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Abstract

This article proposes a new way of deriving mean-field exponents for sufficiently
spread-out Bernoulli percolation in dimensions d > 6. Among other results, we
obtain up-to-constant estimates for the full plane and half-plane two-point functions
in the critical and near-critical regimes. In a companion paper, we apply a similar
analysis to the study of the weakly self-avoiding walk model in dimensions d > 4 [?].

1 Introduction
Grasping the (near) critical behaviour of lattice models is one of the key challenges

in statistical mechanics. A possible approach involves determining the models’ critical
exponents. Performing this task is typically very challenging, as it involves the unique
characteristics of the models and the geometry of the graphs on which they are con-
structed.

A significant observation was made for models defined on the hypercubic lattice Zd:
beyond the upper-critical dimension dc, the influence of geometry disappears, and the
critical exponents simplify, matching those found on a Cayley tree (or Bethe lattice) or
on the complete graph. The regime d > dc forms the mean-field regime of a model.

Prominent techniques such as the lace expansion [BS85] and the rigorous renor-
malisation group [BBS14, BBS15a, BBS15b, BBS19] have been developed to analyze the
mean-field regime. However, a significant drawback of these approaches is their pre-
dominantly perturbative nature, necessitating the identification of a small parameter
within the model. It has been established, using lace expansion, that in several con-
texts [HS90a, Sak07, Har08, Sak15, FvdH17, Sak22] this small parameter can be taken to
be 1

d , meaning that mean-field behaviour was recovered in these setups in dimensions
d≫ 1.

In the example of the nearest-neighbour (meaning that bonds are pairs of vertices
separated by unit Euclidean distance) Bernoulli percolation, mean-field behaviour was
established in dimensions d > 10 [HS90a, Har08, FvdH17]. This leaves a gap to fill to
reach the expected upper critical dimension of the model dc = 6. It is however possible
to provide rigorous arguments to identify dc by introducing an additional perturbative
parameter in the model. In the spread-out Bernoulli percolation model, the bonds are
pairs of vertices separated by distance between 1 and L, where L is taken to be sufficiently
large. According to the deep conjecture of universality, the critical exponents of these
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two models should match. This makes spread-out Bernoulli percolation the natural test
ground to develop the analysis of the mean-field regime of Bernoulli percolation.

Lace expansion was successfully applied to study various spread-out models in sta-
tistical mechanics, including Bernoulli percolation [HS90a,HHS03], lattice trees and an-
imals [HS90b], the Ising model [Sak07,Sak22], and even some long-range versions of the
aforementioned examples [CS15, CS19]. Much more information on the lace expansion
approach can be found in [Sla06].

In this paper, we provide an alternative argument to obtain mean field bounds on the
two-point function of sufficiently spread-out Bernoulli percolation in dimensions d > 6.
This technique extends to a number of other (spread-out) models after relevant modifi-
cations. In a companion paper [?], we provide a treatment of the weakly self-avoiding
walk model. However, the strategy developed there does not apply mutatis mutandis
to the setup of spread-out Bernoulli percolation, and the presence of long finite range
interactions requires an additional care.

Notations Consider the hypercubic lattice Zd and let y ∼ z denote the fact that y and
z are neighbors in Zd. Set ej to be the unit vector with j-th coordinate equal to 1. Write
xj for the j-th coordinate of x, and denote its ℓ∞ norm by |x| := max{|xj | : 1 ≤ j ≤ d}.
Set Λn := {x ∈ Zd : |x| ≤ n} and for x ∈ Zd, Λn(x) := Λn +x. Also, set Hn := −ne1 +H,
where H := Z+ × Zd−1 = {0, 1, . . .} × Zd−1. Let ∂S be the boundary of the set S given
by the vertices in S with one neighbor outside S. Finally, introduce the set of generalized
blocks of Zd,

B :=
{ d∏

i=1
{ai, . . . , bi} ⊂ Zd such that ∀i ≤ d,−∞ ≤ ai ≤ 0 ≤ bi ≤ ∞

}
. (1.1)

If A and B are two percolation events, we write A◦B the event of disjoint occurrence
of A and B.

1.1 Definitions and statement of the results

Let L ≥ 1. Since L will be fixed for the whole article, we omit it from the notations.
We will consider the Bernoulli percolation measure Pβ such that for every u, v ∈ Zd,

puv(β) := Pβ[uv is open] = 1− exp(−βJuv) = 1− Pβ[uv is closed], (1.2)

where Juv = c(L)11≤|u−v|≤L, and c(L) is a normalization constant which guarantees that
|J | :=

∑
x∈Zd J0,x = 1 (i.e. c(L) = (|ΛL| − 1)−1). Much more general choices can be

made for J (see e.g. [HS90a,HS02,HHS03]) but we restrict our attention to the above for
simplicity.

We are interested in the model’s two-point function which is, for Λ ⊂ Zd, the proba-
bility Pβ[x Λ←→ y]. When Λ = Zd, we simply write Pβ[x ←→ y] = Pβ[x Zd

←→ y]. It is well
known that this model undergoes a phase transition for the existence of an infinite cluster
at some parameter βc ∈ (0,∞). Moreover, for β < βc, Pβ[x ←→ y] decays exponentially
fast in |x− y|, see [AN84,AB87,DCT16]

Our main result is a near-critical estimate of the two-point function in the full space
and in the half space H.

It is convenient to use as a correlation length the sharp length Lβ defined below (see
also [DCT16, Pan23, ?] for a study of this quantity in the context of the Ising model).
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For β ≥ 0 and S ⊂ Zd, let

φβ(S) :=
∑
y∈S
z /∈S
y∼z

Pβ[0 S←→ y]pyz(β). (1.3)

The sharp length Lβ is defined as follows:

Lβ := inf{k ≥ 1 : φβ(Λk) ≤ 1/e} ∈ [1,∞]. (1.4)

Also, let β0 be such that φβ0({0}) = 1.
Theorem 1.1. Let d > 6. There exists L0 = L0(d) > 0 such that for every L ≥ L0 the
following holds. There exist c, C > 0 such that for all β ≤ βc,

Pβ[0←→ x] ≤ δ0(x) + C

Ld

(
L

L ∨ |x|

)d−2
exp(−c|x|/Lβ) ∀x ∈ Zd, (1.5)

Pβ[0 H←→ x] ≤ δ0(x) + C

Ld

(
L

L ∨ |x1|

)d−1
exp(−c|x1|/Lβ) ∀x ∈ H. (1.6)

The second main theorem of this article is a set of lower bounds matching the bounds
in Theorem 1.1 up to uniform multiplicative constants.
Theorem 1.2. Let d > 6. There exists L0 = L0(d) > 0 such that for every L ≥ L0 the
following holds. There exist c, C > 0 such that for all β0 ≤ β ≤ βc,

Pβ[0←→ x] ≥ c

Ld

(
L

L ∨ |x|

)d−2
exp(−C|x|/Lβ) ∀x ∈ Zd, (1.7)

Pβ[0 H←→ x] ≥ c

Ld

(
L

|x| ∨ L

)d−1
exp(−C|x|/Lβ) ∀x ∈ H with x1 = |x|. (1.8)

A direct consequence of Theorem 1.1 is the finiteness at criticality of the so-called
triangle diagram, which plays a central role in the study of the mean-field regime of
Bernoulli percolation, see [AN84,HS90a,BA91].
Corollary 1.3 (Finiteness of the triangle diagram). Let d > 6. There exists L0 =
L0(d) > 0 such that for every L ≥ L0,

∇(βc) :=
∑

x,y∈Zd

Pβc [0←→ x]Pβc [x←→ y]Pβc [y ←→ 0] <∞. (1.9)

We now describe how to recover the mean-field behaviour of the susceptibility and
the correlation length ξβ defined for β < βc by

χ(β) :=
∑

x∈Zd

Pβ[0↔ x], ξ−1
β := lim

n→∞
− 1

n logPβ[0←→ ne1]. (1.10)

Corollary 1.4. Let d > 6. There exists L0 = L0(d) > 0 such that for every L ≥ L0 the
following holds. There exist c, C > 0 such that for all β0 ≤ β < βc,

c(βc − β)−1 ≤ χ(β) ≤ C(βc − β)−1, (1.11)
c(βc − β)−1/2 ≤ ξβ ≤ C(βc − β)−1/2, (1.12)
c(βc − β)−1/2 ≤ Lβ ≤ C(βc − β)−1/2. (1.13)

Proof. Let d > 6 and L0 be given by Corollary 1.3. Again using Corollary 1.3, we find
that ∇(βc) < ∞ which implies by [AN84] the bounds of (1.11). The bounds (1.12) and
(1.13) are obtained using (1.11) and Theorems 1.1 and 1.2 twice: one time to get that
ξβ ≍ Lβ and a second time to get χ(β) ≍ L2

β, where ≍ means that the quantities are
bounded away from each other by constants that are independent of β.
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1.2 Strategy of the proof

A crucial role will be played by the following two inequalities. We include the proof
of this statement in the Appendix.

Lemma 1.5. For 0 < β < βc, o ∈ S ⊂ Λ, and x ∈ Λ,

Pβ[o Λ←→ x] ≤ Pβ[o S←→ x] +
∑
y∈S

z∈Λ\S

Pβ[o S←→ y]pyz(β)Pβ[z Λ←→ x], (1.14)

Pβ[o Λ←→ x] ≥ Pβ[o S←→ x] +
∑
y∈S

z∈Λ\S

Pβ[o S←→ y]pyz(β)Pβ[z Λ←→ x]−
∑
u∈S
v∈Λ

ES,Λ
β (o;u, v)Pβ[v Λ←→ x].

(1.15)

where for u ∈ S and v ∈ Λ,use diagram not for next

ES,Λ
β (o;u, v) := 1v∈S

∑
y∈S

z∈Λ\S

Pβ[o S←→ u]Pβ[u S←→ y]pyz(β)Pβ[z Λ←→ v]Pβ[v Λ←→ u] (1.16)

+ 1v∈Λ\S

∑
u∈S

∑
y ̸=s∈S

Pβ[o S←→ u]Pβ[u S←→ y]Pβ[u S←→ s]pyv(β)psv(β) (1.17)

+
∑

y,s∈S
y ̸=s

z,t∈Λ\S
z ̸=t

Pβ[o S←→ u]Pβ[u S←→ y]Pβ[u S←→ s]pyz(β)pst(β)Pβ[z Λ←→ v]Pβ[t Λ←→ v]

(1.18)

+ δo(u)
∑
y∈S

z,t∈Λ\S
z ̸=t

Pβ[o S←→ y]pyz(β)pyt(β)Pβ[z Λ←→ v]Pβ[t Λ←→ v]. (1.19)

In particular, if S = {o}, for all v ∈ Λ,

E
{o},Λ
β (o; o, v) = δo(v)

∑
z∈Λ\{o}

poz(β)Pβ[z Λ←→ o]+
∑

z,t∈Λ\{o}
z ̸=t

poz(β)pot(β)Pβ[z Λ←→ v]Pβ[t Λ←→ v].

(1.20)
When o = 0, we simply write ES,Λ

β (u, v) := ES,Λ
β (0;u, v).

