=0 u€edH,, ,
ly|<n [u|<n
z¢H,
L—1
< 2d(1+2C%) " vl (H, ). (3.5)
=0

Moreover, since n > 4A;L, using the same reasoning as in (2.65) gives (by Lemma 2.8
and (2.90)) for L large enough,

§2¢“ H,¢) < Lyl (H,) + 20C. (3.6)

Observe that n < Lg gives ¢g(A,) > 1/e. Considering n small enough (which only
influences how big A; is, and therefore how big L should be taken) concludes the proof.

Case n <4A1L Set ¢ := ¢3({0}). Summing over z € OH,, with |z| <n and t < T the
t-th iteration of (1.15) with S being a singleton and A = Hj, gives

T-1

. K
U () 2 Erwo 007 Lrgern] = (3 @) T max s (Hy)
t=0
(3+)
t H
- Zcp max E;"(w,x), (3.7)
=0 weln oM., g

where 7y and 7 are respectively the hitting times of {z € 0H,,, |z| < n} and the com-
plement of Hl,, and where we used (2.89). Using a simple random-walk estimate and
the fact that 5 > [y, we get that for T large enough (in terms of Aj), there exists
crw = crw (A1, d) > 0 such that

Erw,0,8[¢° Lry<trr] > Prwo8lTo < T AT] > TW (3.8)

Reproducing® the argument of Lemma 2.10, we get C; = C1(C, d) > 0 such that

Ch
Hy
max E;"(w,z) < Td (3.9)
x€0Hy,

By (?7), ¢ <1+ %. We take L large enough so that (Zt 0 ¥ ) < 2. Gathering the

previous displayed equations and using (2.90) gives

) rw K Gy 2C1
EH,) > = zLd(1+L) T (3.10)
It remains to take L large enough as a function of T" and C to conclude. O

SWe obtain a bound with a diminished power of L because z and ¢ might simultaneously be in 9H,,
in (2.60).
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3.2 A Harnack-type estimate

We will need to turn average estimates into pointwise ones. We therefore show another
regularity estimate. For € > 0, introduce the quantity

Lg(e) :=inf{n > 0: pg(A,) <1 —¢}. (3.11)

Proposition 3.2 (Regularity estimate at macroscopic scales). Fix d > 6. For every
a > 0, there exists Crw = Crw(a,d) > 0 such that for every n > 0, there exist A
and Lg large enough, and €9 > 0 small enough such that the following holds. For every
L > Ly, every € < eq, every n < Lg(e) satisfying n > AL, every 8 < B, and every
Y ¢ A(l-l—oz)n CA,

maxIP’g[m<—>y]<CRWm}\nIP’5[xHy]+77 max IP’g[:I:Hy]

.’L'GA € CEGA(1+a)n
+ A max max E5™(u.v). 3.12
UEA(1 1a)yn SeB B ( 7y) ( )
SCA(1+a)n
S3u

The idea of the proof is to introduce a well-chosen rescaled random-walk and to
observe that its exit probabilities do not drastically depend on the start of the walk.
Combined with Proposition 2.7, this will enable us to conclude.

Proof. Fix m = |an/7|. Let n > 0 to be fixed later. Let 6 = d(n), A = A(n), and
Lo = Lo(n) be given by Proposition 2.7. Set k = |0m], where 6 = d(n,d). Additionally
assume that n > (Ta™YAL) vV (Ta=1671L) so that m > AL and k > L. Consider the
random walk (X) defined by

1

(k) v Nk (u) Ag(u)

Prw uplX1 = 0] = ——== E Pslu +—— w]puwv(B). 3.13)
/8[ ] (PB( k) weAg (u), B[ ] (

Note that this random walk does jumps at distance at most k + L. Let 7 be the hitting
time of Z4\ Ayym. Let By, ..., B, be the two layers of boxes of size k, centred at b;, that
are disjoint and covering A, 444k \ Antm, see Figure 3.

