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Abstract. The Parareal Schwarz Waveform Relaxation algorithm is a new space-time parallel4
algorithm for the solution of evolution partial differential equations. It is based on a decomposition of5
the entire domain both in space and in time into smaller space-time subdomains, and then computes6
by an iteration in parallel on all these small subdomains a better and better approximation of the7
overall solution. The initial conditions in the subdomains are updated using a parareal mechanism,8
while the boundary conditions are updated using Schwarz waveform relaxation techniques. A first9
precursor of this algorithm was presented fifteen years ago, and while the method works well in10
practice, the convergence of the algorithm is not yet understood, and to analyze it is technically11
difficult. We present in this paper for the first time an accurate superlinear convergence estimate12
when the algorithm is applied to the heat equation. We illustrate our analysis with numerical13
experiments including cases not covered by the analysis, which opens up many further research14
directions.15
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1. Introduction. Schwarz waveform relaxation algorithms are parallel algo-19

rithms for time-dependent partial differential equations (PDEs) based on a spatial20

domain decomposition. The spatial domain is decomposed into overlapping or non-21

overlapping subdomains, and an iteration in space-time, based on space-time subdo-22

main solutions, is used to obtain better and better approximations of the underlying23

global space-time solution. During the iteration, neighboring subdomains are commu-24

nicating through transmission conditions. The name Schwarz comes from the fact that25

overlap can be used, like in the classical Schwarz method for elliptic problems [62],26

and the name waveform relaxation indicates that the iterates are functions in time,27

like in the classical waveform relaxation method developed for very large scale inte-28

gration of circuits [48]. Waveform relaxation methods have been analyzed for many29

different kinds of problems, such as ordinary differential equations (ODEs) [4, 30, 16],30

differential algebraic equations (DAEs) [46, 41], partial differential equations (PDEs)31

[50], time-periodic problems [44, 43, 68] and fractional differential equations [45], for32

further details, see [42]. In the Schwarz waveform relaxation algorithm, the transmis-33

sion conditions play an important role, and while classical Dirichlet conditions lead34

to robust, superlinear convergence for diffusive problems [13, 35, 34, 29], optimized35

transmission conditions based on [21] of Robin or Ventcell type as in the steady case36

[40] lead to much faster, so called optimized Schwarz waveform relaxation methods,37

see [20, 3] for diffusive problems, and [22, 19, 38] for wave propagation. These are also38
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the same techniques underlying modern time harmonic wave propagation solvers, for39

an overview, see [33] and references therein.40

The parareal algorithm is a time-parallel method that was proposed by Lions,41

Maday, and Turinici in the context of virtual control to solve evolution problems in42

parallel, see [49]. In this algorithm, initial value problems are solved on subintervals43

in time, and through iterations the initial values on each subinterval are corrected to44

converge to the correct values of the overall solution. The parareal algorithm uses two45

approximate propagators which are called the fine propagator and the coarse propa-46

gator. The fine propagator determines the final precision, while the coarse propagator47

influences the parallel speedup. In most theoretical analyses of the parareal algorithm,48

the fine propagator was for simplicity chosen to be the exact solver, and the coarse49

propagator was a common one-step method such as the Backward Euler method. Pre-50

cise convergence estimates for the parareal algorithm applied to linear ordinary and51

partial differential equations can be found in [32]; for the non-linear case, see [14].52

The parareal algorithm has also been used in many application areas, like linear and53

nonlinear parabolic problems [65, 66, 50], molecular dynamics [1], stochastic ordinary54

differential equations (ODEs) [2, 8], Navier-Stokes equations [67, 10], quantum control55

problems [56, 57, 55], time periodic problems [25], fractional diffusion equations [72],56

and low-frequency problems in electrical engineering [61]; for a parallel coarse correc-57

tion variant, see [70]. Several other new variants of the parareal algorithm have been58

presented, which use an iterative method, the spectral deferred correction method,59

for solving ODEs for the coarse and fine propagators rather than traditional meth-60

ods, see [60, 59], which led to the Parallel Full Approximation Scheme in Space-Time61

(PFASST) [7]. The parareal algorithm has also been combined with waveform relax-62

ation methods [52, 51, 63, 64]. More recently, new time parallel strategies have also63

been developed, such as the PARAEXP algorithm [17, 37] and a new full space-time64

multigrid method [28] with excellent strong and weak scalability properties; for ear-65

lier time multigrid approaches, see [53, 68, 69]. There is also MGRIT [11, 9] with a66

convergence analysis in [27], showing that MGRIT is in fact a multilevel variant of an67

overlapping parareal algorithm. A further direct approach based on the diagonaliza-68

tion of the time stepping matrix was introduced in [54]. These techniques have been69

applied to the heat equation [23], the wave equation [12] and the time-periodic frac-70

tional diffusion equation [71]. For a complete overview of the historical development71

of time parallel methods over five decades, see [15].72

A first approach to combine Schwarz waveform relaxation and the parareal al-73

gorithm for PDEs can be found in [58], where the authors propose to use waveform74

relaxation solvers for the coarse and fine propagators in the parareal algorithm, see75

also the PhD thesis [36]. This algorithm can be understood in the sense that if76

the waveform relaxation algorithms compute the fine and coarse propagators with77

enough accuracy, the parareal convergence theory applies. In practice it is however78

more interesting not to iterate to convergence, but just to use one iteration, directly79

embedded in the parareal updating process, which leads to the so called Parareal80