If S ∋ 0, the quantity
ES,Λ

β :=
∑
u∈S
v∈Λ

ES,Λ
β (u, v) (1.21)

will be referred to as the error amplitude. One of the pivotal steps of our argument is a
proof that EΛn,Zd

β and EHn,Zd

β are finite and small (in terms of L). This is also where the
assumption d > 6 becomes crucial.

Remark 1.6. The correction term or “error” term in the lower bound of Lemma 1.5
(illustrated in Figure 1) differs from the corresponding one for the weakly self-avoiding
walk model at different levels. We first notice that it makes appear (1.16) that is rem-
iniscent of the triangle diagram of percolation. The terms (1.17)-(1.19) come from the
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possibility of finding multiple candidates for the “first” edge leaving S. Then, (1.18)-
(1.19) are “non-local” in the sense that they have a non-zero contribution for v /∈ S+ΛL.
Local errors (like in the case of the weakly self-avoiding walk) are more convenient as
they allow for bounds of the type∑

u∈S
v∈S+ΛL

ES,Λ
β (o;u, v)Pβ[v Λ←→ x] ≤ ES,Λ

β ·max
{
Pβ[w Λ←→ x] : w ∈ S + ΛL

}
. (1.22)

Such a bound is not immediately available for the remaining terms in the error. However,
in the proof, we will argue that in the cases of interest, v will typically be “close” to S.
This will allow to treat this additional error term as being “local”, at least in average.

S

o

u

y

v

z
x

o

u

y
s

x

u

o

s t

z
y

v

x

o = u

y = s

z

t

v

x

v = z = t

Figure 1: An illustration of the different terms contributing to ES,Λ
β (o;u, v). The dotted

lines represent the open edges leaving S. From left to right and top to bottom, we
illustrate (1.16)–(1.19). The two configurations at the top correspond to “local” error
terms in the sense that v has to remain in S + ΛL. The two configurations at the
bottom correspond to “non-local” error terms since v can potentially be far away from
S. surprised there cannot be only two terms. For instance 2 and 3 aren’t the same with
z not different from t

The following definition is motivated by Remark 1.6.

Definition 1.7. Let 0 < β < βc. Let S ⊂ Λ, o ∈ S, and x ∈ Λ. We introduce ES,Λ
β (o, x),

the non-local error term, defined by

ES,Λ
β (o, x) :=

∑
u∈S

v /∈S+ΛL

ES,Λ
β (o;u, v)Pβ[v Λ←→ x]. (1.23)
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When S = {o} is a singleton, we just write ES,Λ
β (o, x) = EΛ

β (o, x).

The random walk distribution naturally associated with φβ(Λk) for β > 0 and k ≥ 0
will play a pivotal role in our arguments.

Definition 1.8. Let β > 0, k ≥ 0, and x ∈ Zd. Define the simple random walk (Xx
k )k≥0

started at x ∈ Zd and of law P(k)
RW,x,β given by the step distribution:

P(k)
RW,x,β[Xx

1 = y] :=
1y /∈Λk(x)
φβ(Λk)

∑
u∈Λk(x)

Pβ[x Λk(x)←−−→ u]puv(β). (1.24)

When k = 0, we just write PRW,x,β := P(0)
RW,x,β.
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2 Proof of Theorem 1.1
For β > 0 and k ≥ 0, define

ψβ(Hk) :=
∑

x∈∂Hk

Pβ[0 Hk←→ x]. (2.1)

We will use a bootstrap argument (following the original idea from [Sla87]) and prove that
an a priori estimate on the half-plane two-point function can be improved for sufficiently
large L. The idea will be to observe that the two inequalities of Lemma 1.5 provide
a good control on ψβ(Hk), which can be interpreted as an ℓ1 estimate on the half-
plane two-point function at distance k. The point-wise, or ℓ∞, (half-space) estimate will
follow from a regularity estimate which allows to compare two-point functions ending
at close points. Finally, we will deduce the full space estimate from the half-space one.
The improvement of the a priori estimates will be permitted by classical random walk
computations involving the random walk introduced in Definition 1.8.

To implement this scheme, we introduce the following parameter β∗.

Definition 2.1. Let C > 1. We define β∗ = β∗(C) to be the largest real number in1

[0, 2 ∧ βc] such that for every β < β∗,

ψβ(Hn) < δ0(n) + C
L

∀n ≥ 0, (ℓ1β)

Pβ[0 H←→ x] < δ0(x) + C
Ld

(
L

L ∨ |x1|

)d−1
∀x ∈ H. (ℓ∞β )

The first and second assumptions can be understood as ℓ1 and ℓ∞ bounds on the half-
space two-point function. Note that when C is large enough, one has β∗ ≥ β0 where β0

1It might be surprising to additionally ask β∗ ≤ 2. However, we will see that βc = 1 + O(L−d) as L
goes to infinity.
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is defined2 by φβ0({0}) = 1, as a bound by the corresponding random-walk quantities
implies that the estimates are true at β = β0 (this can be seen by iterating infinitely
many times the upper bound of Lemma 1.5 with S a singleton and β = β0).

Our goal is to show that β∗ is in fact equal to βc provided that C is large enough. The
proof goes in three steps. First, we show that we can obtain a bound on φβ(Hn) when
β < β∗. This corresponds to the sum of the ψβ(Hn−k) for 0 ≤ k ≤ L − 1. Second, we
control the gradient of the two-point function. Third, we use that the two-point function
does not fluctuate too much when moving a little one of the endpoints (thanks to the
second point) to turn the bound on φβ(Hn) into an improved bound on ψβ(Hn). This last
quantity is in some sense an improvement of the ℓ1 bound on the half-space two-point
function, which can be use (using the second point once again) to obtain an improved
ℓ∞ bound. From these improvements, we obtain that β∗ cannot be strictly smaller than
2 ∧ βc, since otherwise the improved estimates would remain true (by exponential decay)
for β slightly larger than β∗, which would then contradict the definition of β∗. Thus,
β∗ = 2 ∧ βc. The last step of the argument then consists of proving that β∗ < 2 which
immediately forces β∗ = βc.

2.1 Obtaining bounds on φβ(B) with B ∈ B

The following proposition is the crucial step of our strategy: from the bounds (ℓ1β)
and (ℓ∞β ), we obtain a bound on φβ(Hn) that involves the range L. In some sense, for
large L this bound will be an improvement on (ℓ1β), as we will see in Section 2.3.

Proposition 2.2. Fix d > 6 and C > 1. There exists K = K(C, d) > 0 such that for
every β < β∗ and B ∈ B,

φβ(B) < 1 + K

Ld
. (2.2)

Remark 2.3. It would be interesting to prove that such a bound holds for φβ(S) uni-
formly on every finite set S containing 0 and not only for B ∈ B.

We start with a number of simple bounds on the two-point function in the bulk and
in the half-space obtained thanks to the assumption that β < β∗.

Lemma 2.4. Fix d > 6 and C > 1. For every β < β∗,

Pβ[0←→ x] ≤ 3C2

Ld

(
L

L ∨ |x|

)d−2
∀x ∈ Zd \ {0},

(2.3)

Pβ[0 Hn←−→ x] ≤ C2(k + L)
Ld+1

(
L

L ∨ (n− k)

)d−1
∀n ≥ k ≥ 1, ∀x ∈ ∂Hn−k,

(2.4)∑
x∈∂Hn−k

Pβ[0 Hn←−→ x] ≤ δn(k) + C2(k + L)
L2 ∀n, k ≥ 0.

(2.5)

Proof. Let us start with the first inequality. Assume that x1 = |x|. If the connection
to x is not included in H, decompose according to the first left-most point z of an open

2Note that β0 ≥ 1 since 1 = φβ0 ({0}) ≤
∑

x∈Zd (1 − e−β0J0x ) ≤ β0
∑

x∈Zd J0x = β0 since |J | = 1.
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∂Hn−k∂Hn∂Hn

Figure 2: On the left, an illustration of the decomposition of a self-avoiding path con-
necting 0 to x used in the proof of (2.3). On the right, a similar decomposition used in
the proof of (2.4).

self-avoiding path connecting 0 to x; see Figure 2. Using the BK inequality (see [Gri99]),
we get when |x| ≥ L,

Pβ[0←→ x] ≤ Pβ[0 H←→ x] +
∑
n≥1

∑
z∈∂Hn

Pβ[0 Hn←−→ z]Pβ[z Hn←−→ x] (2.6)

(ℓ∞
β )
≤ C

Ld

(
L

|x| ∨ L

)d−1
+
∑
n≥1

ψβ(Hn) C
Ld

(
L

L ∨ (|x|+ n)

)d−1
(2.7)

(ℓ1
β)
≤ C

L2
1

|x|d−2 + C2

L2
1

(d− 2)|x|d−2 ≤
(C + 1)C

L2
1

|x|d−2 , (2.8)

where on the last inequality, we used that |x| ≥ L and that
∑

n≥α
1

(n+1)d−1 ≤ 1
(d−2)αd−2

for α ≥ 1. When 1 ≤ |x| < L,

Pβ[0←→ x] ≤ C
Ld

+
L−|x|∑
n=1

ψβ(Hn) C
Ld

+
∑

n≥L−|x|+1
ψβ(Hn)C

L

1
(|x|+ n)d−1 ≤

C(2C + 1)
Ld

.

(2.9)
For the second inequality, pick x ∈ ∂Hn−k. To bound Pβ[0 Hn←−→ x], decompose an

open self-avoiding path connecting 0 to x according to its first left-most point z; see
Figure 2. Using the BK inequality one more time, we get

Pβ[0 Hn←−→ x] ≤ Pβ[0 Hn−k←−−→ x] +
k−1∑
j=0

∑
z∈∂Hn−j

Pβ[z Hn−j←−−→ x]Pβ[z Hn−j←−−→ x] (2.10)

(ℓ∞
β )
≤ C

Ld

(
L

L ∨ (n− k)

)d−1
+

k−1∑
j=0

∑
z∈∂Hn−j

C
Ld

(
L

L ∨ (n− j)

)d−1
Pβ[z Hn−j←−−→ x]

(2.11)
(ℓ1

β)
≤
(

C
Ld

+ C2k

Ld+1

)(
L

L ∨ (n− k)

)d−1
. (2.12)

For the third inequality, consider the same decomposition as the second one, but use
(ℓ1β) twice instead of (ℓ1β) and (ℓ∞β ). Consider first the case 0 ≤ k ≤ n − 1. Summing
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(2.10) (which holds for that range of k) over x ∈ ∂Hn−k gives

∑
x∈∂Hn−k

Pβ[0 Hn←−→ x]
(ℓ1

β)
≤ C

L
+ kC2

L2 . (2.13)

We similarly get that for k = n,∑
x∈∂H

Pβ[0 Hn←−→ x] ≤ 1 + C
L

+ nC2

L2 . (2.14)

The case k > n is handled similarly by replacing Pβ[0 Hn−k←−−→ x] by Pβ[0 H←→ x] in
(2.10).

We begin with a (rough) bound on φβ(Hn) when β < β∗.