We will use two a priori estimates on the random walk and the stopping time, that
can be easily obtained from classical random walk analysis®: there exist Crw(a, d) and
g0 = eo(a, m,d) > 0 such that for every ¢ € [1 — &g, 1 + &g,

ngxg[Zso } < Crw Yz € Ay, (3.14)
E%V)V,xﬁ[SOT]lXTGBi] < CRWEgﬁV)vJIWB[SOT]lXTgBi] V.ZU,.T/ € An,VZ <s. (315)

From now on, we assume that ¢ < 9. By (??), ¢g(Ax) < l—i—%. We thus fix Ly = Lo(eo)
large enough that for L > Ly, % < g9. By the assumption n < Lg(e), we find

1—-e< (pﬁ(Ak) <1+ ¢p. (3.16)

SFor the first inequality, simply observe that every (ad)™2 steps there is a probability ¢ of exiting the
box. Hence, as soon as €9 < (ad)?, the estimate follows easily from a Laplace transform estimate of 7.
The second estimate follows from Harnack’s inequality for the (coarse grained) exit probabilities.
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Below, introduce the short-hand notation ¢ := @g(Ag). Iterating the two bounds of
Lemma 1.5 until the hitting time 7 gives

A T
Pole' <5yl < By ,3[ Ps[X, y]}, (3.17)

(2.89)
A - A A
Pole < y] > Efgy, 5|9 PslXr <5 ]| - Ld me{Zso] max  Pglu <= y]

ueAn+m+L

E%}V@,B[;@s] max Eﬁ k(w )’A(w,x)

wEAn+m

(3.14) B A K N
= E%V)V :1:,6[ Ps[Xr < y]} —Crw  max  Pglu < y]

ueAn+m+L

— Crw max EAk(w) (w,x). (3.18)

weAn+m

Proposition 2.7 gives that for every i,

A
P H < P <—> P <>
max Palu < y] < min Pglu < gl +n max, Polu < y]

A ES5A . (3.19
+A max - omax B (u,y). (3.19)
SCAgm(bi)
S>u

Combining this estimate with (3.15) implies that for every i,

T A T A
Egv)v,xgg [90 Lx,eB,Ps[Xr <= y]} < CRWE%;V,x,g {80 Lx, e PslXr < y]] (3.20)

k A
+ nE](KV)V7x/”B|:()OT]]_X7-€Bi] ueg\gi)%bi) Pg [u <= 9]

4+ A max max ESN U, Y).
w€ham(bi) SeB P (u,y)
SCA3m(bi)

Sou

Since X, belongs to some B;, the previous estimate together with (3.17) and (3.18) gives’

A A A
Pglz’ <= y] < CrwPslz <= y] + (1 + 14 K C2w) max Pglu < y]

eAn+7m

A+C E . (3.21
+(A+Chw) max — max Muy). (321)
S n+7m
S>3u
(We also used one more time (3.14) to get that E,/[¢7] < Crw.) It remains to notice that

n 4+ Tm < n + an, and to pick® 7 = n(d) small enough, and then Ly large enough. O]

3.3 Proof of the lower bounds

To shorten the notation, we write Lj := Lg(¢). We start by lower bounding the
half-space two-point function at scale below 6L’5 (for some technical reason we will need
this multiplicative factor later). Let

Ay ={zeZ:z =|z| =n). (3.22)

"We additionally used that n 4+ m + 2k 4+ 3m < n + 7m.
8Note that it was fundamental that Crw was depending on d only.
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Figure 3: On the left, an illustration of the pairing used in the proof of Proposition 2.7.
The grey region corresponds to H. The red path corresponds to a long open edge
“jumping” outside A; (resp. —A}). Since u (resp. v) is close to {u € Z¢ : u; = 0}, a
connection from u to z will most likely enter H if it exits A;7. On the right, an illustration
of the proof of Proposition 3.2.

Lemma 3.3. Fiz d > 6. There exist c,eg > 0 and Ly > 0 such that for every L > Ly,
every € < eq, every Bo < B < B, and every x € H with 1 = |z| < 6L},

H c L d—1
Proof. First, by translation invariance, for every n < L/,

1
|[Anl

H 1 n c
Z P30 <+ y] = m [ﬁ](Hn) > Tnd—1 (3.24)
YyEAn n

where ¢ > 0 is provided by Lemma 3.1. We want to turn this average estimate into a
point wise one. Fix z € Ay with N < 6L/’3 and set n := |N/6]| < L%. Let n > 0 to be
fixed.

Let Crw, A, &0 > 0 be given by Proposition 3.2 with o = 1—12 (see Figure 3.3), n, and
A = H. We consider two cases according to how large n is.

