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A SUPERLINEAR CONVERGENCE ESTIMATE FOR THE
PARAREAL SCHWARZ WAVEFORM RELAXATION ALGORITHM *

MARTIN J. GANDERT, YAO-LIN JIANG!, AND BO SONG#

Abstract. The Parareal Schwarz Waveform Relaxation algorithm is a new space-time parallel
algorithm for the solution of evolution partial differential equations. It is based on a decomposition of
the entire domain both in space and in time into smaller space-time subdomains, and then computes
by an iteration in parallel on all these small subdomains a better and better approximation of the
overall solution. The initial conditions in the subdomains are updated using a parareal mechanism,
while the boundary conditions are updated using Schwarz waveform relaxation techniques. A first
precursor of this algorithm was presented fifteen years ago, and while the method works well in
practice, the convergence of the algorithm is not yet understood, and to analyze it is technically
difficult. We present in this paper for the first time an accurate superlinear convergence estimate
when the algorithm is applied to the heat equation. We illustrate our analysis with numerical
experiments including cases not covered by the analysis, which opens up many further research
directions.

Key words. Schwarz waveform relaxation, parareal algorithm, Parareal Schwarz Waveform
Relaxation, domain decomposition, space-time parallel methods, heat equation

AMS subject classifications. 65M55, 656M22, 65F15

1. Introduction. Schwarz waveform relaxation algorithms are parallel algo-
rithms for time-dependent partial differential equations (PDEs) based on a spatial
domain decomposition. The spatial domain is decomposed into overlapping or non-
overlapping subdomains, and an iteration in space-time, based on space-time subdo-
main solutions, is used to obtain better and better approximations of the underlying
global space-time solution. During the iteration, neighboring subdomains are commu-
nicating through transmission conditions. The name Schwarz comes from the fact that
overlap can be used, like in the classical Schwarz method for elliptic problems [62],
and the name waveform relaxation indicates that the iterates are functions in time,
like in the classical waveform relaxation method developed for very large scale inte-
gration of circuits [48]. Waveform relaxation methods have been analyzed for many
different kinds of problems, such as ordinary differential equations (ODEs) [4, 30, 16],
differential algebraic equations (DAEs) [46, 41], partial differential equations (PDEs)
[50], time-periodic problems [44, 43, 68] and fractional differential equations [45], for
further details, see [42]. In the Schwarz waveform relaxation algorithm, the transmis-
sion conditions play an important role, and while classical Dirichlet conditions lead
to robust, superlinear convergence for diffusive problems [13, 35, 34, 29], optimized
transmission conditions based on [21] of Robin or Ventcell type as in the steady case
[40] lead to much faster, so called optimized Schwarz waveform relaxation methods,
see [20, 3] for diffusive problems, and [22, 19, 38] for wave propagation. These are also
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2 M. J. GANDER, Y.-L. JIANG, AND B. SONG

the same techniques underlying modern time harmonic wave propagation solvers, for
an overview, see [33] and references therein.

The parareal algorithm is a time-parallel method that was proposed by Lions,
Maday, and Turinici in the context of virtual control to solve evolution problems in
parallel, see [49]. In this algorithm, initial value problems are solved on subintervals
in time, and through iterations the initial values on each subinterval are corrected to
converge to the correct values of the overall solution. The parareal algorithm uses two
approximate propagators which are called the fine propagator and the coarse propa-
gator. The fine propagator determines the final precision, while the coarse propagator
influences the parallel speedup. In most theoretical analyses of the parareal algorithm,
the fine propagator was for simplicity chosen to be the exact solver, and the coarse
propagator was a common one-step method such as the Backward Euler method. Pre-
cise convergence estimates for the parareal algorithm applied to linear ordinary and
partial differential equations can be found in [32]; for the non-linear case, see [14].
The parareal algorithm has also been used in many application areas, like linear and
nonlinear parabolic problems [65, 66, 50], molecular dynamics [1], stochastic ordinary
differential equations (ODEs) [2, 8], Navier-Stokes equations [67, 10], quantum control
problems [56, 57, 55], time periodic problems [25], fractional diffusion equations [72],
and low-frequency problems in electrical engineering [61]; for a parallel coarse correc-
tion variant, see [70]. Several other new variants of the parareal algorithm have been
presented, which use an iterative method, the spectral deferred correction method,
for solving ODEs for the coarse and fine propagators rather than traditional meth-
ods, see [60, 59], which led to the Parallel Full Approximation Scheme in Space-Time
(PFASST) [7]. The parareal algorithm has also been combined with waveform relax-
ation methods [52, 51, 63, 64]. More recently, new time parallel strategies have also
been developed, such as the PARAEXP algorithm [17, 37] and a new full space-time
multigrid method [28] with excellent strong and weak scalability properties; for ear-
lier time multigrid approaches, see [53, 68, 69]. There is also MGRIT [11, 9] with a
convergence analysis in [27], showing that MGRIT is in fact a multilevel variant of an
overlapping parareal algorithm. A further direct approach based on the diagonaliza-
tion of the time stepping matrix was introduced in [54]. These techniques have been
applied to the heat equation [23], the wave equation [12] and the time-periodic frac-
tional diffusion equation [71]. For a complete overview of the historical development
of time parallel methods over five decades, see [15].

A first approach to combine Schwarz waveform relaxation and the parareal al-
gorithm for PDEs can be found in [58], where the authors propose to use waveform
relaxation solvers for the coarse and fine propagators in the parareal algorithm, see
also the PhD thesis [36]. This algorithm can be understood in the sense that if
the waveform relaxation algorithms compute the fine and coarse propagators with
enough accuracy, the parareal convergence theory applies. In practice it is however
more interesting not to iterate to convergence, but just to use one iteration, directly
embedded in the parareal updating process, which leads to the so called Parareal
Schwarz Waveform Relaxation (PSWR) algorithm that was first proposed in [24].
The implementation of PSWR is not very difficult, but to prove convergence and
obtain a convergence estimate is, and we present here for the first time a superlinear
convergence result based on detailed kernel estimates, when the method is applied to
the one dimensional heat equation.