Schwarz Waveform Relaxation (PSWR) algorithm that was first proposed in [24].81

The implementation of PSWR is not very difficult, but to prove convergence and82

obtain a convergence estimate is, and we present here for the first time a superlinear83

convergence result based on detailed kernel estimates, when the method is applied to84

the one dimensional heat equation.85

Our paper is organized as follows. In Section 2, we present the PSWR algorithm86

for a general parabolic problem. In Section 3, we prove our technical, superlinear87

convergence estimate for the PSWR algorithm with Dirichlet transmission conditions88
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Fig. 1. Time domain decomposition for parareal (left), space decomposition for Schwarz wave-
form relaxation showing one overlapping space domain global in time (middle) and space-time de-
composition for PSWR showing one smaller space-time domain (right).

when applied to the heat equation in one spatial dimension with a two subdomain89

decomposition in space and an arbitrary decomposition in time. We illustrate our90

analysis with numerical experiments in Section 4, and also test cases not covered91

by our analysis, like the many spatial subdomain case and optimized transmission92

conditions. We finally present our conclusions and several open research directions in93

Section 5.94

2. Construction of the PSWR algorithm. We derive the PSWR algorithm95

for the time dependent parabolic partial differential equation96

(2.1)

∂u

∂t
= Lu+ f in Ω× (0, T ), Ω ⊂ Rd, d = 1, 2, 3,

u(x, 0) = u0(x) in Ω,
u = g on ∂Ω× (0, T ),

97

where L is a second order elliptic operator, e.g., the Laplace operator. We next98

describe the parareal algorithm and the Schwarz waveform relaxation algorithm for99

problem (2.1), before introducing PSWR.100

2.1. The parareal algorithm. The parareal algorithm is for the parallelization101

of the solution of problems like (2.1) in the time direction: by decomposing the time102

interval (0, T ) into N time subintervals (Tn, Tn+1) with 0 = T0 < T1 < · · · < TN = T ,103

as shown in Figure 1 on the left for the case of d = 2 spatial dimensions, we obtain a104

series of subproblems in the time subintervals (Tn, Tn+1) with unknown initial values105

u(x, Tn), which we denote by Un(x). In order to obtain the solution of the original106

problem (2.1), the {Un} have to solve the system of equations107

(2.2) U0 = u0, Un+1 = S(Tn+1, Tn, Un, f, g), n = 0, 1, . . . , N − 1,108

where S(Tn+1, Tn, Un, f, g) denotes the exact solution operator on the time subinterval109

(Tn, Tn+1), i.e. S(Tn+1, Tn, Un, f, g) is the exact solution at Tn+1 of the evolution110

problem (2.1) on the time subinterval (Tn, Tn+1) with a given initial condition Un,111

right hand side source term f and boundary conditions g,112

(2.3)
dun
dt

= Lun+f in Ω× (Tn, Tn+1), un(x, Tn) = Un(x) in Ω, un = g on ∂Ω× (Tn, Tn+1).113

The parareal algorithm solves the system of equations (2.2) by iteration using a114

so called coarse propagator G(Tn+1, Tn, Un, f, g) which provides a rough approxi-115

mation in time of the solution un(x, Tn+1) of (2.3) with a given initial condition116
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un(x, Tn) = Un(x), right hand side source term f and boundary conditions g, and a117

fine propagator F (Tn+1, Tn, Un, f, g), which gives a more accurate approximation in118

time of the same solution. Starting with a first approximation U0
n at the time points119

T0, T1, T2, . . . , TN−1, the parareal algorithm performs for k = 0, 1, 2, . . . the correction120

iteration121

(2.4) Uk+1
n+1 = F (Tn+1, Tn, U

k
n , f, g) +G(Tn+1, Tn, U

k+1
n , f, g)−G(Tn+1, Tn, U

k
n , f, g).122

It was shown in [32] that (2.4) is a multiple shooting method in time with an approx-123

imate Jacobian in the Newton step, and accurate convergence estimates were derived124

for the heat and wave equation in [32], see also [18] for similar convergence estimates125

for the case of nonlinear problems.126

2.2. Introduction to Schwarz waveform relaxation. In contrast to the127

parareal algorithm, the Schwarz waveform relaxation algorithm for the model prob-128

lem (2.1) is based on a spatial decomposition only, in the most general case into129

overlapping subdomains Ω = ∪Ii=1Ωi, see the middle plot in Figure 1. The Schwarz130

waveform relaxation algorithm solves iteratively for k = 0, 1, 2, . . . the space-time131

subdomain problems132

∂uk+1
i

∂t
= Luk+1

i + f, in Ωi × (0, T ),

uk+1
i (x, 0) = u0, in Ωi,

Biuk+1
i = Biūk, on ∂Ωi × (0, T ).