Case n > AL In this case, we can apply Proposition 3.2 to get, for all y € A,,
P[0 & y] < CrwPg[0 LN x] + nmax {IPg[O LN w] :wy > n/2}

+Amax{Eg’H(w,O) cwyp >n/2, SeEB, S C A13N/12(%e1), S>3 w},
(3.25)

Combining the above display with (3.24), the upper bound from (2.92), and (a minor
generalisation of) Lemma 2.11 yields

> C C KD1 C
= Lpd-1 nLndfl A [pa-1

Choosing 7 small enough and then L large enough concludes the proof in that case.

CrwPs[0 < ] (3.26)
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Figure 4: An illustration of how Proposition 3.2 is applied in the proof of Lemma 3.3.

The red segments represent the sets A, and Ay. The boxes are centred at w = 7év e.

Case n < AL To handle the small values of n, we repeat the random walk argument
used at several places above. As before, set ¢ := ¢3({0}). Since 5 > By, one has ¢ > 1.
Let 7 be the exit time of H,. Summing over ¢ < T the t-th iteration of (1.15) with S
being a singleton and A = H gives

T-1

H
P[0 <= z] > Erw.0,8[¢ ™ Lr,<TAr] — ( ® ) max Pslw E x] (3.27)
t=0
T-1
—( got) max E{ whH (w; w; x) (3.28)
wWHT
=0 isTL
T-1
—( got) max E]g(w,x), (3.29)
wH#xT
=0 T

where 7, is the hitting time of x and 7 is the exit time of H,. Note that above, it is
possible that in the local error term v = x. This explains the additional term (3.28).
Classical random walk estimates give the existence of cpw = crw(4,d), T = T(A,d) > 0
such that

CRW

Prw,0,8lma <T AT] > Id (3.30)
Using (?7) and (2.92),
T-1 H KC T-1
K(tzogot) rgiich[wa] S T tz[:)(l—i—%)t, (3.31)

which can be made smaller than “E% by choosing L large enough. Moreover, if w # z,

ng} H (w; w; x) prz )Pwi (B)Pslz LN z|Pglt LN x). (3.32)
zF#t
Using (2.92) we obtain the existence of C; = C1(C,d) > 0 such that
w C
Eé }’H(w;w;x) < %Td’ (3.33)
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and by choosing L large enough we get

t E{ w},H < apye CRW‘ 34
(%s@) max (w;w;z) < 75 (3.34)
|lw|<TL
Finally, if w # x and |w| < TL,
H H H H
Ej(w,r) = Z prz )Pwt (B)Pglz = v|Pg[t <= v]Pglv = ] (3.35)
vg A (w) z#t
= Z Z Pslv PN prz )Pwt(B)Pglz LN v|Pslt & v] (3.36)
k>0 vedH _g z#t
vEAL(w)
C2(2TL + L) L d—1 Cc? k + L)
d—1
(3.37)
where we used that v # z,t (since v ¢ Az (w)) and the following:
(24) (27)4-1C?(2TL + L) L d-1 (292) C
H H
Pyt <5 0] < Lo (Lv|k_L|) : slz ol < o (3:38)
(2.5) C?(k+ L)
H
> Palvra] < 6 (k) + 7 (3.39)
veEOH _j
We can then obtain the existence of Co = Co(T, C,d) > 0 such that
Cy
Ej(w, ) < T3 (3.40)
Once again, if L is large enough,
CRW
(Z go) max EB (w,z) < ik (3.41)
=0 |w|<TL
This concludes the proof in that case. O

We now turn to the full plane lower bound below scale L%.

Lemma 3.4. Let d > 6. There exist ¢ = ¢(d),e > 0 and Ly > 0 such that for every
L > Ly, every € < g, every fo < B < B¢, and every x € A5L/ﬁ,

p c L d—2
> — | — . .
o0 0] > 5 (Lvm) (3.42)

Proof. RP: I will include the proof ASAP. Notice that small values of x are bounded
using the half-space bound! O

We are now in a position to prove Theorem 1.2.
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Proof of Theorem 1.2. We already have the corresponding lower bounds for |z| < 5L/B‘
Let us turn to the general case. We focus on the full space estimate but the half-space
holds the same. Introduce, for k > 0,

my 1= min {]P’g[x —0]:z¢€ Sk}, (3.43)

where S, := {z € Z¢: kLjy < |z| < (k+1)Lj}. We prove by induction for k& > 5 that for
some c¢1 > 0,
1 c k—5

S RIGATE R -

For k = 5, it is simply (3.42) with ¢/ = ¢. We now assume that k > 6. For every x € S,
if A = AL% (x), note that