Our paper is organized as follows. In Section 2, we present the PSWR algorithm
for a general parabolic problem. In Section 3, we prove our technical, superlinear
convergence estimate for the PSWR algorithm with Dirichlet transmission conditions
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A SUPERLINEAR CONVERGENCE ESTIMATE FOR PSWR 3

T2

Fic. 1. Time domain decomposition for parareal (left), space decomposition for Schwarz wave-
form relazation showing one overlapping space domain global in time (middle) and space-time de-
composition for PSWR showing one smaller space-time domain (right).

when applied to the heat equation in one spatial dimension with a two subdomain
decomposition in space and an arbitrary decomposition in time. We illustrate our
analysis with numerical experiments in Section 4, and also test cases not covered
by our analysis, like the many spatial subdomain case and optimized transmission
conditions. We finally present our conclusions and several open research directions in
Section 5.

2. Construction of the PSWR algorithm. We derive the PSWR algorithm
for the time dependent parabolic partial differential equation

% Lu+f inQx(0,7T),Q2CRY d=1,23,
(2.1) u(z,0) = wup(z) in €,
u = g on 09 x (0,7,

where L is a second order elliptic operator, e.g., the Laplace operator. We next
describe the parareal algorithm and the Schwarz waveform relaxation algorithm for
problem (2.1), before introducing PSWR.

2.1. The parareal algorithm. The parareal algorithm is for the parallelization
of the solution of problems like (2.1) in the time direction: by decomposing the time
interval (0,7 into N time subintervals (T, Tp41) with0 =Ty < Ty < --- <Tn =T,
as shown in Figure 1 on the left for the case of d = 2 spatial dimensions, we obtain a
series of subproblems in the time subintervals (7}, T},+1) with unknown initial values
u(x,T,), which we denote by U, (x). In order to obtain the solution of the original
problem (2.1), the {U,} have to solve the system of equations

(22) U():UO, Un+1 :S(Tn-‘rlanvUnafag)a ’I’L:O,l,...,N—l,

where S(T,+1, Tn, Uy, f, g) denotes the exact solution operator on the time subinterval
(T, Th+1), i.e. S(Tht1,Tn,Un, f,g) is the exact solution at T,41 of the evolution
problem (2.1) on the time subinterval (T, T,4+1) with a given initial condition U,
right hand side source term f and boundary conditions g,

(2.3)

du

d—tn = Lup+fin QX (T, Tniy1), un(z, Tn) = Un(x) in Q u, = gon 0Q X (T, Tht1)-
The parareal algorithm solves the system of equations (2.2) by iteration using a
so called coarse propagator G(Ty+1,Tn,Un, f,g) which provides a rough approxi-
mation in time of the solution w,(x,Th4+1) of (2.3) with a given initial condition
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4 M. J. GANDER, Y.-L. JIANG, AND B. SONG

un(xz,Ty) = Uy(x), right hand side source term f and boundary conditions g, and a
fine propagator F(T,41, Ty, Un, f,g), which gives a more accurate approximation in
time of the same solution. Starting with a first approximation U? at the time points
Ty, T1,Ts,...,Tn_1, the parareal algorithm performs for £ = 0,1, 2, ... the correction
iteration

(2'4) U’r]j-ti = F(Tn-i-lv T, U7]:7 fv g) + G(Tn-‘rl’ T, Ur]f+1? f’ g) - G(Tn+17 T, U7]:7 fvg)-
It was shown in [32] that (2.4) is a multiple shooting method in time with an approx-
imate Jacobian in the Newton step, and accurate convergence estimates were derived
for the heat and wave equation in [32], see also [18] for similar convergence estimates
for the case of nonlinear problems.

2.2. Introduction to Schwarz waveform relaxation. In contrast to the
parareal algorithm, the Schwarz waveform relaxation algorithm for the model prob-
lem (2.1) is based on a spatial decomposition only, in the most general case into
overlapping subdomains = U/_;Q;, see the middle plot in Figure 1. The Schwarz
waveform relaxation algorithm solves iteratively for £ = 0,1,2,... the space-time
subdomain problems

ourtt
ét = Luf™t 4+ f, inQ; x(0,T),
uf“(a:,O) =y, in €,
Bt = Bk, on 0Q; x (0,T).

Here @* denotes a composed approximate solution from the previous subdomain so-
lutions u¥ using for example a partition of unity, and an initial guess @° is needed
to start the iteration. The operators B; are transmission operators, and we did not
write the Dirichlet boundary conditions at the outer boundaries for simplicity. If the
transmission operators B; are the identity, we obtain the classical Schwarz waveform
relaxation algorithm, whose convergence was studied for general decompositions in
higher space dimensions in [34]; if they represent Robin or higher order transmis-
sion conditions, we obtain an optimized Schwarz waveform relaxation algorithm, if
the parameters in the transmission conditions are chosen to optimize the convergence
factor of the algorithm, see [20, 3] and references therein. A convergence analysis
for optimized Schwarz waveform relaxation methods for general decompositions in
higher spatial dimensions is however still an open problem, like for optimized Schwarz
methods in the steady case.

2.3. Construction of PSWR. We decompose the space-time domain Qx (0,T)
into space-time subdomains €; ,, := Q; x (T, Ty41),¢=1,2,--- , I, n=0,1,--- ,N —
1, as shown in Figure 1 on the right. Like in the parareal algorithm, we introduce a
fine subdomain solver F; ,,(UF,,, B;ul) and a coarse subdomain solver G; ,, (U}, , By, ),
where we do not explicitly state the dependence of these solvers on the time interval
and the right hand side f and original Dirichlet boundary condition g to not increase
the complexity of the notation further. There is also a further important notational
difference with parareal: here the fine solver F' returns the entire solution in space-
time, not just at the final time, since this solution is also needed in the transmission
conditions of the algorithm. Then for any initial guess of the initial values Ugn and the
interface values B;u", the PSWR algorithm for the parabolic problem (2.1) computes
for iteration index £ = 0,1,2,... and all spatial and time indices ¢« = 1,2,...,1,
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A SUPERLINEAR CONVERGENCE ESTIMATE FOR PSWR 5
n=01,....,N—1

k+1 _ k —k
U - FZ‘A,n(Ui,nv Blun)v

(2.5) o
k+1 k41 k+1 g3 —k+1 k =k
Ui,n+1 = Uin (" T’ﬂJrl) + Gi,”(Ui,n ’Biun ) - Gi,n(Ui,n’ Biun)’
where @} is again a composed approximate solution from the subdomain solutions u¥

using for example a partition of unity, and an initial guess 4% and U, 2 & is needed to start
the iteration'. Note that the first step in (2.5), which is the expensive step involving
the fine propagator Fj ,,, can be performed in parallel over all space-time subdomains
Q; », since both the initial and boundary data are available from the previous iteration.
The cheap second step in (2.5) involving only the coarse propagator G; , to compute
a new initial condition for all space-time subdomains is still in parallel in space, but
now sequential in time, like in the parareal algorithm.