133

Here ūk denotes a composed approximate solution from the previous subdomain so-134

lutions uki using for example a partition of unity, and an initial guess ū0 is needed135

to start the iteration. The operators Bi are transmission operators, and we did not136

write the Dirichlet boundary conditions at the outer boundaries for simplicity. If the137

transmission operators Bi are the identity, we obtain the classical Schwarz waveform138

relaxation algorithm, whose convergence was studied for general decompositions in139

higher space dimensions in [34]; if they represent Robin or higher order transmis-140

sion conditions, we obtain an optimized Schwarz waveform relaxation algorithm, if141

the parameters in the transmission conditions are chosen to optimize the convergence142

factor of the algorithm, see [20, 3] and references therein. A convergence analysis143

for optimized Schwarz waveform relaxation methods for general decompositions in144

higher spatial dimensions is however still an open problem, like for optimized Schwarz145

methods in the steady case.146

2.3. Construction of PSWR. We decompose the space-time domain Ω×(0, T )147

into space-time subdomains Ωi,n := Ωi× (Tn, Tn+1), i = 1, 2, · · · , I, n = 0, 1, · · · , N−148

1, as shown in Figure 1 on the right. Like in the parareal algorithm, we introduce a149

fine subdomain solver Fi,n(Uki,n,Biūkn) and a coarse subdomain solver Gi,n(Uki,n,Biūkn),150

where we do not explicitly state the dependence of these solvers on the time interval151

and the right hand side f and original Dirichlet boundary condition g to not increase152

the complexity of the notation further. There is also a further important notational153

difference with parareal: here the fine solver F returns the entire solution in space-154

time, not just at the final time, since this solution is also needed in the transmission155

conditions of the algorithm. Then for any initial guess of the initial values U0
i,n and the156

interface values Biū0
n, the PSWR algorithm for the parabolic problem (2.1) computes157

for iteration index k = 0, 1, 2, . . . and all spatial and time indices i = 1, 2, . . . , I,158
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n = 0, 1, . . . , N − 1159

(2.5)
uk+1
i,n = Fi,n(Uki,n,Biūkn),

Uk+1
i,n+1 = uk+1

i,n (·, Tn+1) +Gi,n(Uk+1
i,n ,Biūk+1

n )−Gi,n(Uki,n,Biūkn),
160

where ūkn is again a composed approximate solution from the subdomain solutions uki,n161

using for example a partition of unity, and an initial guess ū0
n and U0

i,k is needed to start162

the iteration1. Note that the first step in (2.5), which is the expensive step involving163

the fine propagator Fi,n, can be performed in parallel over all space-time subdomains164

Ωi,n, since both the initial and boundary data are available from the previous iteration.165

The cheap second step in (2.5) involving only the coarse propagator Gi,n to compute166

a new initial condition for all space-time subdomains is still in parallel in space, but167

now sequential in time, like in the parareal algorithm.168

It is worthwhile to look at the PSWR (2.5) again before continuing: it is an169

iteration from initial and boundary data on space-time subdomains to initial and170

boundary data on space-time subdomains, i.e. it maps traces in space and traces171

in time to new traces in space and traces in time. There is also a particular choice172

for the new coarse solver in the middle of the second step of (2.5): it uses the most173

recent fine approximation for its boundary conditions. This is natural since this can174

be reused in the second iteration for the old coarse solver on the right in the second175

line of (2.5), like in the classical parareal algorithm, but using the old iterates would176

be possible as well. This would however not lead to more parallelism, because of the177

new initial condition that is needed for the parareal update.178

3. Convergence analysis of PSWR. To capture the true convergence behav-179

ior of the PSWR algorithm by analysis is technically difficult, and we thus consider180

from now on the heat equation on an unbounded domain in one spatial dimension,181

(3.1)
∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
+ f(x, t), in Ω× (0, T ), Ω := R,182

with the initial condition u(x, 0) = u0(x), x ∈ Ω, and only a decomposition into two183

overlapping subdomains, Ω1 = (−∞, L) and Ω2 = (0,+∞), L > 0, and we assume184

that the algorithm uses Dirichlet transmission conditions, i.e. Bi = I, the identity185

in (2.5). We will test the more general case extensively in the numerical experiments186

in Section 4. We decompose the time interval (0, T ) into N equal time subintervals187

0 = T0 ≤ · · · ≤ Tn = n∆T ≤ · · · ≤ TN = T , ∆T = T
N , and thus our space-time188

subdomains are Ωi,n = Ωi × (Tn, Tn+1), i = 1, 2, n = 0, . . . , N − 1. We also assume189

that the fine propagator Fi,n is exact, like it is often done in the convergence analysis190

of the parareal algorithm, and that the coarse propagator Gi,n is exact in space, and191

uses Backward Euler in time.192

To study the convergence of PSWR, we introduce the error in the space-time193

subdomains194

(3.2) eki,n(x, t) := uki,n(x, t)− u(x, t) in Ωi,n,195

and also the error in the initial values196

(3.3) Eki,n(x) := Uki,n(x)− u(x, Tn) x ∈ Ωi.197

1The latter can for example be computed using the coarse propagator once the former is chosen.
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By linearity, it suffices to analyze convergence to the zero solution. Using the defini-198

tions of the propagators Fi,n and Gi,n and their linearity, we get for the error on the199

first spatial subdomain200

(3.4)
ek+1

1,n (x, t) = F1,n(Ek1,n, e
k
2,n(L, ·)),

Ek+1
1,n+1(x) = ek+1

1,n (x, Tn+1) +G1,n(Ek+1
1,n , e

k+1
2,n (L, ·))−G1,n(Ek1,n, e

k
2,n(L, ·)),

201

and similarly on the second spatial subdomain202

(3.5)
ek+1

2,n (x, t) = F2,n(Ek2,n, e
k
1,n(0, ·)),

Ek+1
2,n+1(x) = ek+1

2,n (x, Tn+1) +G2,n(Ek+1
2,n , e

k+1
1,n (0, ·))−G2,n(Ek2,n, e

k
1,n(0, ·)),

203

where we do not need to use a partition of unity to compose a general approximate204

solution, since each subdomain must take data directly from its only neighbor, which205

will simplify the analysis. To study the contraction properties of this iteration, we206

need estimates of the continuous solution operator represented by the fine propagator207