Lemma 2.5. Fix d > 6 and C > 1. For every β < β∗, every n ≥ 0,

φβ(Hn) ≤ 6C3. (2.15)

Proof. Let n ≥ 0. Decompose a percolation configuration contributing to one of the
summand in φβ(Hn) according to the left-most point u along an open self-avoiding walk
connecting 0 to y. This gives

φβ(Hn) ≤
L−1∑
k=0

∑
y∈∂Hn−k

z /∈Hn

pyz(β)
k∑

ℓ=0

∑
u∈∂Hn−ℓ

Pβ[0 Hn−ℓ←−−→ u]Pβ[u Hn−ℓ←−−→ y] (2.16)

=
L−1∑
k=0

k∑
ℓ=0

∑
u∈∂Hn−ℓ

Pβ[0 Hn−ℓ←−−→ u]
( ∑

y∈∂Hn−k

z /∈Hn

pyz(β)Pβ[u Hn−ℓ←−−→ y]
)

(2.17)

=
L−1∑
ℓ=0

∑
u∈∂Hn−ℓ

Pβ[0 Hn−ℓ←−−→ u]
( L−1∑

k=ℓ

∑
y∈∂Hn−k

z /∈Hn

pyz(β)Pβ[u Hn−ℓ←−−→ y]
)
. (2.18)

Now, notice that for k ≤ ℓ ≤ L− 1 and y ∈ ∂Hn−k, one has,∑
z /∈Hn

pyz(β) ≤ L− k
2L (|ΛL| − 1)(1− e−βJ0e1 ) ≤ βL− k2L ≤ 1, (2.19)

where we used that β ≤ β∗ ≤ 2. It follows that,

φβ(Hn) ≤
L−1∑
ℓ=0

∑
u∈∂Hn−ℓ

Pβ[0 Hn−ℓ←−−→ u]
( L−1∑

k=ℓ

∑
y∈∂Hn−k

Pβ[u Hn−ℓ←−−→ y]
)

(2.20)

(2.5)
≤

L−1∑
ℓ=0

∑
u∈∂Hn−ℓ

Pβ[0 Hn−ℓ←−−→ u]
L−1∑
k=ℓ

(
δk(ℓ) + C2(k − ℓ+ L)

L2

)
(2.21)

≤ (1 + 2C2)
L−1∑
ℓ=0

∑
u∈Hn−ℓ

Pβ[0 Hn−ℓ←−−→ u] (2.22)

(ℓ1
β)
≤ (1 + 2C2)(1 + C) ≤ 6C3. (2.23)

This concludes the proof.
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We now turn to the estimate of the “error” in (1.15) when β < β∗.

Lemma 2.6. Fix d > 6 and C > 1. There exists K = K(C, d) > 0 such that for every
β < β∗ and B ∈ B,

EB,Zd

β ≤ K

Ld
. (2.24)

Proof. For the first inequality, we use the pointwise bounds of Lemma 2.4. The fact that
d > 7 implies the existence of K. For completeness, we include the full computation in
Appendix 4. The second inequality follows from the first one (by changing K) since

EB,Zd

β ≤
∑

i

E
H−ai ,Zd

β +
∑

i:bi<∞
E

Hbi
,Zd

β

by monotonocity.

We are now equipped to prove Proposition 2.2.

Proof of Proposition 2.2. Fix B ∈ B. Summing (1.14) over every x ∈ Zd gives

φβ(B)χ(β)− χ(β)EB,Zd

β ≤ χ(β), (2.25)

which implies the result by dividing by χ(β) and using Lemma 2.2.

2.2 Control of the gradient

Proposition 2.2 implies a ℓ1-type bound on the half-space two-point function which
involves the range L of the interaction, and which in some sense is better than (ℓ1β). The
following regularity estimate, which will be the goal of this section, will later allow us on
to convert the bound on φβ(Hn) into improved ℓ1 and ℓ∞ bounds. We recall that B is
the set of blocks of Zd.

Proposition 2.7 (Regularity estimate at mesoscopic scales). Fix d > 6 and C > 1. For
every η > 0, there exist δ = δ(η, d) ∈ (0, 1/2), A = A(η, d), and L0 = L0(η,A,C, d) such
that for every L ≥ L0, every β < β∗, every n ≥ AL, every Λ ⊃ Λ3n, every X ⊂ Λ \ Λ3n,
and every u, v ∈ Λδn,∣∣∣ ∑

x∈X

Pβ[u Λ←→ x]− Pβ[v Λ←→ x]
∣∣∣ ≤ η max

w∈Λ3n

∑
x∈X

Pβ[w Λ←→ x] (2.26)

+A max
w∈Λ3n

max
S∈B

S⊂Λ3n
S∋w

∑
x∈X

ES,Λ
β (w, x). (2.27)

We begin with a regularity estimate at microscopic scales of order L.

Lemma 2.8 (Regularity estimate at microscopic scales). Fix d > 6 and C > 1. For every
η > 0, there exist A1 = A1(η, d) > 0 and L1 = L1(η,A1,C, d) > 0 large enough such that
for every L ≥ L1, every β < β∗, every n ≥ A1L, every Λ ⊃ Λ2n, every X ⊂ Λ \ Λ2n,
every u, v ∈ Λn with |u− v| ≤ 3L,∣∣∣ ∑

x∈X

Pβ[u Λ←→ x]− Pβ[v Λ←→ x]
∣∣∣ ≤ max

w,w′∈Λ2n

(
η
∑
x∈X

Pβ[w Λ←→ x] +A1
∑
x∈X

EΛ
β (w′, x)

)
.

(2.28)
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Proof. We prove the result for X = {x}, but the general argument follows similarly. Set
φ := φβ({0}). Let T ≥ 1 to be fixed, n ≥ 2TL, and assume u, v ∈ Λn with |u− v| ≤ 3L.
Iterating (1.15) T times with S a singleton and Λ gives

Pβ[u Λ←→ x] ≤ φβ({0})TERW,u,β

[
Pβ[XT

Λ←→ x]
]

(2.29)

Pβ[v Λ←→ x] ≥ φβ({0})TERW,v,β

[
Pβ[XT

Λ←→ x]
]
− K

Ld

( T −1∑
t=0

φt
)

max
w∈Λn+(T +1)L

Pβ[w Λ←→ x]

−
( T −1∑

t=0
φt
)

max
w∈Λn+T L

EΛ
β (w, x), (2.30)

where K is the constant provided by Lemma 2.6.
A random-walk estimate3 implies that for every η > 0, there exists T = T (η, d)

large enough such that the random walks Xu
T and Xv

T can be coupled to coincide with
probability larger than 1− η/2. This implies

ERW,u,β

[
Pβ[XT

Λ←→ x]
]
− ERW,v,β

[
Pβ[XT

Λ←→ x]
]
≤ η

2 max
{
Pβ[w Λ←→ x] : w ∈ Λn+T L

}
.

(2.31)
Furthermore, since φ ≤ 1+ K

Ld , we may choose L1 = L1(η, T,K, d) large enough such that
for L ≥ L1, K

Ld−1
∑T −1

t=0 φt ≤ η/2 and
∑T −1

t=0 φt ≤ 2T . The result follows by plugging these
estimates and (2.31) in the difference of (2.29) and (2.30), and setting A1 := 2T .

Let Λ+
n := {x ∈ Λn : x1 > 0} and H = H(L) := {v ∈ Zd : |v1| ≤ L}. The next result

formalizes the fact that when x ∈ Λn, most of the mass in φβ(Λn(x)) comes from the
side of Λn that is the closest to x.

Lemma 2.9. Fix d > 6 and C > 1. Let K be the constant of Lemma 2.6. There exist
c = c(d), L2 = L2(C, d) > 0 such that for every L ≥ L2, every β < β∗, and every v ∈ Λ+

k

with k ≤ n/2, ∑
y∈Λ+

n

z /∈Λ+
n ∪H

Pβ[v Λ+
n←−→ y]pyz(β) ≤

(
1 + K

Ld

)(2k
n

)c
. (2.32)

Proof. Define (nℓ) by n0 = n and then nℓ+1 = ⌊(nℓ− 1)/2⌋. We proceed by induction by
proving that for every ℓ ≥ 0 and v ∈ Λ+

nℓ
,∑

y∈Λ+
n

z /∈Λ+
n ∪H

Pβ[v Λ+
n←−→ y]pyz(β) ≤

(
1− 1

2d
)ℓ(

1 + K

Ld

)ℓ+1
(2.33)

The case ℓ = 0 follows from Proposition 2.2. Let us transfer the estimate from ℓ to ℓ+ 1.
Fix v ∈ Λ+

nℓ+1 . Let B := Λv1−1(v). By symmetry and Lemma 2.2, we have that∑
r∈B

s/∈B∪H

Pβ[v B←→ r]prs(β) ≤ 2d− 1
2d φβ(B) ≤

(
1− 1

2d
)(

1 + K

Ld

)
. (2.34)

3For full disclosure we briefly explain how to obtain it. Note that it is sufficient to suppose that u
and v differ by only one coordinate, say the first one. Consider a sequence of i.i.d real random variable
(ξi)i≥1 of law given by P[ξi = k] = 1−L≤k≤L, k ̸=0

(2L+1)
(2L+1)d−1 + 1k=0

2L
(2L+1)d−1 . Consider an independent

copy (ξ′
i)i≥1. Let Sk := (u1 − v1) +

∑k

i=1(ξi − ξ′
i) and write Pu1−v1 for the law of the associated random

walk (started at u1 − v1). Let η > 0. It is sufficient to show that there exists a universal (in particular
independent of L) constant C = C(η) such that for all T ≥ C, Pu1−v1 [τ0 > T ] ≤ η/2, where τ0 is the
hitting time of 0. This last fact can be found in [Uch11].
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We deduce from Lemma 1.5 and the induction hypothesis that∑
y∈Λ+

n

z /∈Λ+
n ∪H

Pβ[v Λ+
n←−→ y]pyz(β) ≤

∑
y∈Λ+

n

z /∈Λ+
n ∪H

( ∑
r∈B

s/∈B∪H

Pβ[v B←→ r]prs(β)Pβ[s Λ+
n←−→ y]

)
pyz(β)

=
∑
r∈B

s/∈B∪H

Pβ[v B←→ r]
( ∑

y∈Λ+
n

z /∈Λ+
n ∪H

Pβ[s Λ+
n←−→ y]pyz(β)

)
prs(β)

≤
(
1− 1

2d
)ℓ−1(

1 + K

Ld

)ℓ ∑
r∈B

s/∈B∪H

Pβ[v B←→ r]prs(β)

(2.34)
≤

(
1− 1

2d
)ℓ(

1 + K

Ld

)ℓ+1
.

This concludes the proof by choosing L large enough so that (1 − 1
2d)(1 + K

Ld ) < 1 and
c > 0 small enough.

We are now in a position to prove the main result of this section.