It is worthwhile to look at the PSWR (2.5) again before continuing: it is an
iteration from initial and boundary data on space-time subdomains to initial and
boundary data on space-time subdomains, i.e. it maps traces in space and traces
in time to new traces in space and traces in time. There is also a particular choice
for the new coarse solver in the middle of the second step of (2.5): it uses the most
recent fine approximation for its boundary conditions. This is natural since this can
be reused in the second iteration for the old coarse solver on the right in the second
line of (2.5), like in the classical parareal algorithm, but using the old iterates would
be possible as well. This would however not lead to more parallelism, because of the
new initial condition that is needed for the parareal update.

3. Convergence analysis of PSWR. To capture the true convergence behav-
ior of the PSWR algorithm by analysis is technically difficult, and we thus consider
from now on the heat equation on an unbounded domain in one spatial dimension,

ou(z,t)  0%u(z,t)

(3.1) % a2 + f(z,t), inQx(0,7T),Q:=R,

with the initial condition u(z,0) = up(x), € Q, and only a decomposition into two
overlapping subdomains, ; = (—oo, L) and Qy = (0,4+00), L > 0, and we assume
that the algorithm uses Dirichlet transmission conditions, i.e. B; = Z, the identity
n (2.5). We will test the more general case extensively in the numerical experiments
in Section 4. We decompose the time interval (0,T) into N equal time subintervals
0=T<--<T, =nAT < ---<Ty =T, AT = %, and thus our space-time
subdomains are ; , = Q; X (T, Tht1), 4 = 1,2, n =0,...,N — 1. We also assume
that the fine propagator Fj; ,, is exact, like it is often done in the convergence analysis
of the parareal algorithm, and that the coarse propagator G, is exact in space, and
uses Backward Euler in time.

To study the convergence of PSWR, we introduce the error in the space-time
subdomains

(3.2) ef,n(x, t) = ufm(m, t) —u(z,t) in Q;,,
and also the error in the initial values

(3.3) Efn(x) = Ui’fn(m) —u(z,T,) x € Q.

IThe latter can for example be computed using the coarse propagator once the former is chosen.
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6 M. J. GANDER, Y.-L. JIANG, AND B. SONG

By linearity, it suffices to analyze convergence to the zero solution. Using the defini-
tions of the propagators F;, and G;, and their linearity, we get for the error on the
first spatial subdomain
k+1 E ok
61}: (z,t) = F1n(EY s €5, (L, ),

2,n

(3.4) "
Eftli (@) = el (@, Tos1) + Grn(BY LY, 53 1L, ) — Grun(EY €5 (L, ),

and similarly on the second spatial subdomain

6’5;1({)3715) = Fg,n(£7§’n,c3]c (0,-)),

1,n

(3.5)
Eg,:il(x) = 6126,—;—11 (x’ Tn+1) + GQ,TL(E;—;I? 6]16,_‘7—11 (07 )) - GQ,”(E;na elf,n(ov ))a

where we do not need to use a partition of unity to compose a general approximate
solution, since each subdomain must take data directly from its only neighbor, which
will simplify the analysis. To study the contraction properties of this iteration, we
need estimates of the continuous solution operator represented by the fine propagator
F, and of the time discrete solution operator represented by the coarse propagator G.
We thus start by computing representation formulas for these solution operators.

3.1. Representation formula for the fine propagator F. The first step
e’f:;l(a:,t) = F17n(Efm,e§,n(L,-)) and egzl(x,t) = ngn(Eg,n,e’f,n(o, -)) in the error
iteration (3.4), (3.5) requires the solution of homogeneous problems in €2; ,,, i, = 1,2,

namely

Ge’fjll(x, t) B 82611“;1 (z,t)

= t) € i,
ot o2 ) (w,t) €
(3.6) ML) = eb (L, 1), t € (T, Tosn),
ellcjll(x’Tn) = Efn(‘r)v x € (—OO,L)7
and
aek:Jrl z,t 82€k+1 z,t
= ( ) = 2n ( )a (l‘,t) € Q2n7
ot o2 ;
(3.7) ebt1(0,t) = ef . (0,1), t € (T, Tasir),
egjtl(LTn) = Eg,n(x)v x € (0,400).

Therefore in 4, the fine propagator has a closed form representation formula giving
the solution of problem (3.6) (see [5]),

0
eftl(x,t) = / (K(x—L—&t—T,) — K(x— L+&t—T,)) B}, (£)d¢
(3.8) oo

L oK
4o (x — Lyt = Ty, — 7)ek (L, 7)dr,

T, 8 €T

where the heat kernel is given by

1 ;
3.9 K(z,t) = —/—e /%,
(3.9) (2,1) i

We now define for the initial value part the linear solution operator A; ,,

0
(3.10) (A1nFE) (2,8) = / (K(z—L—&t—Tp) — K(z — L+&t—T,)) B()de,

—00
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and for the boundary value part the linear solution operator B j,
t
K
(3.11) (By ne) (z,t) := 2/ a—(x —L,t—T, —7)e(r)dr.
’ T, 8$

Then (3.8) can be written in the form
(3.12) ern (2,) = (AL BY ) (2,1) + (Binel (L, )(x,1).

Similarly, we obtain on the second subdomain {25 using the representation formula
for the solution of (3.7)

(3'13) egjzl (267 t) = (‘AQJLEg,n)(m> t) + (BQ,ne’f,n(07 ))(‘Tv t)

with the linear solution operators

(AQ,TLE) (.’E,t) = /OO (K(:L' - f,t - Tn) - K(CE + fat - Tn)) E(f)dﬁ,
(3.14) o -
(Bane) (z,t) := —2 /Tn %(Ji,t — T, — m)e(r)dr.