F , and of the time discrete solution operator represented by the coarse propagator G.208

We thus start by computing representation formulas for these solution operators.209

3.1. Representation formula for the fine propagator F . The first step210

ek+1
1,n (x, t) = F1,n(Ek1,n, e

k
2,n(L, ·)) and ek+1

2,n (x, t) = F2,n(Ek2,n, e
k
1,n(0, ·)) in the error211

iteration (3.4), (3.5) requires the solution of homogeneous problems in Ωi,n, i,= 1, 2,212

namely213

(3.6)

∂ek+1
1,n (x, t)

∂t
=
∂2ek+1

1,n (x, t)

∂x2
, (x, t) ∈ Ω1,n,

ek+1
1,n (L, t) = ek2,n(L, t), t ∈ (Tn, Tn+1),

ek+1
1,n (x, Tn) = Ek1,n(x), x ∈ (−∞, L),

214

and215

(3.7)

∂ek+1
2,n (x, t)

∂t
=
∂2ek+1

2,n (x, t)

∂x2
, (x, t) ∈ Ω2,n,

ek+1
2,n (0, t) = ek1,n(0, t), t ∈ (Tn, Tn+1),

ek+1
2,n (x, Tn) = Ek2,n(x), x ∈ (0,+∞).

216

Therefore in Ω1, the fine propagator has a closed form representation formula giving217

the solution of problem (3.6) (see [5]),218

(3.8)

ek+1
1,n (x, t) =

∫ 0

−∞
(K(x− L− ξ, t− Tn)−K(x− L+ ξ, t− Tn))Ek1,n(ξ)dξ

+ 2

∫ t

Tn

∂K

∂x
(x− L, t− Tn − τ)ek2,n(L, τ)dτ,

219

where the heat kernel is given by220

(3.9) K(x, t) =
1√
4πt

e−x
2/4t.221

We now define for the initial value part the linear solution operator A1,n,222

(3.10) (A1,nE) (x, t) :=

∫ 0

−∞
(K(x− L− ξ, t− Tn)−K(x− L+ ξ, t− Tn))E(ξ)dξ,223
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and for the boundary value part the linear solution operator B1,n,224

(3.11) (B1,ne) (x, t) := 2

∫ t

Tn

∂K

∂x
(x− L, t− Tn − τ)e(τ)dτ.225

Then (3.8) can be written in the form226

(3.12) ek+1
1,n (x, t) = (A1,nE

k
1,n)(x, t) + (B1,ne

k
2,n(L, ·))(x, t).227

Similarly, we obtain on the second subdomain Ω2 using the representation formula228

for the solution of (3.7)229

(3.13) ek+1
2,n (x, t) = (A2,nE

k
2,n)(x, t) + (B2,ne

k
1,n(0, ·))(x, t)230

with the linear solution operators231

(3.14)

(A2,nE) (x, t) :=

∫ ∞
0

(K(x− ξ, t− Tn)−K(x+ ξ, t− Tn))E(ξ)dξ,

(B2,ne) (x, t) := −2

∫ t

Tn

∂K

∂x
(x, t− Tn − τ)e(τ)dτ.

232

3.2. Representation formula for the coarse propagator G. Using the233

Backward Euler time stepping scheme for the coarse propagator G, and denoting234

by e1,G(x) := G(Ek1,n(x), ek2,n(L, Tn+1)) the term that appears in the error recursion235

(3.4), we see that e1,G satisfies the equation236

e1,G(x)− Ek1,n(x)

∆T
− ∂2e1,G(x)

∂x2
= 0, x ∈ Ω1,

e1,G(L) = ek2,n(L, Tn+1).

237

This problem has the closed form solution (see the Appendix)238

(3.15) e1,G(x) = ek2,n(L, Tn+1)e
x−L√

∆T + (C1Ek1,n)(x),239

with the linear solution operator C1 defined by240

(C1Ek1,n)(x) :=− 1

2
√

∆T

(∫ L

−∞
e
x+ξ−2L√

∆T Ek1,n(ξ)dξ −
∫ L

x

e
x−ξ√
∆T Ek1,n(ξ)dξ

−
∫ x

−∞
e
−x+ξ√

∆T Ek1,n(ξ)dξ

)
.

241

Similarly, denoting by e2,G(x) := G(Ek2,n(x), ek1,n(0, Tn+1)) on Ω2 the term that ap-242

pears in the error recursion (3.5), we see that e2,G satisfies the equation243

e2,G(x)− Ek2,n
4T

− ∂2e2,G(x)

∂x2
= 0, x ∈ Ω2,

e2,G(0) = ek1,n(0, Tn+1),

244

and we obtain for the solution245

(3.16) e2,G(x) = ek1,n(0, Tn+1)e
x√
∆T + (C2Ek2,n)(x),246
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with the linear solution operator C2 defined by247

(C2Ek2,n)(x) :=− 1

2
√

∆T

(∫ +∞

0

e
− x+ξ√

∆T Ek2,n(ξ)dξ −
∫ x

0

e
− x−ξ√

∆T Ek2,n(ξ)dξ

−
∫ +∞

x

e
x−ξ√
∆T Ek2,n(ξ)dξ

)
.