Proof of Proposition 2.7. We prove the result for X = {x}, the general case follows
similarly. Assume first that u = ke1 and v = −ke1 (with k ≤ δn). Consider the sets
B+ := Λ+

n and B− := −Λ+
n . Applying Lemma 1.5 twice gives

Pβ[u Λ←→ x] ≤
∑

y∈B+

z /∈B+

Pβ[u B+
←−→ y]pyz(β)Pβ[z Λ←→ x], (2.35)

Pβ[v Λ←→ x] ≥
∑

y∈B−

z /∈B−

Pβ[v B−
←−→ y]pyz(β)Pβ[z Λ←→ x]− K

Ld
max

w∈B−+ΛL

Pβ[w Λ←→ x]− EB−,Λ
β (v, x).

(2.36)

We take the difference and use that when z ∈ H, we may associate every pair (y, z)
in the sum in (2.35) with the pair (y′, z′) symmetric with respect to the hyperplane
{u ∈ Zd : u1 = 0} in the sum in (2.36), see Figure 3. By doing so, we notice that z and
z′ are within a distance 2L of each other. Hence, if A1 = A1(η/2) and L1 are given by
Lemma 2.8, providing L ≥ L1, we get that for such pairs (y, z) and (y′, z′),∣∣∣Pβ[z Λ←→ x]− Pβ[z′ Λ←→ x]

∣∣∣ ≤ η

2 max
w∈Λ2n

Pβ[w Λ←→ x] +A1 max
w∈Λ2n

EΛ
β (w, x). (2.37)

Plugging this estimate in the difference of (2.35) and (2.36), and then invoking Lemma 2.9
(to the cost of potentially increasing L again), gives

Pβ[u Λ←→ x]− Pβ[v Λ←→ x] (2.38)

≤
(η

2φβ(B+) +
∑

y∈B+

z /∈B+∪H

Pβ[u B+
←−→ y]pyz(β) + K

Ld

)
max

w∈Λ2n

Pβ[w Λ←→ x]

+ φβ(B+)A1 max
w∈Λ2n

EΛ
β (w, x) + EB−,Λ

β (v, x) (2.39)

≤
[(

1 + K

Ld

)(η
2 + (2δ)c

)
+ K

Ld

]
max

w∈Λ2n

Pβ[w Λ←→ x]

+
(
1 + K

Ld

)
K1 max

w∈Λ2n

EΛ
β (w, x) + EB,Λ

β (v, x), (2.40)
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where we used Proposition 2.2 to obtain that φβ(B+) ≤ 1 + K
Ld . We then write,

(
1 + K

Ld

)
A1 max

w∈Λ2n

EΛ
β (w, x) + EB−,Λ

β (v, x) ≤ 2A1 max
w∈Λ2n

max
S∈B

S⊂Λ2n
S∋0

ES,Λ
β (w, x). (2.41)

The proof follows by setting A = 2A1, choosing δ = δ(η) small enough, and then L large
enough.

When u = ke1 and v = −(k + 1)e1, simply change B− to −e1 − Λ+
n . The general

case follows by rotating and translating4 the box. The final result follows by summing
over different coordinates and changing η to dη.

2.3 Proof of Theorem 1.1

Before moving to the improvement of the ℓ1 and ℓ∞ bounds, we begin with two
useful estimates on the non-local error term Eβ which appears in the regularity estimates
of Proposition 2.7 and Lemma 2.8.

Lemma 2.10. Fix d > 6, C > 1, and A > 0. Let K be the constant of Lemma 2.6. For
every β < β∗, one has,

max
w∈ΛAL

∑
x∈∂Hn

EHn
β (w, x) ≤ K + 8C2

L

C
Ld

∀n > 2AL. (2.42)

Proof. By definition, if w ∈ ΛAL,∑
x∈∂Hn

EHn
β (w, x) =

∑
x∈∂Hn

∑
v∈Hn\ΛL

∑
z,t∈Hn

z ̸=t

pwz(β)pwt(β)Pβ[z Hn←−→ v]Pβ[t Hn←−→ v]Pβ[v Hn←−→ x].

(2.43)
The contribution for coming from v /∈ ∂Hn is bounded by

∑
v∈Hn−1

∑
z,t∈Hn

z ̸=t

pwz(β)pwt(β)Pβ[z ←→ v]Pβ[t←→ v]
( ∑

x∈∂Hn

Pβ[v Hn←−→ x]
)

(ℓ1
β)
≤ C

L
EΛ0,Zd

β ≤ CK
Ld+1 , (2.44)

4This explains the fact that we consider the maximum on Λ3n instead of Λ2n.
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where we used Lemma 2.6 in the last inequality. Moreover,∑
v∈∂Hn

∑
z,t∈Hn

z ̸=t

pwz(β)pwt(β)Pβ[z Hn←−→ v]Pβ[t Hn←−→ v]
( ∑

x∈∂Hn

Pβ[v Hn←−→ x]
)

(2.45)

(ℓ1
β)
≤
(
1 + C

L

) ∑
v∈∂Hn

∑
z,t∈Hn

z ̸=t

pwz(β)pwt(β)Pβ[z Hn←−→ v]Pβ[t Hn←−→ v]

(2.46)
(ℓ∞

β )
≤

(
1 + C

L

) C
Ld

∑
z,t∈Hn

pwz(β)pwt(β)Pβ[t Hn←−→ v] (2.47)

(ℓ1
β)
≤
(
1 + C

L

) C
Ld

C
L

( ∑
z∈Zd

p0z(β)
)2

(2.48)

≤ 4C2

Ld+1

(
1 + C

L

)
≤ 8C3

Ld+1 , (2.49)

where in the third inequality we used the fact that n > 2AL (which ensures that z, t /∈
∂Hn). The proof follows readily.

Lemma 2.11. Fix d > 6, C > 1. There exists D1 = D1(C, d) > 0 such that the following
holds. For every β < β∗, for every n > 12L, and every x ∈ ∂Hn,

max
w∈Λn/2

max
S∈B

S⊂Λn/2
S∋w

ES,Hn

β (w, x) ≤ D1
L4

C
Lnd−1 (2.50)

Proof. Fix w and S as above. By definition,

ES,Hn

β (w, x) = (I) + (II) =∑
u∈S

v /∈S+ΛL

∑
y,s∈S
y ̸=s

z,t∈Hn\S
z ̸=t

Pβ[w S←→ u]Pβ[u S←→ y]Pβ[u S←→ s]pyz(β)pst(β)Pβ[z Hn←−→ v]Pβ[t Hn←−→ v]Pβ[v Hn←−→ x]

+
∑

v /∈S+ΛL

∑
y∈S

z,t∈Hn\S
z ̸=t

Pβ[w S←→ y]pyz(β)pyt(β)Pβ[z Hn←−→ v]Pβ[t Hn←−→ v]Pβ[v Hn←−→ x].

Bound on (I) Notice that the contribution coming from v ∈ H3n/4 is bounded by

(2d)2 max
{
Pβ[w Hn←−→ x] : w ∈ H3n/4

}
·max

{
EHk,Zd

β : k ≥ 0
}
≤ (2d)2 C(4/3)d−1

Lnd−1
K

Ld
,

(2.51)
where we used (ℓ∞β ) and Lemma 2.6. We turn to the contribution for v ∈ Hn \ H3n/4.
Notice that z, t contribute if they are at distance at most L from S, that is z, t ∈
Λn/2+L ⊂ Λn/2+n/12. If p ∈ {0, . . . , n/4 − 1}, v ∈ ∂Hn−p, and z, t are as above, then
|z − v|, |t− v| ≥ n/6 and

Pβ[z Hn←−→ v]Pβ[t Hn←−→ v]
(2.3)
≤ 9C4

L4
62d−4

n2d−4 . (2.52)
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Moroever, ∑
v∈Hn−p

Pβ[v Hn←−→ x] = ψβ(Hn−p)
(ℓ1

β)
≤ δ0(p) + C

L
. (2.53)

For a fixed u ∈ S, Proposition 2.2 gives

∑
y,s∈S
y ̸=s

z,t∈Hn\S
z ̸=t

Pβ[u S←→ y]Pβ[u S←→ s]pyz(β)pst(β) ≤ φβ(S)2 ≤
(
1 + K

Ld

)2
. (2.54)

Finally, we use (2.3) to get C1 = C1(C, d) > 0 such that∑
u∈S

Pβ[w S←→ u] ≤
∑

u∈Λn/2

Pβ[w ←→ u] ≤ C1n
2. (2.55)

Putting all the previous displayed equations together, we obtain C2 = C2(C, d) > 0 such
that

(I) ≤ C2
L4nd−6

C
Lnd−1 (2.56)

Bound on (II) This is similar and we omit the details.

Lemma 2.12 (Improving the ℓ1 bound). Let d > 6 and ε > 0. For every C large enough,
there exists L0 = L0(ε,C, d) such that for L ≥ L0 and β < β∗,

ψβ(Hn) ≤ δ0(n) + εC
L

∀n ≥ 0. (2.57)

Proof. We divide our proof between large and small values of n. Since ψβ(Hn) is increas-
ing in β, it is sufficient to prove the result for β0 ≤ β < β∗ where we recall that β0 ≥ 1
satisfies φβ0({0}) = 1. We let A1, L1 be given by Lemma 2.8 with η = ε/2 and assume
that L ≥ L1.

Case n > 4A1L Set ℓ := ⌈L/2⌉. Lemma 2.8 applied to η = ε/2, Λ = Hn, X = ∂Hn,
u = 0 and v ∈ {−ℓe1, . . . ,−e1} implies that for every 0 ≤ k ≤ ℓ,

ψβ(Hn) ≤ ψβ(Hn−k)+η max
s∈{−2A1L,...,2A1L}

ψβ(Hn+s)+A1 max
w∈Λ2A1L

∑
x∈∂Hn

EHn
β (w, x). (2.58)

Now, The contribution for coming from v /∈ ∂Hn is bounded by

∑
v∈Hn−1

∑
z,t∈Hn

z ̸=t

pwz(β)pwt(β)Pβ[z ←→ v]Pβ[t←→ v]
( ∑

x∈∂Hn

Pβ[v Hn←−→ x]
)

(ℓ1
β)
≤ C

L
EΛ0,Zd

β ≤ CK
Ld+1 , (2.59)
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where we used Lemma 2.6 in the last inequality. Moreover,∑
v∈∂Hn

∑
z,t∈Hn

z ̸=t

pwz(β)pwt(β)Pβ[z Hn←−→ v]Pβ[t Hn←−→ v]
( ∑

x∈∂Hn

Pβ[v Hn←−→ x]
)

(2.60)

(ℓ1
β)
≤
(
1 + C

L

) ∑
v∈∂Hn

∑
z,t∈Hn

z ̸=t

pwz(β)pwt(β)Pβ[z Hn←−→ v]Pβ[t Hn←−→ v]

(2.61)
(ℓ∞

β )
≤

(
1 + C

L

) C
Ld

∑
z,t∈Hn

pwz(β)pwt(β)Pβ[t Hn←−→ v] (2.62)

(ℓ1
β)
≤
(
1 + C

L

) C
Ld

C
L

( ∑
z∈Zd

p0z(β)
)2

(2.63)

≤ 4C2

Ld+1

(
1 + C

L

)
≤ 8C3

Ld+1 , (2.64)

where in the third inequality we used the fact that n > 2AL (which ensures that z, t /∈
∂Hn). The proof follows readily.