1 1 1
Y. Bely = alpy.(8) > ogres(Ary) > o55(1 =€) =: 3co. (3.45)
2d 2 B 24d
yeEANAL_1
z¢A
Y~z
Lemma 1.5 therefore imply that for every x € Sk,
K AL/ (I),Zd
Ps[0 += x] > 3comp—1 — ﬁMl(x) —E; " (z,0), (3.46)
where
My(z) == max{Pg[0 <> y] : y € AgL/B+L(x)}. (3.47)
Now, define
Ld S.7,4
Dy(z) := My(x) + ¥7d werf{lza;/((z) max E;” (w,0). (3.48)
B SCA, ()
8
Ssw
Notice that J
L
Do(z) = P3[0 > 2] + ngd(gg, 0). (3.49)
As a result, we may rewrite (3.46) as
K
]P’g[o — .CC} > 300mk_1 — ﬁDl(fE) (350)
If %Dl(az) < Dy(z), then (3.50) gives
3 Ld Zd
Pgl0 <= ] > Scomp—1 — ﬁEﬁ (x,0). (3.51)

Lemma 3.5 below allows to bound this non-local error term by $my_; provided that L
is large enough. As a consequence, we find my > comi_1 and therefore the induction
hypothesis, except if there is z € Sy such that %Dl (x) > Do(x). We show below that
this is in fact impossible by proceeding by contradiction.

Let n < 1/(4Crw) small to be fixed and K/L? < 2n. Also, (potentially) decrease € so
that Proposition 3.2 holds true for this n and a = 1 (decreasing € would not contradict
the previous use of Lemmata 3.3 and 3.4 as Lg(¢) is increasing in ¢).
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For ¢ such that 0 ¢ A(HQ)L/B(QU), Proposition 3.2 applied to all boxes of size L’ﬁ
centered on sites in A, L, (x) gives

d
Deta(a) < CrwDe(w) +nMees(@) + A max o ¥ (w,0)  (352)
(e+2)17, SCA(e42)1), (@)
Sow
< CrwDe(z) + nDp12(), (3.53)

provided L is large enough that AK /L% <. Yet, the choices of L and 7, as well as the
assumption that

Dy(z) < —D1(z) (3.54)

Ld
imply recursively that Dy(z) < 2nDyy;1(x) as long as 0 ¢ A(HQ)L% (). In particular, if
¢ := ||z|/Lj] — 3, we obtain that

C, (3.42)
B
(2.91) 3C2 L 574
< 25— +2n— EZ 0).
S Moy TR b, By B0
B 5@ SCA(Z-H)L’B(x)
Sow

(3.56)

Need one last Lemma to bound the error term by O(l)L‘Z(L"@)Q_d. I am finishing a proof
of that. The choice of n leads to a contradiction, therefore concluding the proof. O

Lemma 3.5. Assume that 3’ is such that L’ﬂ > L. Assume that x € S, with k > 6.
Then, for some Dg = D2(C,d) > 0,

1 1D 1
74 2 —c(k=5
E (.T 0) Ld 6 Ld L2 We ( ), (357)
and so, under the induction hypothesis, E% (x,0) = O(L5~H)my_.
Proof. Recall that
EZ (x,0) Z me )2t (B)Pglz <= v]Pg[t <= v]Pglv <= 0]. (3.58)

vg Ay (z) z#t
We first look at the contribution coming from v € Ag L, (). Using the near-critical full-
space bound (we need to state a version with L:g instead of Lg but this is fine), one has,

for such v,

Pslv <= 0] < (Lb?dQ o c(k=5) (3.59)

Hence,

> > Pe(B)pat(B)Pslz < v]P3t < v]Pg[v < 0]
'UGAE,L%( )\AL(z) 2#t

Aq 1 1 1
< ety 1L 1
— / \d—2 2d 1d _ +|d—4
(Lﬁ) e (2) L2 L4z — ¢
1 1 A2 e—c(k—5)

< Td )
— Ld—4 Ld (L’B)d_Q
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where we used that

1 L =2 L -2 1 1
2 Ld(L\/|z—v|> M(L\/]t—v|> §ﬁ|z—t|d—4' (360)
vesyy (@\AL(@)

The contribution for v € A z, is handled easily too. This reduces the problem to control-

ling,
1 AdevaL% 7dUVL%
= ¢ c . (3.61)
16 |z — v[2d—1 Jp[d—2
veZd
[v|>L
le—v|> L
O
4 Miscellenaous
The previous analysis also implies that
Ps, [0 «— OA,] > % (4.1)
n
Indeed, for any finite set S C A,, containing 0, we have
p(An) < 93(8) max{ps(An(e)) : @ € An}. (4.2)

As a consequence, if S is contained in Lg, we deduce that ¢5(S) > 1(1+ K/LY) ™ =: ¢;.
We then deduce from [DCT16] that Pg, [0 +— JAL,] > cac1(Bc — B). When plugging the
asymptotic Lg =< (B, — ﬁ)_I/Q, one obtains the result.