248

3.3. Matrix Formulation of PSWR. We now rewrite the error recurrence249

formulation (3.4), (3.5) more explicitly using the representation formulas, and then250

collect the complete PSWR map from traces in space and time to traces in space and251

time into a matrix formulation, which is amenable to analysis. We start with Ω1:252

the first equation in the the error recursion formula (3.4) can be expressed using the253

representation formula (3.12) for the fine propagator as254

(3.17) ek+1
1,n (x, t) = F1,n(Ek1,n, e

k
2,n(L, ·)) = (A1,nE

k
1,n)(x, t) + (B1,ne

k
2,n(L, ·))(x, t).255

For the second equation in (3.4), we have to evaluate (3.17) at t = Tn+1 and use the256

representation formula (3.15) for the coarse propagator twice, to obtain257

(3.18)

Ek+1
1,n+1(x) = ek+1

1,n (x, Tn+1) +G1,n(Ek+1
1,n , e

k+1
2,n (L, ·))−G1,n(Ek1,n, e

k
2,n(L, ·))

=
(
A1,nE

k
1,n

)
(x, Tn+1) +

(
B1,ne

k
2,n(L, ·)

)
(x, Tn+1)

+ ek+1
2,n (L, Tn+1)e

x−L√
∆T + (C1Ek+1

1,n )(x)

− ek2,n(L, Tn+1)e
x−L√

∆T − (C1Ek1,n)(x).

258

In (3.17), we still work with the volume function ek+1
1,n (x, t) which is only used in the259

iteration either traced at t = Tn+1, i.e. ek+1
1,n (x, Tn+1), as in (3.18), or traced at x = 0,260

i.e. ek+1
1,n (0, t) by the second subdomain. We therefore introduce the following linear261

operators which include taking the trace:262

(3.19)
A1,n,0E

k
1,n :=

(
A1,nE

k
1,n

)
(0, t), B1,n,0e

k
2,n :=

(
B1,ne

k
2,n(L, ·)

)
(0, t),

A1,n,∆TE
k
1,n :=

(
A1,nE

k
1,n

)
(x, Tn+1), B1,n,∆T e

k
2,n :=

(
B1,ne

k
2,n(L, ·)

)
(x, Tn+1),

D1,∆T e
k
2,n := ek2,n(L, Tn+1)e

x−L√
∆T ,

263

and then (3.17) and (3.18) become264

(3.20)

ek+1
1,n (0, t) = (A1,n,0E

k
1,n)(t) + (B1,n,0e

k
2,n)(t),

Ek+1
1,n+1(x) = (A1,n,∆TE

k
1,n)(x) + (B1,n,∆T e

k
2,n)(x)

+ (D1,∆T e
k+1
2,n )(x) + (C1Ek+1

1,n )(x)− (D1,∆T e
k
2,n)(x)− (C1Ek1,n)(x),

265

and we see that the first line represents well a function in time obtained by tracing at266

x = 0 while the second line represents well a function in space. Similarly, we obtain267

on the second subdomain Ω2268

(3.21)

ek+1
2,n (L, t) = (A2,n,LE

k
2,n)(t) + (B2,n,Le

k
1,n)(t),

Ek+1
2,n+1(x) = (A2,n,∆TE

k
2,n)(x) + (B2,n,∆T e

k
1,n)(x)

+ (D2,∆T e
k+1
1,n )(x) + (C2Ek+1

2,n )(x)− (D2,∆T e
k
1,n)(x)− (C2Ek2,n)(x),

269
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where270

(3.22)

A2,n,LE
k
2,n :=

(
A2,nE

k
2,n

)
(L, t), B2,n,Le

k
1,n :=

(
B2,ne

k
1,n(0, ·)

)
(L, t),

A2,n,∆TE
k
2,n :=

(
A2E

k
2,n

)
(x, Tn+1), B2,n,∆T e

k
1,n :=

(
B2e

k
1,n(0, ·)

)
(x, Tn+1),

D2,∆T e
k
1,n := ek1,n(0, Tn+1)e

− x√
∆T ,

271

We now collect all the traces in space and time used in the algorithm in the vectors272

of functions273

(3.23)

ek+1
1 (0, ·) := [ek+1

1,0 (0, ·), ek+1
1,1 (0, ·), . . . , ek+1

1,N−1(0, ·)]T,

Ek+1
1 (x) := [Ek+1

1,0 (x), Ek+1
1,1 (x), . . . , Ek+1

1,N−1(x)]T,

ek+1
2 (L, ·) := [ek+1

2,0 (L, ·), ek+1
2,1 (L, ·), . . . , ek+1

2,N−1(L, ·)]T,

Ek+1
2 (x) := [Ek+1

2,0 (x), Ek+1
2,1 (x), . . . , Ek+1

2,N−1(x)]T,

274

and define the matrices275

I :=



I 0 0 · · · 0
0 I 0 · · · 0

0 0 I
...

...
...

...
. . . 0

0 0 0 0 I

 , I−1 :=



0 0 0 · · · 0
I 0 0 · · · 0

0 I 0
...

...
...