Using (ℓ1β) and Lemma 2.10,

ψβ(Hn) ≤ ψβ(Hn−k) + C
L

(ε
2 +A1

K + 8C2

Ld

)
. (2.65)

Now,

ℓ∑
k=0

ψβ(Hn−k) =
ℓ∑

k=0

∑
y∈∂Hn−k

Pβ[0 Hn−k←−−→ y] (2.66)

≤
∑

y∈Hn\Hn−ℓ−1

Pβ[0 Hn←−→ y] (2.67)

≤
∑

y∈Hn\Hn−ℓ−1

Pβ[0 Hn←−→ y] · 4
φβ({0})

∑
z /∈Hn

pyz(β) (2.68)

≤ 4φβ(Hn) ≤ 4
(
1 + K

Ld

)
. (2.69)

In the third line we used that the sum of the pyz(β) over z /∈ Hn is bounded from below
by a fourth of the sum over all possible z, which is φβ({0}) ≥ 1 for β ≥ β0.

Averaging on 0 ≤ k ≤ ℓ, we deduce that

ψβ(Hn) ≤ 1
ℓ+ 14

(
1 + K

Ld

)
+ C
L

(ε
2 +A1

K + 8C2

Ld

)
. (2.70)

Providing C > 8/ε and then L large enough, this concludes this case.

Case n ≤ 4A1L As before, set φ := φβ({0}). Let τ be the exit time of Hn. Summing
over x ∈ ∂Hn and t ≤ T the t-th iteration of (1.15) with S being a singleton and Λ = Hn

gives

ψβ(Hn) ≤ δ0(n) + max{φt : t ≤ T}ERW,0,β[N ] + φ({0})TERW,0,β[ψβ(Hn−(XT )1)1τ>T ],
(2.71)
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where N := |{1 ≤ t ≤ T ∧ τ : Xt ∈ ∂Hn}|.
Classical random walk estimates give the existence of ARW = ARW(A1, d) > 0 and

T = T (ε,A1, d) large enough,

ERW,0,β[N ] ≤ ARW
L

, (2.72)

PRW,0,β[τ > T ] ≤ ε

4 . (2.73)

Assume that L ≥ L0 = L0(T,K, d) be such that (1 +KL−d)T ≤ 2. Corollary 2.2 gives

max{φt : t ≤ T} ≤ (1 +KL−d)T ≤ 2 ∀t ≤ T. (2.74)

Collecting the above work yields

ψβ(Hn) ≤ δ0(n) + 2ARW
L

+ εC
2L . (2.75)

The result follows by choosing C ≥ 4ARW/ε.

Lemma 2.13 (Improving the ℓ∞ bound). Let d > 6, C > 0. For every C large enough,
there exists L0 = L0(d,C) such that for L ≥ L0 and β < β∗,

Pβ[0 Hn←−→ x] ≤ δ0(x) + C
2Ld

(
L

L ∨ n

)d−1
∀n ≥ 0, ∀x ∈ ∂Hn. (2.76)

Proof. Let η, ε to be fixed later. Again, we divide our proof between large and small
values of n. Let δ = δ(η) and A = A(η) be given by Proposition 2.7.

Case n > 6AL Set Vn := {y ∈ Λδn/6 : y1 = 0}. Proposition 2.7 (applied to n/6 and η)
gives that for every β < β∗, every x ∈ ∂Hn and y ∈ Vn,

Pβ[0 Hn←−→ (x− y)] = Pβ[y Hn←−→ x] ≥ Pβ[0 Hn←−→ x]− ηmax
{
Pβ[w Hn←−→ x] : w ∈ Λn/2

}
−A max

w∈Λn/2
max
S∈B

S⊂Λn/2
S∋w

ES,Hn

β (w, x). (2.77)

Using Lemma 2.11, we may choose L large enough such that

A max
w∈Λn/2

max
S∈B

S⊂Λn/2
S∋w

ES,Hn

β (w, x) ≤ ηC
Lnd−1 . (2.78)

Averaging over y gives and choosing L even larger (in terms of ε) yields

εC
L

1
|Vn|

(2.57)
≥ 1
|Vn|

ψβ(Hn) ≥ 1
|Vn|

∑
y∈Vn

Pβ[0 Hn←−→ (x− y)] (2.79)

(ℓ∞
β )
≥ Pβ[0 Hn←−→ x]− η C

L(n/2)d−1 − η
C

Lnd−1 . (2.80)

At this stage, consider η = 2−d, and then ε < δd/2. Choosing C = C(ε) large enough
and then L large enough, we find

Pβ[0 Hn←−→ x] ≤ C
2Lnd−1 . (2.81)
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Case n ≤ 6AL As before, set φ := φβ({0}). Let τ be the exit time of Hn. Summing
over t ≤ T the t-th iteration of (1.14) with S being a singleton and Λ = Hn gives

Pβ[0 Hn←−→ x] ≤ δ0(x) + max{φt : 0 < t < T}ERW,0,β[M] + φTERW,0,β

[
P[XT

Hn←−→ x]1τ>T

]
,

(2.82)

where M = |{1 ≤ t ≤ T ∧ τ : Xt = x}|. Classical random walk estimates give the
existence of CRW = CRW(A, d) > 0 such that

ERW,0,β[M] ≤ CRW
Ld

(
L

L ∨ n

)d−1
, (2.83)

PRW,0,β[τ > T ] ≤ CRW
T (d−1)/2 . (2.84)

Assuming again that L is chosen so large that (1 +KL−d)T ≤ 2, we finally obtain

Pβ[0 Hn←−→ x] ≤ δ0(x) + 2ARW
Ld

(
L

L ∨ n

)d−1
+ 2C
Ld

T−(d−1)/2. (2.85)

Choosing T large enough that (6A)d−1T−(1−2)/2 ≤ 1
8 and providing C > 8ARW, we find

again
Pβ[0 Hn←−→ x] ≤ δ0(x) + C

2L
( L

L ∨ n

)d−1
. (2.86)

We are now in a position to prove the following proposition.

Proposition 2.14. Fix d > 6. There exist K and L0 such that for every L ≥ L0,

βc ≤ 1 + K

Ld
, (2.87)

φβc(B) ≤ 1 + K

Ld
∀B ∈ B, (2.88)

EB,Zd

βc
≤ K

Ld
∀B ∈ B, (2.89)

ψβc(Hn) ≤ δ0(n) + K

L
∀n ≥ 0, (2.90)

Pβc [0←→ x] ≤ K

Ld

(
L

L ∨ |x|

)d−2
∀x ∈ Zd \ {0}, (2.91)

Pβc [0 H←→ x] ≤ K

Ld

(
L

L ∨ |x1|

)d−1
∀x ∈ H \ {0}. (2.92)

Proof. By Lemmata 2.12 and 2.13, we find that if C and L are large enough, for every
β < β∗,

ψβ(Hn) ≤ δ0(n) + C
2L ∀n ≥ 0, (2.93)

Pβ[0 Hn←−→ x] ≤ δ0(x) + C
2Ld

(
L

L ∨ n

)d−1
∀n ≥ 0, ∀x ∈ ∂Hn. (2.94)

By taking the supremum we find that those bounds still hold true at β = β∗.
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Let us now assume by contradiction that β∗ < 2 ∧ βc. Consider β∗∗ ∈ (β∗, 2 ∧ βc).
Exponential decay of correlations imply the existence of N = N(β∗∗,C) such that

ψβ∗∗(Hn) < C
L

∀n ≥ N, (2.95)

Pβ∗∗ [0 Hn←−→ x] < C
Ld

(
L

L ∨ |x1|

)d−1
∀x /∈ ΛN . (2.96)

Using continuity for n ≤ N and |x| ∈ ΛN , we deduce that some β ∈ (β∗, β∗∗) satisfies
(ℓ1β) and (ℓ∞β ), thus contradicting the definition of β∗.

From all of this, we obtain that β∗ = 2 ∧ βc and that in addition the properties hold
until 2 ∧ βc. Also, note that Proposition 2.2 implies the right bound on the φβ(Hn) and
φβ(Λn) for every β < β∗. Taking the supremum over β < β∗ implies the bounds at β∗.

It remains to show that β∗ = βc. For that, it suffices to notice that for L large enough
β∗ < 2. Indeed, the bound on φβ∗({0}) implies that for L large enough,

β∗ ≤ 1 + 2K
Ld

. (2.97)

This concludes the proof by choosing L so large that 2K
Ld < 1.

We conclude this section by proving Theorem 1.1.

Proof of Theorem 1.1. The previous proposition implies the estimates for |x| ≤ Lβ (chang-
ing the constant C to eC). We now turn to the case of |x| > Lβ. Below, Λ denotes either
Zd or the half-space H. Iterating (1.14) k := ⌊|x|/Lβ⌋ − 1 times (or ⌊|x1|/Lβ⌋ − 1 times
in the half-space case), we get that

Pβ[0 Λ←→ x] ≤ φβ(ΛLβ
)k max

{
Pβ[x Λ←→ y] : y /∈ ΛLβ

(x)
}
. (2.98)

We then invoke the definition of Lβ and the bounds (2.91) or (2.92) to conclude.

3 Proof of Theorem 1.2
In this section, we assume that C and L are large enough such that Proposition 2.14

holds. Let also K = K(C, d) be given by Proposition 2.14.

3.1 Lower bound on ψβ(Hn)
We start with our basic estimate for this section. It is a strengthening of the lower

bound corresponding to the upper bound on ψβ(Hn) obtained in the previous section.
Recall that β0 is such that φβ0({0}) = 1. Introduce for n, k ≥ 1,

ψ
[k]
β (Hn) :=

∑
x∈∂Hn
|x|≤k

Pβ[0 Hn←−→ x]. (3.1)

Lemma 3.1. There exists c > 0 such that for every L large enough, every β0 ≤ β ≤ βc

and every 1 ≤ n ≤ Lβ,
ψβ(Hn) ≥ ψ[n]

β (Hn) ≥ c

L
. (3.2)

Proof. The first inequality is clear, we therefore focus on the second one. Let η > 0 to be
fixed. We divide the proof between the case n > 4A1L and n ≤ 4A1L, where A1 = A1(η)
is provided by Lemma 2.8. We begin with the former as it is the most interesting one.
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Case n > 4A1L Reproducing the argument of (2.22),

φβ(Λn) ≤ 2d
∑

y∈Λn

y1∈{n−L+1,...,n}
z /∈Hn

Pβ[0 Λn←−→ y]pyz(β) (3.3)

≤ 2d
L−1∑
k=0

∑
y∈∂Hn−k

|y|≤n
z /∈Hn

pyz(β)
k∑

ℓ=0

∑
u∈∂Hn−ℓ

|u|≤n

Pβ[0 Hn−ℓ←−−→ u]Pβ[u Hn−ℓ←−−→ y] (3.4)

≤ 2d(1 + 2C2)
L−1∑
ℓ=0

ψ
[n]
β (Hn−ℓ). (3.5)

Moreover, since n > 4A1L, using the same reasoning as in (2.65) gives (by Lemma 2.8
and (2.90)) for L large enough,

L−1∑
ℓ=0

ψ
[n]
β (Hn−ℓ) ≤ Lψ

[n]
β (Hn) + 2ηC. (3.6)

Observe that n ≤ Lβ gives φβ(Λn) ≥ 1/e. Considering η small enough (which only
influences how big A1 is, and therefore how big L should be taken) concludes the proof.