3.2. Representation formula for the coarse propagator G. Using the
Backward Euler time stepping scheme for the coarse propagator GG, and denoting
by e1,¢(x) := G(E} , (x),e5 (L, Tny1)) the term that appears in the error recursion
(3.4), we see that e; ¢ satisfies the equation

el,glxr) — EF (x O%e T
Lol) = BL ) Pecl) ) o
AT 0x?
er,g(L) = €5, (L, Thi1).

This problem has the closed form solution (see the Appendix)

oL
(3.15) e1,c(z) = €5 (L, Tny1)eVar + (CLEY,)(z),

with the linear solution operator C; defined by

1 L aye_or L -
(CEL) @) = S ( | SR [T 0
- [ ).

Similarly, denoting by ez g (z) := G(Ej, (), e}, (0,T,41)) on Qy the term that ap-
pears in the error recursion (3.5), we see that ey ¢ satisfies the equation
es.c(z) — E5,  9erc(w)

AT a2 0 TE

e2,6(0) = e}, (0, Tnr1),

and we obtain for the solution

(3.16) e2,6(x) = € (0, T41)e VAT + (C2 B )(2),
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with the linear solution operator C, defined by

1
 oJ/AT

400 PRV
- / emEz,n(f)df)-

3.3. Matrix Formulation of PSWR. We now rewrite the error recurrence
formulation (3.4), (3.5) more explicitly using the representation formulas, and then
collect the complete PSWR map from traces in space and time to traces in space and
time into a matrix formulation, which is amenable to analysis. We start with €;:
the first equation in the the error recursion formula (3.4) can be expressed using the
representation formula (3.12) for the fine propagator as

(C2B3,)(x) =

“+o00 ot x o
( | ot [, @
0 0

(3'17) ellc;rtl(xJ) = Fl,n(Ef,meg,n(Lv )) = ('AlﬂEﬁn)(xﬂt) + (Bl,neg,n(l’v ))($7t)

For the second equation in (3.4), we have to evaluate (3.17) at t = T;,41 and use the
representation formula (3.15) for the coarse propagator twice, to obtain

EftL (@) = el (@, Togr) + Gun(BY L, 531 (L, ) — Gua(BEY . €5 (L, )
(318) = (A1nEL,) (2, Thgr) + (Bineb (L, ) (2, Togr)
. x—L
+ 5t (L, Tog1)e VAT + (CLETHY) (2)
— & (L, Ta1)e VAT — (CLEL,)(2).

k+1

In (3.17), we still work with the volume function ey,

(z,t) which is only used in the

iteration either traced at t = T}, 41, i.e. e’fjll (2,Th+1), as in (3.18), or traced at z = 0,

ie. e’le (0,t) by the second subdomain. We therefore introduce the following linear

operators which include taking the trace:

(3.19)
A1,n,oEfn = (A1,nEfn) (0,1), B1,n,0€§,n = (31,ne’§,n(L, ) (0,¢),
Al,n,ATEfn = (A1,nEfn) (@, Tht1), B1,n,AT€§,n = (Bl,neé,n(L ) (@, Tns1),

k k 2L
Dl,AT€2,n = eQ,n(LaT’rH-l)emy
and then (3.17) and (3.18) become

et (0,8) = (Ao BY ) (8) + (Bin,oes,) (1),
(3:20) Eyjiy(«) = (AinarEr,) (@) + (Binares,) (@)
+ (Dyares T (@) + (CLEY ) (x) — (Dy,ares ) (@) — (CLEY ) (@),
and we see that the first line represents well a function in time obtained by tracing at

x = 0 while the second line represents well a function in space. Similarly, we obtain
on the second subdomain 29

es UL, t) = (Azn, L ES )(t) + (Ban,ef ) (1),
(3.21) E5TL(2) = (AonarES,) (@) + (Boarer ,)()
+ (Da,arei ) (@) + (C2E5 T (@) — (Daarel ) (x) — (C2ES ) (@),
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where

A2,n,LE§7n = (AQ,nEg,n) (L,t), BQ,n,Lellc,n = (BQ,n€]f7n(O7 )) (L,t),
(322) AQ,mATEg,n = (AQES,TL) (x’Tn+1)7 BQ,n,ATelin = (BQellc,n(Ov )) (Ian-‘rl)a

k._ k e
DQ»ATel,n e el,n(()? Tn+1)e AT,

We now collect all the traces in space and time used in the algorithm in the vectors
of functions

ellﬁq(ov') = [e§$1(0,-),6§j1(0,-) eIICJJer 1(0 )]T7
(3.23) f’lﬂ(ﬂv) = [if,ﬁl(ﬂf),EHl( ), BYN @),
es (L, ) o= [esh ' (Ly-),es i (Ly)s ey (L),
Eyti(a) = (Bt (2), Byt (@), By vy ()],
and define the matrices
Z 0 0 0 0 0 O 0
0 Z 0 0 Z 0 0 0
I-=|0 0 Z |, Ii=10 T 0 ,
. 0 . 0

0 0 I

0o 0 0 0 Z

o

where the symbol Z denotes the identity operator. We can then write the recurrence
relations for the error in (3.20) and (3.21) in matrix form,

(3.24)
R 0 0 0 el*t'(0,-)
0 I-CI; —Diarly O Byt (z) | _
0 0 I 0 eb™(L, ")
|—Daarl 1 0 0 I-Cl ] | ES T (2)
I 0 Pio Qio 0 er(0,-)
0 Piarl_1 —CiI_1Q1a7I1 — Do ATl 0 Ef(z)
Qo 1, 0 0 Pa.L e5(L,-)|’
| Q2,arI-1 — Dy arl_y 0 0 Poarl1 —Cl 1| | E5(z)
where we also introduced the diagonal matrices of operators
(3.25)
P10 = diag(A1.00,- -, A1N_10), Piar = diag(Aro,aT; -, A, N—1,AT),
Py 1 = diag(Aso.r,. .., A2, N=1,1), Po ar = diag(Az AT, .., A2, N—1.A7);
Q1,0 = diag(Bi,0,0,---,B1,N-1,0), Qi a7 = diag(Bi,o,AT, - .-, Bi,n-1,aT),
Qo 1, = diag(B2yo.,---,Ba,n-1,1), Qo ar = diag(Bao AT, ..., B2 n—1,AT).

In order to understand the convergence behavior of the PSWR algorithm, we therefore
have to understand the matrix iteration (3.24) where the entries of the matrices are
continuous linear operators.