...
. . . 0

0 0 0 I 0

 ,276

where the symbol I denotes the identity operator. We can then write the recurrence277

relations for the error in (3.20) and (3.21) in matrix form,278

(3.24)
I 0 0 0
0 I− C1I−1 −D1,∆T I−1 0
0 0 I 0

−D2,∆T I−1 0 0 I− C2I−1



ek+1

1 (0, ·)
Ek+1

1 (x)

ek+1
2 (L, ·)
Ek+1

2 (x)

 =


0 P1,0 Q1,0 0
0 P1,∆T I−1 − C1I−1Q1,∆T I−1 −D2,∆T I−1 0
Q2,L 0 0 P2,L

Q2,∆T I−1 −D2,∆T I−1 0 0 P2,∆T I−1 − C2I−1



ek1(0, ·)
Ek

1 (x)
ek2(L, ·)
Ek

2 (x)

 ,
279

where we also introduced the diagonal matrices of operators280

(3.25)
P1,0 = diag(A1,0,0, . . . ,A1,N−1,0), P1,∆T = diag(A1,0,∆T , . . . ,A1,N−1,∆T ),

P2,L = diag(A2,0,L, . . . ,A2,N−1,L), P2,∆T = diag(A2,0,∆T , . . . ,A2,N−1,∆T ),

Q1,0 = diag(B1,0,0, . . . ,B1,N−1,0), Q1,∆T = diag(B1,0,∆T , . . . ,B1,N−1,∆T ),

Q2,L = diag(B2,0,L, . . . ,B2,N−1,L), Q2,∆T = diag(B2,0,∆T , . . . ,B2,N−1,∆T ).

281

In order to understand the convergence behavior of the PSWR algorithm, we therefore282

have to understand the matrix iteration (3.24) where the entries of the matrices are283

continuous linear operators.284

3.4. Tools from Linear Algebra. The analysis of the matrix iteration (3.24)285

is based on the following three Lemmas from linear algebra:286
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Lemma 3.1. If in the two by two block matrix287

(3.26) M =

[
M11 M12

M21 M22

]
288

the diagonal submatrices M11 and M22 are lower triangular, and the off diagonal289

submatrices M12 and M21 are strictly lower triangular, and M22 is nonsingular, then290

det(M) = det(M11) det(M22).291

Proof. Since M22 is non-singular, we can write the block matrix M in the factored292

form293

M =

[
I M12M

−1
22

0 I

] [
M11 −M12M

−1
22 M21 0

0 M22

] [
I 0

M−1
22 M21 I

]
,294

and therefore obtain for its determinant the formula295

(3.27) det(M) = det(M11 −M12M
−1
22 M21) det(M22).296

Now by assumption, the off diagonal matrices are strictly lower triangular, and M22 is297

lower triangular, which implies that M12M
−1
22 M21 is a strictly lower triangular matrix,298

and hence299

det(M11 −M12M
−1
22 M21) = det(M11),300

which concludes the proof of the Lemma.301

Lemma 3.2 (see [39, page 18]). If the inverse of the block matrix M in (3.26) is302

nonsingular, then303

M−1 =

[
[M11 −M12M

−1
22 M21]−1 M−1

11 M12[M21M
−1
11 M12 −M22]−1

[M21M
−1
11 M12 −M22]−1M21M

−1
11 [M22 −M21M

−1
11 M12]−1

]
,304

assuming that all the relevant inverses exist.305

Lemma 3.3. For a matrix A with the block structure306

A =


B1 + Λ1I B2 B3 B4 + Λ2I

B5 B6 B7 B8

B9 B10 + Λ3I B11 + Λ4I B12

B13 B14 B15 B16

 ,307

where the submatrices Bi (i = 1, . . . , 16) are all strictly lower triangular, and the Λi308

(i = 1, . . . , 4) are scalar values, the spectral radius of A is given by309

ρ(A) = max{|Λ1|, |Λ4|}.310

Proof. As in the proof of Lemma 3.1, we use the same block factorization to311
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rewrite the determinant in the form (3.27)312

(3.28)

det(A− λI) = det



B1 + (Λ1 − λ)I B2 B3 B4 + Λ2I

B5 B6 − λI B7 B8

B9 B10 + Λ3I B11 + (Λ4 − λ)I B12

B13 B14 B15 B16 − λI




= det

([
B1 + (Λ1 − λ)I B2

B5 B6 − λI

]
−
[
B3 B4 + Λ2I
B7 B8

] [
B11 + (Λ4 − λ)I B12

B15 B16 − λI

]−1

·
[
B9 B10 + Λ3I
B13 B14

])
× det

([
B11 + (Λ4 − λ)I B12

B15 B16 − λI

])
.

313

Now for the inverse on the right in (3.28), we obtain using Lemma 3.2 that314 [
B11 + (Λ4 − λ)I B12

B15 B16 − λI

]−1

=

[
C11 C12

C15 C16

]
,315

with the block entries in the inverse given by316

C11 = [B11 + (Λ4 − λ)I −B12(B16 − λI)−1B15]−1,

C12 = (B11 + (Λ4 − λ)I)−1B12[B15(B11 + (Λ4 − λ)I)−1B12 − (B16 − λI)]−1,

C15 = [B15(B11 + (Λ4 − λ)I)−1B12 − (B16 − λI)]−1B15(B11 + (Λ4 − λ)I)−1,

C16 = [(B16 − λI)−B12(B11 + (Λ4 − λ)I)−1B12]−1.