Appendix A: proof of Lemma 1.5

Considering a self-avoiding path from o to z we obtain

{OAx}\{oéx} C U {oéy}o{yz is open}o{z@x}, (A.1)
yes
z€A\S
Y~z
which gives the upper bound by the BK inequality.
For the reverse bound, let

S 0))¢
N = Z 1o JEN Y, Yz is open, z Mﬁ x), (A.2)
yes
z€A\S

where C¥(0) is the cluster of o in S. Clearly,

{o& i\ {o& 2} o (N > 1) (A.3)
Notice that?

PN > 1] 2 2E5[N] — Eg[N?]. (A.4)

9This is a consequence of the fact that for ¢ € [0, 00], 2¢(1 —t) < 1[t > 1].
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Write

EglV] = > > PslC5(0) = Clpy. (8)Pslz < al, (A5)
yesS Cdy
z€A\S
and . N N .
Pg[z&x]:IF’g[sz]— (Pg[sz]—Pg[z&a:]). (A.6)

Using [AN84, Proposition 5.2], we find that

Pg[z@ x] — szHx > PslA(z,v Pg[v<—>x] (A7)
veC

where A(z,v) is the event that z and v are connected by a path which contains exactly
one element of C'. Combined with (A.5), and using the fact that C' C S, this yields

0< 3 P[0 S ylpy.(B)Ps[2 & 2] — EN]
zgifs

< Y Y Bsl{o Sy, 0 vho {z & v}p(BPslv < al.

yeS wveS
zeA\S

Using the BK inequality again yields,

Ps[{o EN Y, 0 TN v}o{z & v} <Pglo EN Y, 0 =N v|Pglz & v]. (A.8)
Finally, using [AN84, Proposition 4.1], we get
IP’/g[o(iy, RN v] < ZIP’g[o(iu]Pg[ué v|Pglu <£>y] (A.9)
u€eS
We obtained,
S A
EgN] > Z Pslo <> ulpy.(B)Pslz < (A.10)
yeS
z€A\S
S S S A A
= > > Pglo > ylPslu <> y|Ps[u <> vlpy. (B)Pslz <= v]Pglv < ] (A.11)
u,veS yeSs
z€A\S

It remains to analyze Eg[N?]. Notice that,

€ S c
EB[NQ] - EB[M"" Z Pglo <ﬁ> Y,yz is open, z M ,0 <£> s, st is open, t <—>(C ©)

Yy,8€S
z,teA\S
yz#£st
(A.12)

Using the same techniques as above, and taking into account that we may have y = s or
z =t (but not simultaneously),

EgN? —Eg[N] < (I) + (IT) + (IIT) (A.13)
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where

(D)= > Pslo uPslu < yPs[u < slpy- (s BBz ¢ v]Ps[t < v]Ps[v & 2,

ueS y,s€S
vEA y#£s
z,teA\S
zF#t
(A.14)
S A A A
(II) := Z Z Pslo <= ylpy-(B)pyt(B)Pslz <= v]Pg[t <= v|Pslv <= ], (A.15)
veA yeS
z,teA\S
z#t

(1) =3 Y Palo S uPslu S y)Pslu S slpy.(B)ps-(B)Bslz <> 2] (A.16)
uesS y#ses
z€A\S

The proof follows readily.