3.4. Tools from Linear Algebra. The analysis of the matrix iteration (3.24)
is based on the following three Lemmas from linear algebra:
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LEMMA 3.1. If in the two by two block matriz

My, Mo
3.26 M =
(3:26) {Mm M22]

the diagonal submatrices My, and Moso are lower triangular, and the off diagonal
submatrices Mys and May are strictly lower triangular, and Mao is nonsingular, then

det(M) = det(My1) det(Mas).

Proof. Since M5 is non-singular, we can write the block matrix M in the factored
form

M- [I M12M2‘21] [1\4111\4121\42—211\421 0 ] [ I o}

0 I 0 Moy | | My Moy T
and therefore obtain for its determinant the formula
(3.27) det(M) = det(Myy — Mo My, Moy) det(May).

Now by assumption, the off diagonal matrices are strictly lower triangular, and Mss is
lower triangular, which implies that M- 12M251 Mo, is a strictly lower triangular matrix,
and hence

det(M11 — M12M2_21M21) = det(Mll),

which concludes the proof of the Lemma. 0

LEMMA 3.2 (see [39, page 18]). If the inverse of the block matriz M in (3.26) is
nonsingular, then

[Myy — Mg My M|~ My Myo[ Moy My My — My ™t

M~ = L _ - ,
[M21M111M12 - M22]71M21M111 [Mag — ]\/-"21‘7\4111]\412]71

assuming that all the relevant inverses exist.

LEMMA 3.3. For a matriz A with the block structure

By + AT B, Bs By + Aol
A Bs Bg By Bs
By Bio+ A3l By + A4l Bia ’
Bis By Bis Bis
where the submatrices B; (i = 1,...,16) are all strictly lower triangular, and the A;
(i=1,...,4) are scalar values, the spectral radius of A is given by

p(A) = max{|A], [Aql}.

Proof. As in the proof of Lemma 3.1, we use the same block factorization to
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rewrite the determinant in the form (3.27)

(3.28)
Bi+ (A =M1 B Bs By + Aol
Bs Bg — Al By By
A ) =
det( Al) = det By Bio+ A3l Bi1 + (As — NI Bia
B3 By Bis Big — M\
et (B =N By ] [BsBatAol] [Bu+ (A= NI By !
- Bs  Be—A|  |Br B Bis  Big— Al
[ Bo Bo+ A3l g ([But(Aa =N B
Bi3 DBy Bis Big— M| )

Now for the inverse on the right in (3.28), we obtain using Lemma 3.2 that

B+ (Ay — NI Bis - _ |Cu Cin
Bis Big — A1 Cis5 Cig|’

with the block entries in the inverse given by

Ci1 = [B11 + (Ay = A)I — B12(Big — M) ' Bys] 1,

Cra = (Bi1 + (Ay — AN)I) 7' Bia[Bi5(Bi1 4 (A — A)I) "' Biy — (Big — M) 7,
C15 = [Bi5(B11 + (Ag — A)I) "' Bia — (Big — )] "' Bis(Bi1 + (A — A1),
Ci6 = [(Big — M) — Bia(By1 + (Ay — \)I) "' Bio] L

We now study the structure of these block entries. For (4, we first observe that
(B1g — M)~1 is lower triangular, since Big is strictly lower triangular, and hence
multiplying on the left and right by the strictly lower triangular matrices B2 and Bys
the result will also be strictly lower triangular. The matrix Cy; is thus the inverse of
a strictly lower triangular matrix plus the diagonal matrix (A4 — A)I, which implies

that C; = B, + I for some strictly lower triangular matrix B{;. Similarly,

1
Ay — A
one can also analyze the structure of the other block entries of the inverse, and we
obtain

1
_ / /
[311 + (A= NI By ] ! _ B+ Ay — )\I Brz

_ 1
Bis Pis = AL Bly  Ble—5l

)

where all B! (i = 11,12,15,16) are strictly lower triangular matrices. We next study
the product on the right in (3.28)

{Bg B4+A21} [Bl1+(A4—)\)I Bi }1[39 B10+A3I}_[B17 Bls}
By By Bis Big — A Bis By B9 Bo|’

and find again structurally that the B; (i = 17,...,20) are strictly lower triangular
matrices. Using Lemma 3.1, the expression for the first determinant in the last line
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12 M. J. GANDER, Y.-L. JIANG, AND B. SONG
of (3.28) becomes

det ({Bl +A - B } B {Bg By + AQI}

Bs Be—- M| |Br B
, [311 +(As—NI B ]1 {Bg Bio + ASI]
Bis Big — AI Bis By
— det B+ (A = NI By _ |Bir Bis
- Bs Bg — Al Big B
B B+ (A =N By
= det ([ Bs Bs— AI

= det(By + (A — M) det(Bg — AI) = A" (A — Aq)™,

if the matrix subblocks are of size n xn, and we used again Lemma 3.1, and here the BZ
(i =1,2,5,6) are still strictly lower triangular matrices. For the second determinant
in (3.28) we get directly using Lemma 3.1 that

Bi1+ (Ay — NI Bis
det ([ Bis B~ AI

= det(311 + (A4 — /\)I) det(B16 — )\I) = )\n(>\ — A4)n

This yields det(A — Mn)x(an)) = A?"(A — A1)™(A — A4)", and hence the spectral
radius of A is p(A) = max{|A1], |A4|}. d

3.5. Superlinear Convergence of PSWR. We are now ready to prove the
main result of this paper, namely the superlinear convergence of PSWR. We collect
the norms of the functions appearing in (3.23) into vectors,

(3.29) [e]e = llleollos, - - len—1llc]”s  [Ele = [ Eolloo, - - | En-1lloc]",

where the infinity norm for a function g : (a,b) — R is given by

lgllc == sup |g(s)|.
a<s<b
Note that in [E], the infinity norms are in space, indicated by the subscript x, since
E represents functions in space, and in [e]; the infinity norms are in time, indicated
by the index t, since e represents functions in time. We also define the matrix of
norms of the functions in a matrix A = [a;;] by

(3.30) [Ale = [llas;]loc]-

THEOREM 3.4 (Superlinear Convergence). If the fine propagator F is the exact
solver, and the coarse propagator G is Backward Euler, then PSWR with Dirichlet
transmission conditions and overlap L converges superlinearly on bounded time in-
tervals (0,T), i.e. the errors given by the error recursion formulas (3.4) and (3.5)
satisfy the error estimate

o S
(3:31) e, | <M el |
B, B,
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where “<” denotes the element-by-element comparison, and for each iteration index
k, the spectral radius of the iteration matriz M?* can be bounded by

(3.32) pIEE) < erfel ),

where erfc(-) is the complementary error function with erfc(x) = % f;o et dt.