317

We now study the structure of these block entries. For C11, we first observe that318

(B16 − λI)−1 is lower triangular, since B16 is strictly lower triangular, and hence319

multiplying on the left and right by the strictly lower triangular matrices B12 and B15320

the result will also be strictly lower triangular. The matrix C11 is thus the inverse of321

a strictly lower triangular matrix plus the diagonal matrix (Λ4 − λ)I, which implies322

that C11 = B′11 +
1

Λ4 − λ
I for some strictly lower triangular matrix B′11. Similarly,323

one can also analyze the structure of the other block entries of the inverse, and we324

obtain325

[
B11 + (Λ4 − λ)I B12

B15 B16 − λI

]−1

=

B′11 +
1

Λ4 − λ
I B′12

B′15 B′16 −
1

λ
I

 ,326

where all B′i (i = 11, 12, 15, 16) are strictly lower triangular matrices. We next study327

the product on the right in (3.28)328 [
B3 B4 + Λ2I
B7 B8

] [
B11 + (Λ4 − λ)I B12

B15 B16 − λI

]−1 [
B9 B10 + Λ3I
B13 B14

]
=

[
B17 B18

B19 B20

]
,329

and find again structurally that the Bi (i = 17, . . . , 20) are strictly lower triangular330

matrices. Using Lemma 3.1, the expression for the first determinant in the last line331
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of (3.28) becomes332

det

([
B1 + (Λ1 − λ)I B2

B5 B6 − λI

]
−
[
B3 B4 + Λ2I
B7 B8

]
·
[
B11 + (Λ4 − λ)I B12

B15 B16 − λI

]−1 [
B9 B10 + Λ3I
B13 B14

])

= det

([
B1 + (Λ1 − λ)I B2

B5 B6 − λI

]
−
[
B17 B18

B19 B20

])
= det

([
B̂1 + (Λ1 − λ)I B̂2

B̂5 B̂6 − λI

])
= det(B̂1 + (Λ1 − λ)I) det(B̂6 − λI) = λn(λ− Λ1)n,

333

if the matrix subblocks are of size n×n, and we used again Lemma 3.1, and here the B̂i334

(i = 1, 2, 5, 6) are still strictly lower triangular matrices. For the second determinant335

in (3.28) we get directly using Lemma 3.1 that336

det

([
B11 + (Λ4 − λ)I B12

B15 B16 − λI

])
= det(B11 + (Λ4 − λ)I) det(B16 − λI) = λn(λ− Λ4)n.

337

This yields det(A − λI(4n)×(4n)) = λ2n(λ − Λ1)n(λ − Λ4)n, and hence the spectral338

radius of A is ρ(A) = max{|Λ1|, |Λ4|}.339

3.5. Superlinear Convergence of PSWR. We are now ready to prove the340

main result of this paper, namely the superlinear convergence of PSWR. We collect341

the norms of the functions appearing in (3.23) into vectors,342

(3.29) [e]t := [‖e0‖∞, . . . , ‖eN−1‖∞]T , [E]x := [‖E0‖∞, . . . , ‖EN−1‖∞]T ,343

where the infinity norm for a function g : (a, b)→ R is given by

‖g‖∞ := sup
a<s<b

|g(s)|.

Note that in [E]x the infinity norms are in space, indicated by the subscript x, since344

E represents functions in space, and in [e]t the infinity norms are in time, indicated345

by the index t, since e represents functions in time. We also define the matrix of346

norms of the functions in a matrix A = [aij ] by347

(3.30) [A]t = [‖aij‖∞].348

349

Theorem 3.4 (Superlinear Convergence). If the fine propagator F is the exact350

solver, and the coarse propagator G is Backward Euler, then PSWR with Dirichlet351

transmission conditions and overlap L converges superlinearly on bounded time in-352

tervals (0, T ), i.e. the errors given by the error recursion formulas (3.4) and (3.5)353

satisfy the error estimate354

(3.31)


[e2k

1 ]t
[E2k

1 ]x
[e2k

2 ]t
[E2k

2 ]x

 ≤ M̃2k


[e0

1]t
[E0

1 ]x
[e0

2]t
[E0

2 ]x

 ,355
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where “≤” denotes the element-by-element comparison, and for each iteration index356

k, the spectral radius of the iteration matrix M̃2k can be bounded by357

(3.32) ρ(M̃2k) ≤ erfc(
kL√
T

),358

where erfc(·) is the complementary error function with erfc(x) = 2√
π

∫∞
x
e−t

2

dt.359

Proof. To obtain a convergence estimate of the matrix iteration (3.24) represent-360

ing the error recursion formulas (3.4) and (3.5) of the PSWR algorithm with Dirichlet361

transmission conditions, we first invert the matrix of operators on the left hand side362

using Lemma 3.2, which leads to363

(3.33)


I 0 0 0
0 I− C1I−1 −D1,∆T I−1 0
0 0 I 0

−D2,∆T I−1 0 0 I− C2I−1


−1

=


I 0 0 0
0 I +B′1 B′2 0
0 0 I 0
B′3 0 0 I +B′4

 ,
364

where B′i (i = 1, . . . , 4) are strictly lower triangular matrices of operators. Multiplying365

the matrix iteration (3.24) on both sides by the inverse (3.33) thus leads to the matrix366

iteration367

(3.34)


ek+1

1 (0, ·)
Ek+1

1 (x)

ek+1
2 (L, ·)
Ek+1

2 (x)