Case n ≤ 4A1L Set φ := φβ({0}). Summing over x ∈ ∂Hn with |x| ≤ n and t ≤ T the
t-th iteration of (1.15) with S being a singleton and Λ = Hn gives

ψ
[n]
β (Hn) ≥ ERW,0,β[φτ∂1τ∂<T ∧τ ]−

( T −1∑
t=0

φt
)K
Ld

max
k≥0

ψβ(Hk)

−
( T −1∑

t=0
φt
)

max
w∈Hn

∑
x∈∂Hn

EHn
β (w, x), (3.7)

where τ∂ and τ are respectively the hitting times of {x ∈ ∂Hn, |x| ≤ n} and the com-
plement of Hn, and where we used (2.89). Using a simple random-walk estimate and
the fact that β ≥ β0, we get that for T large enough (in terms of A1), there exists
cRW = cRW(A1, d) > 0 such that

ERW,0,β[φτ∂1τ∂<T ∧τ ] ≥ PRW,0,β[τ∂ < T ∧ τ ] ≥ cRW
L

. (3.8)

Reproducing5 the argument of Lemma 2.10, we get C1 = C1(C, d) > 0 such that

max
w∈Hn

∑
x∈∂Hn

EHn
β (w, x) ≤ C1

Ld
(3.9)

By (??), φ ≤ 1 + K
Ld . We take L large enough so that

(∑T −1
t=0 φt

)
≤ 2. Gathering the

previous displayed equations and using (2.90) gives

ψ
[n]
β (Hn) ≥ cRW

L
− 2K

Ld

(
1 + C

L

)
− 2C1

Ld
. (3.10)

It remains to take L large enough as a function of T and C to conclude.
5We obtain a bound with a diminished power of L because z and t might simultaneously be in ∂Hn

in (2.60).
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3.2 A Harnack-type estimate

We will need to turn average estimates into pointwise ones. We therefore show another
regularity estimate. For ε > 0, introduce the quantity

Lβ(ε) := inf{n ≥ 0 : φβ(Λn) ≤ 1− ε}. (3.11)

Proposition 3.2 (Regularity estimate at macroscopic scales). Fix d > 6. For every
α > 0, there exists CRW = CRW(α, d) > 0 such that for every η > 0, there exist A
and L0 large enough, and ε0 > 0 small enough such that the following holds. For every
L ≥ L0, every ε < ε0, every n ≤ Lβ(ε) satisfying n ≥ AL, every β ≤ βc, and every
y /∈ Λ(1+α)n ⊂ Λ,

max
x∈Λn

Pβ[x Λ←→ y] ≤ CRW min
x∈Λn

Pβ[x Λ←→ y] + η max
x∈Λ(1+α)n

Pβ[x Λ←→ y]

+A max
u∈Λ(1+α)n

max
S∈B

S⊂Λ(1+α)n

S∋u

ES,Λ
β (u, y). (3.12)

The idea of the proof is to introduce a well-chosen rescaled random-walk and to
observe that its exit probabilities do not drastically depend on the start of the walk.
Combined with Proposition 2.7, this will enable us to conclude.

Proof. Fix m = ⌊αn/7⌋. Let η > 0 to be fixed later. Let δ = δ(η), A = A(η), and
L0 = L0(η) be given by Proposition 2.7. Set k = ⌊δm⌋, where δ = δ(η, d). Additionally
assume that n ≥ (7α−1AL) ∨ (7α−1δ−1L) so that m ≥ AL and k ≥ L. Consider the
random walk (Xu

n) defined by

P(k)
RW,u,β[X1 = v] :=

1v /∈Λk(u)
φβ(Λk)

∑
w∈Λk(u),

w∼v

Pβ[u Λk(u)←−−→ w]pwv(β). (3.13)

Note that this random walk does jumps at distance at most k + L. Let τ be the hitting
time of Zd \Λn+m. Let B1, . . . , Bs be the two layers of boxes of size k, centred at bi, that
are disjoint and covering Λn+m+4k \ Λn+m, see Figure 3.

We will use two a priori estimates on the random walk and the stopping time, that
can be easily obtained from classical random walk analysis6: there exist CRW(α, d) and
ε0 = ε0(α, η, d) > 0 such that for every φ ∈ [1− ε0, 1 + ε0],

E(k)
RW,x,β

[ τ∑
s=0

φs
]
≤ CRW ∀x ∈ Λn, (3.14)

E(k)
RW,x,β[φτ1Xτ ∈Bi ] ≤ CRWE(k)

RW,x′,β[φτ1Xτ ∈Bi ] ∀x, x′ ∈ Λn,∀i ≤ s. (3.15)

From now on, we assume that ε < ε0. By (??), φβ(Λk) ≤ 1+ K
Ld . We thus fix L0 = L0(ε0)

large enough that for L ≥ L0, K
Ld ≤ ε0. By the assumption n ≤ Lβ(ε), we find

1− ε ≤ φβ(Λk) ≤ 1 + ε0. (3.16)
6For the first inequality, simply observe that every (αδ)−2 steps there is a probability c of exiting the

box. Hence, as soon as ε0 ≪ (αδ)2, the estimate follows easily from a Laplace transform estimate of τ .
The second estimate follows from Harnack’s inequality for the (coarse grained) exit probabilities.
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Below, introduce the short-hand notation φ := φβ(Λk). Iterating the two bounds of
Lemma 1.5 until the hitting time τ gives

Pβ[x′ Λ←→ y] ≤ E(k)
RW,x′,β

[
φτPβ[Xτ

Λ←→ y]
]
, (3.17)

Pβ[x Λ←→ y]
(2.89)
≥ E(k)

RW,x,β

[
φτPβ[Xτ

Λ←→ y]
]
− K

Ld
E(k)

RW,x,β

[ τ∑
s=0

φs
]

max
u∈Λn+m+L

Pβ[u Λ←→ y]

− E(k)
RW,x,β

[ τ∑
s=0

φs
]

max
w∈Λn+m

EΛk(w),Λ
β (w, x)

(3.14)
≥ E(k)

RW,x,β

[
φτPβ[Xτ

Λ←→ y]
]
− K

Ld
CRW max

u∈Λn+m+L

Pβ[u Λ←→ y]

− CRW max
w∈Λn+m

EΛk(w),Λ
β (w, x). (3.18)

Proposition 2.7 gives that for every i,

max
u∈Bi

Pβ[u Λ←→ y] ≤ min
u∈Bi

Pβ[u Λ←→ y] + η max
u∈Λ3m(bi)

Pβ[u Λ←→ y]

+A max
u∈Λ3m(bi)

max
S∈B

S⊂Λ3m(bi)
S∋u

ES,Λ
β (u, y). (3.19)

Combining this estimate with (3.15) implies that for every i,

E(k)
RW,x′,β

[
φτ1Xτ ∈BiPβ[Xτ

Λ←→ y]
]
≤ CRWE(k)

RW,x,β

[
φτ1Xτ ∈BiPβ[Xτ

Λ←→ y]
]

(3.20)

+ ηE(k)
RW,x′,β[φτ1Xτ ∈Bi ] max

u∈Λ3m(bi)
Pβ[u Λ←→ y]

+A max
u∈Λ3m(bi)

max
S∈B

S⊂Λ3m(bi)
S∋u

ES,Λ
β (u, y).

Since Xτ belongs to some Bi, the previous estimate together with (3.17) and (3.18) gives7

Pβ[x′ Λ←→ y] ≤ CRWPβ[x Λ←→ y] + (η + K
LdC

2
RW) max

u∈Λn+7m

Pβ[u Λ←→ y]

+ (A+ C2
RW) max

u∈Λn+7m

max
S∈B

S⊂Λn+7m
S∋u

ES,Λ
β (u, y). (3.21)

(We also used one more time (3.14) to get that Ex′ [φτ ] ≤ CRW.) It remains to notice that
n+ 7m ≤ n+ αn, and to pick8 η = η(d) small enough, and then L0 large enough.

3.3 Proof of the lower bounds

To shorten the notation, we write L′
β := Lβ(ε). We start by lower bounding the

half-space two-point function at scale below 6L′
β (for some technical reason we will need

this multiplicative factor later). Let

An := {x ∈ Zd : x1 = |x| = n}. (3.22)
7We additionally used that n + m + 2k + 3m ≤ n + 7m.
8Note that it was fundamental that CRW was depending on d only.
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Figure 3: On the left, an illustration of the pairing used in the proof of Proposition 2.7.
The grey region corresponds to H. The red path corresponds to a long open edge
“jumping” outside Λ+

n (resp. −Λ+
n ). Since u (resp. v) is close to {u ∈ Zd : u1 = 0}, a

connection from u to x will most likely enter H if it exits Λ+
n . On the right, an illustration

of the proof of Proposition 3.2.

Lemma 3.3. Fix d > 6. There exist c, ε0 > 0 and L0 > 0 such that for every L ≥ L0,
every ε < ε0, every β0 ≤ β ≤ βc, and every x ∈ H with x1 = |x| ≤ 6L′

β,

Pβ[0 H←→ x] ≥ c

Ld

(
L

L ∨ |x|

)d−1
. (3.23)

Proof. First, by translation invariance, for every n ≤ L′
β,

1
|An|

∑
y∈An

Pβ[0 H←→ y] = 1
|An|

ψ
[n]
β (Hn) ≥ c

Lnd−1 , (3.24)

where c > 0 is provided by Lemma 3.1. We want to turn this average estimate into a
point wise one. Fix x ∈ AN with N ≤ 6L′

β and set n := ⌊N/6⌋ ≤ L′
β. Let η > 0 to be

fixed.
Let CRW, A, ε0 > 0 be given by Proposition 3.2 with α = 1

12 (see Figure 3.3), η, and
Λ = H. We consider two cases according to how large n is.

Case n ≥ AL In this case, we can apply Proposition 3.2 to get, for all y ∈ An,

Pβ[0 H←→ y] ≤ CRWPβ[0 H←→ x] + ηmax
{
Pβ[0 H←→ w] : w1 ≥ n/2

}
+Amax

{
ES,H

β (w, 0) : w1 ≥ n/2, S ∈ B, S ⊂ Λ13N/12(7N
6 e1), S ∋ w

}
,

(3.25)

Combining the above display with (3.24), the upper bound from (2.92), and (a minor
generalisation of) Lemma 2.11 yields

CRWPβ[0 H←→ x] ≥ c

Lnd−1 − η
C

Lnd−1 −
KD1
L4

C
Lnd−1 . (3.26)

Choosing η small enough and then L large enough concludes the proof in that case.
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Figure 4: An illustration of how Proposition 3.2 is applied in the proof of Lemma 3.3.
The red segments represent the sets An and AN . The boxes are centred at w = 7N

6 e1.