Proof. To obtain a convergence estimate of the matrix iteration (3.24) represent-
ing the error recursion formulas (3.4) and (3.5) of the PSWR algorithm with Dirichlet
transmission conditions, we first invert the matrix of operators on the left hand side
using Lemma 3.2, which leads to

—1

I 0 0 0
0 I-CGI.y, —Diarl 0
0 0 I 0
-D I_ 0 0 I-CI-
(3.33) 2,aTl-1 P B
I 0 0 0
|0 I+B; B 0
|0 0 I 0 ’
B 0 0 I+ B
where B, (i = 1,...,4) are strictly lower triangular matrices of operators. Multiplying

the matrix iteration (3.24) on both sides by the inverse (3.33) thus leads to the matrix
iteration

e,f:_‘l_((()a )) ellc](c(gv ))

Eftt(x . Ef(z

334 (L | T e |
B (@) E3(2)

where the iteration matrix M of operators is given by

0 P10 Q1o 0
M — B,Qs 1, K Ky, ByPap
Qo1 0 0 Po. 1,

K3 B3Qi10 BiPio Ky

with the new matrices of operators appearing given by

Ky := I+ B))(Parl-1 — CiI_y),
Ky := 1+ B})(QiarI_1 — DiarI 1),
K3 := I+ B})(Q2arI_1 — Do arI_1),
Ky =1+ B:L)(P27ATI_1 —CoI_y).

The key idea of the proof is now not to estimate the contraction over one step, which
would only lead to a linear convergence estimate, but to look at the iteration over all
iteration steps at once, i.e.

€(0,-) 90,
B | | B0
(3.35) et =M |ey(L.o)
B2 () ()

This manuscript is for review purposes only.
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381  The 2k-th power of the iteration matrix of operators has the structure

L1+ (Q1,0Q2.1)F Loy L3 Li+(91092.0) 101 0Pa 1
s M2F — Ls Lg Ly Ls
N Lg Lo+ (Q2,0910)* 1 Q21 P10 L1+ (Q2.1910)* Lo
L3 Ly Lqs Lqg
383  where all the new matrices of operators L; (i = 1,2,...,16) are strictly lower triangu-

384 lar, as a detailed verification like in the proof of Lemma 3.3 shows. We now take the
385 mnorms defined in (3.29) in each block row of (3.35), and using the triangle inequality,
386 we obtain the estimate (3.31) shown in the statement of the theorem. Now note that
387 the matrix M2* has the same structure as the matrix in Lemma 3.3, and we thus get
388 for the spectral radius of M2

359 (3.36) p(M?*) = max{[(91.092.2)"]s, [(Q2..91.0)"]: },

300 Here []; is defined in (3.30) for the matrices (Q1,0Q2.1)" and (Q2,,Q1,0)*. By the
391 definitions of Q1 and Qs 1 in (3.25), and using the definitions of Bi 0 and Ba . 1
392 in (3.19) and (3.22), we see that By n0 = B2 n,1, and further Q; g = Qs 1. Note that
393 the diagonals of Oy Qs 1, are By 082, 1, and therefore it suffices to estimate

t
2k L (2kL)2
394 BinoBoni)lleo = 1(Bino) e < /7_4“*”61 00)
B Bani) oo = [ Brno) e < | | i e T arl

395 where the infinity norm here is defined for the operator. Using the change of variables

396y :=kL/\/t— T, we obtain

kL
397 [(B1,n,0B2,1,1)" |00 < erfe(—=).

VT

398 Therefore the spectral radius of the iteration matrix of operators M2* can be bounded
399 as shown in (3.32), which concludes the proof. a

400 Remark 3.5. From Theorem 3.4, we see that the spectral radius of the iteration
101 matrix of operators M2¥ can be bounded for each k, which gives a different asymptotic
)2 error reduction factor for each k. Our result thus captures the convergence behavior
)3 of the PSWR method much more accurately than just an estimate of the decay of the
)4 error over one iteration step; it is obtaining this convolved estimate which made the
)5 analysis so hard. Estimating over one step, we would just have obtained a classical
)6 linear convergence factor, a number less than one. Let us look at an example: let
)7 T :=1,L :=0.1. Then for k = 1, we have erfc(0.1) ~ 0.8875 and thus p(M?) < 0.8875
108 and PSWR converges asymptotically at least with the factor 0.8875, i.e the error is
409 asymptotically multiplied at least by 0.8875 every two iterations. This is however
410 only an upper bound, since if we look at k = 2, we have erfc(0.2) ~ 0.7773 and thus
411 p(M4) < 0.7773 and PSWR converges asymptotically at least with the factor 0.7773,
112 i.e the error is asymptotically multiplied at least by 0.7773 every four iterations.
413 So the key result we obtained is much more precise than just an asymptotic linear
414 convergence factor, it proves superlinear asymptotic convergence: if we look at k = 20
415 in our example, we have erfc(2) ~ 0.004678 < (erfc(0.1))?° ~ 0.09199 (!) and thus
416 p(M‘m) < 0.004678, an extremely fast contraction rate. We could also check the
117 equivalent average convergence factor by taking the kth root of p(M?¥). When we
118 choose k = 1,2, and 20, the average convergence factor is 0.8875, 0.8816, and 0.7647,

This manuscript is for review purposes only.



119
420
421
422
423
124

439
440
441
442
143
144
445
446
447
448
449
450
451
452
453
154
455
456
457
458
459
160

A SUPERLINEAR CONVERGENCE ESTIMATE FOR PSWR 15

which shows that the average convergence factor decreases as the iteration number
k increases. We will see in our numerical experiments, that PSWR algorithm really
converges at a superlinear rate, and that our estimate is quite sharp. In order to get a
norm estimate, we could also consider the norm of the iteration matrix of operators in
the sense induced by the spectral radius, see [47, page 284, Lemma 1] or [73, page 795]:
for every € > 0, we can introduce an equivalent norm ||- || such that the corresponding
operator norm satisfies

p(M*E) < | M| < p(M*F) + ¢,

where ||z := suppzo(p(M%) + €)7P||M*?z|| o, 2 € R*N. This then implies that
our algorithm is also converging superlinearly in the above norm sense.