Appendix B: Computation in Lemma 2.6

Let n > 0. We fix § < 8* and drop it from the notations. By the definition given in
(1.16)-(1.19), we write

d
EimT = £(1) + £(2) + £(3) + £(4), (A.17)
where
)= 3 3 PO wlPlu £ y]Plu 5 o]p,.Plz 5 0] (A.18)
u,veH, yeH,
2¢H,
£(2) = Z Z P[0 Hey ulPlu Hey y|P[u Hry S|pyuPsv (A.19)
u€eHy, y,s€Hy,
vg¢H, y#s
EB)i= 3 3 PO &S wlPlu 5 y]Plu % s]py.puPslz < v]PJt <5 0], (A.20)
ueH, y,s€Hy,
veZd  y#s
z,t¢Hy,
z#t
E4):=>_ > P ML Y|Dy=pytP[z = v]P[t = v]. (A.21)
’UEZd yeHn
z,t¢H,
zF#t

Bound on £(1) We write

)= 3 PO Al Y Plu i ylp,. S Pludm Pz 0] (A22)
>0 u€dH,, _, yEH, veH,
z¢Hy,

Using (2.3) and the fact that |z — v| > 0, there exists C; = C1(C,d) > 0 such that for
all £ > 0, and all relevant v and z,

Cy

Z Plu Hy V|P[z <= v] < Z Plu <= v]|P[z <= v] < le(£+1)d4'

veH, veH,

(A.23)
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Using Lemma 2.5, for every u € 0Hl, g,

3 Plu % ylpy. = pp(Hy) < 6C°. (A.24)
yEH,
z¢H,,

Finally, using (2.5) of Lemma 2.4,

C*({+L
S P& < 6,(0) + (Lj) (A.25)
u€OH,, _p
Putting all the pieces together we found Co = C3(C,d) > 0 such that
Z A.26)
d 5 Y (
e>0 £+
which converges when d > 6.
Bound on £(2) Write
Hy Hy
Z Z P[0 LN u] Z Plu <= y|Plu < s]pyvPso- (A.27)
>0 u€eH,, _, y,s€Hn
y#s
v,

Since y and s are distinct, one of them is distinct from w. Hence, by symmetry, and using
the fact that for a fixed v one has >°, g pyo < 8*[J| < 2,

2 d—1
S Bl & Bl 2 sl < 420 (=) w®m0 A

d _
y,s€Hy, L V4 L
y7#s
v¢H,
(A.24) C5 L d—1
< — | —— . .
- 48Ld <LA(€—L)> (4.29)
We obtained,
48C5 < >d—1 H
= > P+ ul. (A.30)
>0 L A Z L) u€H, ¢

Using (2.5) once again in (A.30), we obtain Cs = C3(C, d) > 0 such that
£(2) < —. (A.31)

Bound on £(3) By (2.3), there exists Cy = C4(C,d) > 0 such that, for all z # ¢ as
above,

S Pyl ¢ ofPft o o] < 0L

vEZ
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Now, write

ST PO ufPlu £ gl Sy 5] Luzbet (A.33)
|z — |44

uE]HIn

y,s€H,

z,t¢H,,

z#t

H Hy, DyzPst
k>0 uedH,, y,sEHn
z,t¢H,
zF#t
(A.34)

Looking first at the contribution coming from |z — ¢t| > k + 1, we find, for some C5 =
C5(C,d) >0,

Hn Hn Hn p ZpS
SN Poemu] Y Pl ylPu S]\ziﬂdt*‘l (A.35)
k>0 u€edH,, y,s€H,
z,t¢Hy,
|z2—t|>k+1
©p(Hy)? H,
< %W > PO+ (A.36)
ueaHn—k
Loy ! (A.37)
= 5 1. 1 ANd—5 " .
= (k1)

which is finite when d > 6, and where we additionally used Lemma 2.5 in the last
inequality. We turn to the contribution coming from |z — ¢| < k. First, by (2.4) we find
that

H, 202 L d—1
Plu & 5 < 22 ((k_L)vL> . (A.38)
Then, there exists Cs = Cg(d) > 0 such that for fixed y, z as above,

1 1 .

Z pstm < Z pstm < Cs(L - k).
teAL (2)\{z}NHS, teAy (2)\{z}N[—L,L]x[—k,k]%1
s, seAp(t)
(A.39)

Finally, we obtained,

Hn Hn Hn p ZpSt
Z Z P[0 + u] Z Plu <+ y|Pu 8]|zﬁt]d—4

k>0 u€doH,, _g y,s€Hy,
z,t¢H,
|z—t|<k
20206 L d=1 3 H
> pp(Hy) () Lk Y PO+ u
E>0 k—L)VL wEHH,, 1,
S 075

where C7 = C7(C,d) > 0. Gathering the last display and (A.32), we obtained,

CyCr

£(3) < 1

(A.40)

Bound on £(4) This last term is handled by similar arguments as £(3). We omit the
details.
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