Case n < AL To handle the small values of n, we repeat the random walk argument
used at several places above. As before, set φ := φβ({0}). Since β ≥ β0, one has φ ≥ 1.
Let τ be the exit time of Hn. Summing over t ≤ T the t-th iteration of (1.15) with S
being a singleton and Λ = H gives

Pβ[0 H←→ x] ≥ ERW,0,β[φτx1τx<T ∧τ ]− K

Ld

( T −1∑
t=0

φt
)

max
w ̸=x

Pβ[w H←→ x] (3.27)

−
( T −1∑

t=0
φt
)

max
w ̸=x

|w|≤T L

E
{w},H
β (w;w;x) (3.28)

−
( T −1∑

t=0
φt
)

max
w ̸=x

|w|≤T L

EH
β (w, x), (3.29)

where τx is the hitting time of x and τ is the exit time of Hn. Note that above, it is
possible that in the local error term v = x. This explains the additional term (3.28).
Classical random walk estimates give the existence of cRW = cRW(A, d), T = T (A, d) > 0
such that

PRW,0,β[τx < T ∧ τ ] ≥ cRW
Ld

. (3.30)

Using (??) and (2.92),

K
( T −1∑

t=0
φt
)

max
w ̸=x

Pβ[w H←→ x] ≤ KC
Ld

T −1∑
t=0

(1 + K
Ld )t, (3.31)

which can be made smaller than cRW
4 by choosing L large enough. Moreover, if w ̸= x,

E
{w},H
β (w;w;x) =

∑
z ̸=t

pwz(β)pwt(β)Pβ[z H←→ x]Pβ[t H←→ x]. (3.32)

Using (2.92) we obtain the existence of C1 = C1(C, d) > 0 such that

E
{w},H
β (w;w;x) ≤ C1C

L2d
, (3.33)
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and by choosing L large enough we get

( T −1∑
t=0

φt
)

max
w ̸=x

|w|≤T L

E
{w},H
β (w;w;x) ≤ cRW

4Ld
. (3.34)

Finally, if w ̸= x and |w| ≤ TL,

EH
β (w, x) =

∑
v /∈ΛL(w)

∑
z ̸=t

pwz(β)pwt(β)Pβ[z H←→ v]Pβ[t H←→ v]Pβ[v H←→ x] (3.35)

=
∑
k≥0

∑
v∈∂H−k

v /∈ΛL(w)

Pβ[v H←→ x]
∑
z ̸=t

pwz(β)pwt(β)Pβ[z H←→ v]Pβ[t H←→ v] (3.36)

≤
∑
k≥0

(2T )d−1 C2(2TL+ L)
Ld+1

( L

L ∨ |k − L|

)d−1(
δx1(k) + C2(k + L)

L2

)(∑
z

p0z

)2 C
Ld
,

(3.37)

where we used that v ̸= z, t (since v /∈ ΛL(w)) and the following:

Pβ[t H←→ v]
(2.4)
≤ (2T )d−1C2(2TL+ L)

Ld+1

( L

L ∨ |k − L|

)d−1
, Pβ[z H←→ v]

(2.92)
≤ C

Ld
(3.38)

∑
v∈∂H−k

Pβ[v H←→ x]
(2.5)
≤ δx1(k) + C2(k + L)

L2 . (3.39)

We can then obtain the existence of C2 = C2(T,C, d) > 0 such that

EH
β (w, x) ≤ C2

L2d
. (3.40)

Once again, if L is large enough,

( T −1∑
t=0

φt
)

max
w ̸=x

|w|≤T L

EH
β (w, x) ≤ cRW

4Ld
. (3.41)

This concludes the proof in that case.

We now turn to the full plane lower bound below scale L′
β.

Lemma 3.4. Let d > 6. There exist c = c(d), ε > 0 and L0 > 0 such that for every
L ≥ L0, every ε < ε0, every β0 ≤ β ≤ βc, and every x ∈ Λ5L′

β
,

Pβ[0←→ x] ≥ c

Ld

(
L

L ∨ |x|

)d−2
. (3.42)

Proof. RP: I will include the proof ASAP. Notice that small values of x are bounded
using the half-space bound!

We are now in a position to prove Theorem 1.2.
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Proof of Theorem 1.2. We already have the corresponding lower bounds for |x| ≤ 5L′
β.

Let us turn to the general case. We focus on the full space estimate but the half-space
holds the same. Introduce, for k ≥ 0,

mk := min
{
Pβ[x←→ 0] : x ∈ Sk

}
, (3.43)

where Sk := {x ∈ Zd : kL′
β ≤ |x| < (k+ 1)L′

β}. We prove by induction for k ≥ 5 that for
some c1 > 0,

mk ≥
1
L2

c′

(5L′
β)d−2 c

k−5
1 (3.44)

For k = 5, it is simply (3.42) with c′ = c. We now assume that k ≥ 6. For every x ∈ Sk,
if Λ = ΛL′

β
(x), note that

∑
y∈Λ∩Ak−1

z /∈Λ
y∼z

Pβ[y ←→ x]pyz(β) ≥ 1
2d

1
2d−1φβ(ΛL′

β
) ≥ 1

2dd
(1− ε) =: 3c0. (3.45)

Lemma 1.5 therefore imply that for every x ∈ Sk,

Pβ[0←→ x] ≥ 3c0mk−1 −
K

Ld
M1(x)− E

ΛL′
β

(x),Zd

β (x, 0), (3.46)

where

Mℓ(x) := max{Pβ[0←→ y] : y ∈ ΛℓL′
β

+L(x)}. (3.47)

Now, define

Dℓ(x) := Mℓ(x) + Ld

K
max

w∈ΛℓL′
β

(x)
max
S∈B

S⊂ΛℓL′
β

(x)

S∋w

ES,Zd

β (w, 0). (3.48)

Notice that
D0(x) = Pβ[0←→ x] + Ld

K
EZd

β (x, 0). (3.49)

As a result, we may rewrite (3.46) as

Pβ[0←→ x] ≥ 3c0mk−1 −
K

Ld
D1(x). (3.50)

If K
LdD1(x) ≤ D0(x), then (3.50) gives

Pβ[0←→ x] ≥ 3
2c0mk−1 −

Ld

2K EZd

β (x, 0). (3.51)

Lemma 3.5 below allows to bound this non-local error term by c0
2 mk−1 provided that L

is large enough. As a consequence, we find mk ≥ c0mk−1 and therefore the induction
hypothesis, except if there is x ∈ Sk such that K

LdD1(x) > D0(x). We show below that
this is in fact impossible by proceeding by contradiction.

Let η < 1/(4CRW) small to be fixed and K/Ld ≤ 2η. Also, (potentially) decrease ε so
that Proposition 3.2 holds true for this η and α = 1 (decreasing ε would not contradict
the previous use of Lemmata 3.3 and 3.4 as Lβ(ε) is increasing in ε).
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For ℓ such that 0 /∈ Λ(ℓ+2)L′
β
(x), Proposition 3.2 applied to all boxes of size L′

β

centered on sites in ΛℓL′
β
(x) gives

Dℓ+1(x) ≤ CRWDℓ(x) + ηMℓ+2(x) +A max
w∈Λ(ℓ+2)L′

β
(x)

max
S∈B

S⊂Λ(ℓ+2)L′
β

(x)

S∋w

ES,Zd

β (w, 0) (3.52)

≤ CRWDℓ(x) + ηDℓ+2(x), (3.53)

provided L is large enough that AK/Ld ≤ η. Yet, the choices of L and η, as well as the
assumption that

D0(x) < K

Ld
D1(x) (3.54)

imply recursively that Dℓ(x) ≤ 2ηDℓ+1(x) as long as 0 /∈ Λ(ℓ+2)L′
β
(x). In particular, if

ℓ := ⌊|x|/L′
β⌋ − 3, we obtain that

c′

L2(5L′
β)d−2

(3.42)
≤ m4 ≤ Dℓ(x) ≤ 2ηDℓ+1(x) (3.55)

(2.91)
≤ 2η 3C2

L2(L′
β)d−2 + 2ηL

d

K
max

w∈Λ(ℓ+1)L′
β

(x)
max
S∈B

S⊂Λ(ℓ+1)L′
β

(x)

S∋w

ES,Zd

β (w, 0).

(3.56)

Need one last Lemma to bound the error term by O(1)L−2(L′
β)2−d. I am finishing a proof

of that. The choice of η leads to a contradiction, therefore concluding the proof.

Lemma 3.5. Assume that β′ is such that L′
β ≥ L. Assume that x ∈ Sk with k ≥ 6.

Then, for some D2 = D2(C, d) > 0,

EZd

β (x, 0) ≤ 1
Ld−6

1
Ld

D2
L2

1
(L′

β)d−2 e
−c(k−5), (3.57)

and so, under the induction hypothesis, EZd

β (x, 0) = O(L6−d)mk−1.
Proof. Recall that

EZd(x, 0) =
∑

v /∈ΛL(x)

∑
z ̸=t

pxz(β)pxt(β)Pβ[z ←→ v]Pβ[t←→ v]Pβ[v ←→ 0]. (3.58)

We first look at the contribution coming from v ∈ Λ5L′
β
(x). Using the near-critical full-

space bound (we need to state a version with L′
β instead of Lβ but this is fine), one has,

for such v,
Pβ[v ←→ 0] ≤ C

(L′
β)d−2 e

−c(k−5). (3.59)

Hence,∑
v∈Λ5L′

β
(x)\ΛL(x)

∑
z ̸=t

pxz(β)pxt(β)Pβ[z ←→ v]Pβ[t←→ v]Pβ[v ←→ 0]

≤ A1
(L′

β)d−2 e
−c(k−5) ∑

z ̸=t∈ΛL(x)

1
L2d

1
Ld

1
|z − t|d−4

≤ 1
Ld−4

1
Ld

A2
(L′

β)d−2 e
−c(k−5),
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where we used that

∑
v∈Λ5L′

β
(x)\ΛL(x)

1
Ld

(
L

L ∨ |z − v|

)d−2 1
Ld

(
L

L ∨ |t− v|

)d−2
≲

1
Ld

1
|z − t|d−4 . (3.60)

The contribution for v ∈ ΛL′
β

is handled easily too. This reduces the problem to control-
ling,

1
L6

∑
v∈Zd

|v|≥L′
β

|x−v|≥L′
β

e−2c|x−v|/L′
β

|x− v|2d−4
e−c|v|/L′

β

|v|d−2 . (3.61)

4 Miscellenaous
The previous analysis also implies that

Pβc [0←→ ∂Λn] ≥ c

n2 . (4.1)

Indeed, for any finite set S ⊂ Λn containing 0, we have

φβ(Λn) ≤ φβ(S) max{φβ(Λn(x)) : x ∈ Λn}. (4.2)

As a consequence, if S is contained in Lβ, we deduce that φβ(S) ≥ 1
e (1 +K/Ld)−1 =: c1.

We then deduce from [DCT16] that Pβc [0←→ ∂ΛLβ
] ≥ c2c1(βc−β). When plugging the

asymptotic Lβ ≍ (βc − β)−1/2, one obtains the result.