Remark 3.6. The convergence estimate in Theorem 3.4 depends only on the size
of the overlap L and the length of the entire time interval T" of simulation, but it does
not depend on the number of time subintervals we use in the PSWR algorithm. We
will investigate in the next section how sharp this bound is, and if a similar bound
would also hold for many subdomains, and optimized transmission conditions, cases
which our current analysis does not cover.

4. Numerical experiments. To investigate numerically how the convergence
of the PSWR algorithm depends on the various parameters in the space-time decom-
position, we use the 1-dimensional model problem

8u(x,t) _ 82u(x,t) ((p’t) €0 x (O,T),

i1 ot ox2
(4.1) w(z,t) = 0, (2,1) € 32 x (0,T),
u(z,0) = uo, z €,

where the domain = (0, 3), and the initial condition is ug = exp3(15-2)"  The
model problem (4.1) is discretized by a second-order centered finite difference scheme
with mesh size h = 3/128 in space and by the Backward Euler method with At =
T/100 in time. The time interval is divided into N time subintervals, while the
domain 2 is decomposed into .J equal spatial subdomains with overlap L. We define
the relative error of the infinity norm of the errors along the interface and initial time
in the space-time subdomains as the iterative error of our new algorithm.

We first study cases which are very closely related to our analysis, with the only
difference that the spatial domain must be bounded in order to perform numerical
computations. We thus decompose the domain 2 into 2 spatial subdomains with over-
lap L = 2h. The total time interval length is T'= 1. We show in Figure 2 on the left
the convergence of the PSWR algorithm when the number of time subintervals equals
1 (classical Schwarz waveform relaxation), 2, 4, 10, and 20. This shows that the con-
vergence of the algorithm does indeed not depend on the number of time subintervals,
as predicted by Theorem 3.4. We also observe the superlinear convergence behavior
predicted by Theorem 3.4, which is typical for waveform relaxation algorithms, see
for example [31], and the estimate is asymptotically quite sharp, as one can see from
the theoretical bound we also plotted in Figure 2 on the left. Here the theoretical
bound is obtained from the spectral radius bound in Theorem 3.4.

We next investigate how the convergence depends on the total time interval length
T, with T € {0.1,0.2,0.5,1,2}. We divide the time interval (0,7) each time into
10 time subintervals, and use the same decomposition of the domain 2 into two
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—o— 1 ime subinterval
—%— 2 ime subintervals
—A— 4 time subintervals
10 time subintervals
—5— 20 time subintervals
—— Theoretical bounds.

10 2 30 40 5 60 70 8 90 100 110 20 40 60 80 100 120 140
iteration iteration

F1G. 2. Dependence of the PSWR algorithm on the number of time subintervals (left), and the
total time window length (right)

—5—2 spaal subdomains
—— 4 spatial subdomains
—4— 8 spatial subdomains

10 20 3 40 50 6 70 8 9 100 110 20 40 60 80 100 120 140 160 180
iteration iteration

F1G. 3. Dependence of the PSWR algorithm on the overlap (left), and on the number of spatial
subdomains (right).

subdomains with overlap L = 2h as before. The results are shown in Figure 2 on
the right with the corresponding asymptotically rather sharp bounds. We clearly see
that the convergence of the PSWR algorithm is much faster on short time intervals,
compared to long time intervals, as predicted by Theorem 3.4. We see however also
that the initial convergence behavior on long time intervals seems to be linear, and
independent of the length of the time interval then, a fact which is not captured by
our superlinear convergence analysis.

We next study the dependence on the overlap. We use L = 2h, 4h, 8h and 16h,
and divide the time interval (0,7") with 7' = 1 into 10 time subintervals, still using the
same two subdomain decomposition of 2 as before. We see on the left in Figure 3 that
increasing the overlap substantially improves the convergence speed of the algorithm,
as predicted by our convergence estimate in Theorem 3.4. This increases however also
the cost of the method, since bigger subdomain problems need to be solved.

We now investigate numerically if a similar convergence result we derived for two
subdomains also holds for the case of many subdomains. We decompose the domain
Q into 2, 4, 8 and 16 spatial subdomains, keeping again the overlap L = 2h. For
each case, we divide the time interval (0,7) with 7 = 1 into 10 time subintervals.
We see in Figure 3 on the right that the algorithm on many spatial subdomains still
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—o— 1 time subinterval
—%— 2ime subintervals —%— 2time subintervals.
—A— 4time subintervals —A— 4time subintervals.
10 time subintervals 10 time subintervals
—&— 201ime subintervals —&— 20 ime subintervals

—o— 1 time subinterval

10 20 30 40 50 60 70 8 9 100 110 120 20 40 60 80 100 120 140 160 180
iteration iteration

Fic. 4. Independence of the PSWR algorithm on the number of time subintervals for four
spatial subdomains (left), and eight spatial subdomains (right).

Dirichlet conditions
—-—- Optimized conditions

20 40 60 80 100 120 140 160 180 200
iteration

Fic. 5. Comparison of the PSWR algorithm with Dirichlet and optimized transmission con-
ditions. Left: third iteration and corresponding error for Dirichlet (top) and optimized (bottom)
transmission conditions. Right: corresponding convergence curves.

converges superlinearly, as predicted by our two subdomain analysis, but using more
spatial subdomains makes the algorithm converge more slowly, like for the classical
Schwarz method for steady problems. This can however be remedied by using smaller
global time intervals T', and leads to the so called windowing techniques for waveform
relaxation algorithms in general, see [34].

We further investigate whether the convergence of the algorithm still does not
depend on the number of time subintervals for the case of many subdomains. We
see in Figure 4 that the convergence behavior for four spatial subdomains (left), and
eight spatial subdomains (right) is the same as the convergence behavior for two
spatial subdomains.

Finally, we compare the convergence behavior of the PSWR algorithm with
Dirichlet and optimized transmission conditions. Using optimized transmission condi-
tions leads to much faster, so called optimized Schwarz waveform relaxation methods,
see for example [32, 3]. We divide the time interval (0,T") with 7" = 1 into 20 time
subintervals, and the domain 2 is decomposed into 8 spatial subdomains. We use
first order transmission conditions and choose for the parameters p = 1, ¢ = 1.75 (for
the terminology, see [3]). In Figure 5 we show on the left on top the third iteration
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—o— 1 tme subinterval
—— 2time subintervals.

error
error

6
iteration iteration

Fic. 6. Dependence of the PSWR algorithm with optimized transmission conditions on the
number of time subintervals (left), and the total time window length (right)

. —o— 2 spatal subdomains
—— 4 spatial subdom:
—~— 8 spatial subdom:

Nl
.

~a

error
error

6 o
iteration iteration

Fi1Gc. 7. Dependence of the PSWR algorithm with optimized transmission conditions on the
overlap (left) and the number of spatial subdomains (right).

and corresponding error using Dirichlet transmission conditions, and below the third
iteration and corresponding error using optimized transmission conditions. We clearly
see that with optimized transmission conditions, the error is much more effectively
eliminated both from the initial line and the spatial boundaries. On the right in Fig-
ure 5, the corresponding convergence curves show that using optimized transmission
conditions lead to substantially better performance of the algorithm, even better than
very generous overlap, and this at no additional cost, since the subdomain size and
matrix sparsity is the same as for the case of Dirichlet transmission conditions. We
also investigate the dependence on the number of time subintervals (on the left in Fig-
ure 6), and the total time interval length 7' (on the right in Figure 6), where we choose
the problem configuration as in the case of the Dirichlet transmission conditions in
Figure 2. We observe that convergence is much faster with optimized transmission
conditions (less than 10 iterations instead of over 100), and convergence has also be-
come linear, indicating that there is a different convergence mechanism dominating
now, due to the optimized transmission conditions. We also observe that in contrast
to the Dirichlet transmission condition case, convergence does now not depend any
more on the length T of the overall time interval. We also test the dependence on
the overlap size L (on the left in Figure 7), and on the number of spatial subdomains
J (on the right in Figure 7). Comparing with the Dirichlet transmission condition
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A SUPERLINEAR CONVERGENCE ESTIMATE FOR PSWR 19

case in Figure 3, we see again much faster convergence for all overlaps and spatial
subdomain numbers, and convergence is also more linear again, except in the case
of many spatial subdomains, where after some iterations a superlinear convergence
mechanism seems to become active.

5. Conclusion. We designed and analyzed a new PSWR algorithm for solving
time-dependent PDEs. This algorithm is based on a domain decomposition of the en-
tire space-time domain into smaller space-time subdomains, i.e. the decomposition is
both in space and in time. The new algorithm iterates on these space-time subdomains
using two different updating mechanisms: the Schwarz waveform relaxation approach
for boundary condition updates, and the parareal mechanism for initial condition up-
dates. All space time subdomains are solved in parallel, both in space and in time.
We proved for the model problem of the one dimensional heat equation and a two
subdomain decomposition in space, and arbitrary subdomain decomposition in time
that the new algorithm converges superlinearly on bounded time intervals when using
Dirichlet transmission conditions in space. We then tested the algorithm numerically
and observed that our superlinear theoretical convergence estimate also seems to hold
in the case of many subdomains, and as predicted, for fast convergence the overall
time interval should not be too large (which can be achieved using a time windowing
technique), or the overlap should be not too small. We then showed numerically that
both these drawbacks can be greatly alleviated when using optimized transmission
conditions, and we also observed that convergence then is more linear. Our results
open up the path for many further research directions: is it possible to capture the
different, linear convergence mechanism in the case of optimized transmission condi-
tions using a different type of convergence analysis from ours? Can we prove that
convergence then becomes independent of the length of the overall time interval? Is
it possible to remove the dependence on the number of spatial subdomains using a
coarse space correction, like it is done in [6] for optimized transmission conditions in
the steady case? What is the convergence behavior when applied to the wave equa-
tion? Can one use in space also a Dirichlet-Neumann or Neumann-Neumann iteration,
as in [26] without time decomposition? Answering these questions by analysis will
be even more challenging than our first convergence estimate for this new algorithm
presented here.

Appendix A. Representation formula for the solution of the G propaga-
tor. We derive here the representation formula for the solution of the G propagator
using Backward Euler. For the ordinary differential equation

82
a—Z—(fu:f, a >0,
i

its general solution can be expressed in the form

u(r) = Cre™ + /6‘”_(”@(17 _ C’QL _ /eaT—adeT.
2a a 2a

On a bounded domain in the presence of boundary conditions, as in

0%u

@—cﬁu:ﬁ x € [Ly,Ls], a>0,

w(Ly) = g1, u(L2) = g,
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one can still obtain a closed form solution, namely

u(z) = Cre™ _|_/ eax—ar f(7) dr — Cae™ _/ eaT*aszT

L 2a a L, 2a
where
_ aLi—aLsy _ Lo aLs—ar _ _at—aLs f(r)

o g2 — gie L. (e e ) e dT

1= eaLz _ g2aLi—aLs ’
_ L _ Carn I (T

g2 — g1€aL2 aly __ fL2(6aL2 ar _ pat aLQ) ( )dT

CQ =a ! 2a

eaL2—2aL1 _ e—aL2

Denoting by 0L := Lo — L; we obtain after some simplifications

ar—alq —ax+alq als—ax —alLo+tax

e — € € — €

eaéL _ e—aéL 92 + eaéL _ e—aéL 91

L,— —alL L
et Tar _ par—ala 2(eaL2—aT _ eL‘LT—aLQ)f(T) dr
eadl _ o—adl I 2a

u(r) =

_|_

1

+ /30 (eamfa'r _ €7az+a7-)@d7'

L 2a ’

In particular, if L1 — —oo, Ly = L and g; = 0, then we have

L L
u(x) :g2ea(sz) + / ed(il?“r‘l‘*QL)@dT _ / ea(zfr)MdT
2a - 2

— 00

_/ e—a(z—‘r) f(T) dT,
2a

— 00

and if Ly =0, Ly — 400 and g2 = 0, then we have

+oo x +o00
u(m) = gre " +/ 6—a(w+7’)md7 _ / e—a(w—r)MdT - / pa(z—7) f(T) ar.
0 2a 0 2a z 2a
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