Appendix A: proof of Lemma 1.5
Considering a self-avoiding path from o to x we obtain

{o Λ←→ x} \ {o S←→ x} ⊂
⋃

y∈S
z∈Λ\S

y∼z

{o S←→ y} ◦ {yz is open} ◦ {z Λ←→ x}, (A.1)

which gives the upper bound by the BK inequality.
For the reverse bound, let

N :=
∑
y∈S

z∈Λ\S

1[o S←→ y, yz is open, z (CS(o))c

←−−−−→ x], (A.2)

where CS(o) is the cluster of o in S. Clearly,

{o Λ←→ x} \ {o S←→ x} ⊃ {N ≥ 1}. (A.3)

Notice that9

Pβ[N ≥ 1] ≥ 2Eβ[N ]− Eβ[N 2]. (A.4)
9This is a consequence of the fact that for t ∈ [0, ∞], 2t(1 − t) ≤ 1[t ≥ 1].

28



Write
Eβ[N ] =

∑
y∈S

z∈Λ\S

∑
C∋y

Pβ[CS(o) = C]pyz(β)Pβ[z Cc

←→ x], (A.5)

and
Pβ[z Cc

←→ x] = Pβ[z Λ←→ x]−
(
Pβ[z Λ←→ x]− Pβ[z Cc

←→ x]
)
. (A.6)

Using [AN84, Proposition 5.2], we find that

Pβ[z Λ←→ x]− Pβ[z Cc

←→ x] ≤
∑
v∈C

Pβ[A(z, v)]Pβ[v Λ←→ x], (A.7)

where A(z, v) is the event that z and v are connected by a path which contains exactly
one element of C. Combined with (A.5), and using the fact that C ⊂ S, this yields

0 ≤
∑
y∈S

z∈Λ\S

Pβ[0 S←→ y]pyz(β)Pβ[z Λ←→ x]− Eβ[N ]

≤
∑
y∈S

z∈Λ\S

∑
v∈S

Pβ[{o S←→ y, o
S←→ v} ◦ {z Λ←→ v}]pyz(β)Pβ[v Λ←→ x].

Using the BK inequality again yields,

Pβ[{o S←→ y, o
S←→ v} ◦ {z Λ←→ v}] ≤ Pβ[o S←→ y, o

S←→ v]Pβ[z Λ←→ v]. (A.8)

Finally, using [AN84, Proposition 4.1], we get

Pβ[o S←→ y, o
S←→ v] ≤

∑
u∈S

Pβ[o S←→ u]Pβ[u S←→ v]Pβ[u S←→ y]. (A.9)

We obtained,

Eβ[N ] ≥
∑
y∈S

z∈Λ\S

Pβ[o S←→ u]pyz(β)Pβ[z Λ←→ x] (A.10)

−
∑

u,v∈S

∑
y∈S

z∈Λ\S

Pβ[o S←→ y]Pβ[u S←→ y]Pβ[u S←→ v]pyz(β)Pβ[z Λ←→ v]Pβ[v Λ←→ x] (A.11)

It remains to analyze Eβ[N 2]. Notice that,

Eβ[N 2] = Eβ[N ]+
∑

y,s∈S
z,t∈Λ\S
yz ̸=st

Pβ[o S←→ y, yz is open, z (CS(0))c

←−−−−→ x, o
S←→ s, st is open, t (CS(0))c

←−−−−→ x].

(A.12)
Using the same techniques as above, and taking into account that we may have y = s or
z = t (but not simultaneously),

Eβ[N 2]− Eβ[N ] ≤ (I) + (II) + (III) (A.13)
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where

(I) :=
∑
u∈S
v∈Λ

∑
y,s∈S
y ̸=s

z,t∈Λ\S
z ̸=t

Pβ[o S←→ u]Pβ[u S←→ y]Pβ[u S←→ s]pyz(β)pst(β)Pβ[z Λ←→ v]Pβ[t Λ←→ v]Pβ[v Λ←→ x],

(A.14)
(II) :=

∑
v∈Λ

∑
y∈S

z,t∈Λ\S
z ̸=t

Pβ[o S←→ y]pyz(β)pyt(β)Pβ[z Λ←→ v]Pβ[t Λ←→ v]Pβ[v Λ←→ x], (A.15)

(III) :=
∑
u∈S

∑
y ̸=s∈S
z∈Λ\S

Pβ[o S←→ u]Pβ[u S←→ y]Pβ[u S←→ s]pyz(β)psz(β)Pβ[z Λ←→ x] (A.16)

The proof follows readily.

Appendix B: Computation in Lemma 2.6
Let n ≥ 0. We fix β < β∗ and drop it from the notations. By the definition given in

(1.16)–(1.19), we write

EHn,Zd

β = E(1) + E(2) + E(3) + E(4), (A.17)

where

E(1) :=
∑

u,v∈Hn

∑
y∈Hn

z /∈Hn

P[0 Hn←−→ u]P[u Hn←−→ y]P[u Hn←−→ v]pyzP[z ←→ v] (A.18)

E(2) :=
∑

u∈Hn
v /∈Hn

∑
y,s∈Hn

y ̸=s

P[0 Hn←−→ u]P[u Hn←−→ y]P[u Hn←−→ s]pyvpsv (A.19)

E(3) :=
∑

u∈Hn

v∈Zd

∑
y,s∈Hn

y ̸=s
z,t/∈Hn

z ̸=t

P[0 Hn←−→ u]P[u Hn←−→ y]P[u Hn←−→ s]pyzpstPβ[z ←→ v]P[t←→ v], (A.20)

E(4) :=
∑

v∈Zd

∑
y∈Hn

z,t/∈Hn
z ̸=t

P[0 Hn←−→ y]pyzpytP[z ←→ v]P[t←→ v]. (A.21)

Bound on E(1) We write

E(1) =
∑
ℓ≥0

∑
u∈∂Hn−ℓ

P[0 Hn←−→ u]
∑

y∈Hn

z /∈Hn

P[u Hn←−→ y]pyz

∑
v∈Hn

P[u Hn←−→ v]P[z ←→ v]. (A.22)

Using (2.3) and the fact that |z − v| > 0, there exists C1 = C1(C, d) > 0 such that for
all ℓ ≥ 0, and all relevant u and z,

∑
v∈Hn

P[u Hn←−→ v]P[z ←→ v] ≤
∑

v∈Hn

P[u←→ v]P[z ←→ v] ≤ 1
Ld

C1
(ℓ+ 1)d−4 . (A.23)
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Using Lemma 2.5, for every u ∈ ∂Hn−ℓ,∑
y∈Hn

z /∈Hn

P[u Hn←−→ y]pyz = φβ(Hℓ) ≤ 6C3. (A.24)

Finally, using (2.5) of Lemma 2.4,

∑
u∈∂Hn−ℓ

P[0 Hn←−→ u] ≤ δn(ℓ) + C2(ℓ+ L)
L2 . (A.25)

Putting all the pieces together we found C2 = C2(C, d) > 0 such that

E(1) ≤ C2
Ld

∑
ℓ≥0

1
(ℓ+ 1)d−5 , (A.26)

which converges when d > 6.

Bound on E(2) Write

E(2) =
∑
ℓ≥0

∑
u∈Hn−ℓ

P[0 Hn←−→ u]
∑

y,s∈Hn
y ̸=s

v /∈Hn

P[u Hn←−→ y]P[u Hn←−→ s]pyvpsv. (A.27)

Since y and s are distinct, one of them is distinct from u. Hence, by symmetry, and using
the fact that for a fixed v one has

∑
y∈Hn

pyv ≤ β∗|J | ≤ 2,

∑
y,s∈Hn

y ̸=s
v /∈Hn

P[u Hn←−→ y]P[u Hn←−→ s]pyvpsv

(2.4)
≤ 42C2

Ld

(
L

L ∧ (ℓ− L)

)d−1
φβ(Hℓ) (A.28)

(A.24)
≤ 48C5

Ld

(
L

L ∧ (ℓ− L)

)d−1
. (A.29)

We obtained,

E(2) ≤ 48C5

Ld

∑
ℓ≥0

(
L

L ∧ (ℓ− L)

)d−1 ∑
u∈Hn−ℓ

P[0 Hn←−→ u]. (A.30)

Using (2.5) once again in (A.30), we obtain C3 = C3(C, d) > 0 such that

E(2) ≤ C3
Ld
. (A.31)

Bound on E(3) By (2.3), there exists C4 = C4(C, d) > 0 such that, for all z ̸= t as
above, ∑

v∈Zd

Pβ[z ←→ v]P[t←→ v] ≤ C4
Ld

1
|z − t|d−4 . (A.32)
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Now, write∑
u∈Hn

y,s∈Hn

z,t/∈Hn
z ̸=t

P[0 Hn←−→ u]P[u Hn←−→ y]P[u Hn←−→ s] pyzpst

|z − t|d−4 (A.33)

=
∑
k≥0

∑
u∈∂Hn−k

P[0 Hn←−→ u]
∑

y,s∈Hn

z,t/∈Hn
z ̸=t

P[u Hn←−→ y]P[u Hn←−→ s] pyzpst

|z − t|d−4 .

(A.34)

Looking first at the contribution coming from |z − t| ≥ k + 1, we find, for some C5 =
C5(C, d) > 0,∑

k≥0

∑
u∈∂Hn−k

P[0 Hn←−→ u]
∑

y,s∈Hn

z,t/∈Hn

|z−t|≥k+1

P[u Hn←−→ y]P[u Hn←−→ s] pyzpst

|z − t|d−4 (A.35)

≤
∑
k≥0

φβ(Hk)2

(k + 1)d−4

∑
u∈∂Hn−k

P[0 Hn←−→ u] (A.36)

(2.4)
≤ C5

∑
k≥0

1
(k + 1)d−5 , (A.37)

which is finite when d > 6, and where we additionally used Lemma 2.5 in the last
inequality. We turn to the contribution coming from |z − t| ≤ k. First, by (2.4) we find
that

P[u Hn←−→ s] ≤ 2C2

Ld

(
L

(k − L) ∨ L

)d−1
. (A.38)

Then, there exists C6 = C6(d) > 0 such that for fixed y, z as above,∑
t∈Λk(z)\{z}∩Hc

n
s∈Hn

pst
1

|z − t|d−4 ≤
∑

t∈Λk(z)\{z}∩[−L,L]×[−k,k]d−1

s∈ΛL(t)

pst
1

|z − t|d−4 ≤ C6(L · k3).

(A.39)
Finally, we obtained,∑
k≥0

∑
u∈∂Hn−k

P[0 Hn←−→ u]
∑

y,s∈Hn

z,t/∈Hn

|z−t|≤k

P[u Hn←−→ y]P[u Hn←−→ s] pyzpst

|z − t|d−4

≤ 2C2C6
Ld

∑
k≥0

φβ(Hk)
(

L

(k − L) ∨ L

)d−1
L · k3 ∑

u∈∂Hn−k

P[0 Hn←−→ u]

≤ C7,

where C7 = C7(C, d) > 0. Gathering the last display and (A.32), we obtained,

E(3) ≤ C4C7
Ld

. (A.40)

Bound on E(4) This last term is handled by similar arguments as E(3). We omit the
details.
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