 = M


ek1(0, ·)
Ek

1 (x)
ek2(L, ·)
Ek

2 (x)

 ,368

where the iteration matrix M of operators is given by369

M =


0 P1,0 Q1,0 0

B′2Q2,L K1 K2 B′2P2,L

Q2,L 0 0 P2,L

K3 B′3Q1,0 B′3P1,0 K4

 ,370

with the new matrices of operators appearing given by371

K1 := (I +B′1)(P1,∆T I−1 − C1I−1),372

K2 := (I +B′1)(Q1,∆T I−1 −D1,∆T I−1),373

K3 := (I +B′4)(Q2,∆T I−1 −D2,∆T I−1),374

K4 := (I +B′4)(P2,∆T I−1 − C2I−1).375376

The key idea of the proof is now not to estimate the contraction over one step, which377

would only lead to a linear convergence estimate, but to look at the iteration over all378

iteration steps at once, i.e.379

(3.35)


e2k

1 (0, ·)
E2k

1 (x)
e2k

2 (L, ·)
E2k

2 (x)

 = M2k


e0

1(0, ·)
E0

1(x)
e0

2(L, ·)
E0

2(x)

 .380
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The 2k-th power of the iteration matrix of operators has the structure381

M2k =


L1 + (Q1,0Q2,L)k L2 L3 L4 + (Q1,0Q2,L)k−1Q1,0P2,L

L5 L6 L7 L8

L9 L10 + (Q2,LQ1,0)k−1Q2,LP1,0 L11 + (Q2,LQ1,0)k L12

L13 L14 L15 L16

 ,382

where all the new matrices of operators Li (i = 1, 2, . . . , 16) are strictly lower triangu-383

lar, as a detailed verification like in the proof of Lemma 3.3 shows. We now take the384

norms defined in (3.29) in each block row of (3.35), and using the triangle inequality,385

we obtain the estimate (3.31) shown in the statement of the theorem. Now note that386

the matrix M̃2k has the same structure as the matrix in Lemma 3.3, and we thus get387

for the spectral radius of M̃2k388

(3.36) ρ(M̃2k) = max{[(Q1,0Q2,L)k]t, [(Q2,LQ1,0)k]t},389

Here [·]t is defined in (3.30) for the matrices (Q1,0Q2,L)k and (Q2,LQ1,0)k. By the390

definitions of Q1,0 and Q2,L in (3.25), and using the definitions of B1,n,0 and B2,n,L391

in (3.19) and (3.22), we see that B1,n,0 = B2,n,L, and further Q1,0 = Q2,L. Note that392

the diagonals of Q1,0Q2,L are B1,n,0B2,n,L, and therefore it suffices to estimate393

‖(B1,n,0B2,n,L)k‖∞ = ‖(B1,n,0)2k‖∞ ≤ ‖
∫ t

0

2kL

2
√
π(t− τ)3/2

e−
(2kL)2

4(t−τ) dτ‖∞,394

where the infinity norm here is defined for the operator. Using the change of variables395

y := kL/
√
t− τ , we obtain396

‖(B1,n,0B2,n,L)k‖∞ ≤ erfc(
kL√
T

).397

Therefore the spectral radius of the iteration matrix of operators M̃2k can be bounded398

as shown in (3.32), which concludes the proof.399

Remark 3.5. From Theorem 3.4, we see that the spectral radius of the iteration400

matrix of operators M̃2k can be bounded for each k, which gives a different asymptotic401

error reduction factor for each k. Our result thus captures the convergence behavior402

of the PSWR method much more accurately than just an estimate of the decay of the403

error over one iteration step; it is obtaining this convolved estimate which made the404

analysis so hard. Estimating over one step, we would just have obtained a classical405

linear convergence factor, a number less than one. Let us look at an example: let406

T := 1, L := 0.1. Then for k = 1, we have erfc(0.1) ≈ 0.8875 and thus ρ(M̃2) ≤ 0.8875407

and PSWR converges asymptotically at least with the factor 0.8875, i.e the error is408

asymptotically multiplied at least by 0.8875 every two iterations. This is however409

only an upper bound, since if we look at k = 2, we have erfc(0.2) ≈ 0.7773 and thus410

ρ(M̃4) ≤ 0.7773 and PSWR converges asymptotically at least with the factor 0.7773,411

i.e the error is asymptotically multiplied at least by 0.7773 every four iterations.412

So the key result we obtained is much more precise than just an asymptotic linear413

convergence factor, it proves superlinear asymptotic convergence: if we look at k = 20414

in our example, we have erfc(2) ≈ 0.004678 � (erfc(0.1))20 ≈ 0.09199 (!) and thus415

ρ(M̃40) ≤ 0.004678, an extremely fast contraction rate. We could also check the416

equivalent average convergence factor by taking the kth root of ρ(M2k). When we417

choose k = 1, 2, and 20, the average convergence factor is 0.8875, 0.8816, and 0.7647,418
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which shows that the average convergence factor decreases as the iteration number419

k increases. We will see in our numerical experiments, that PSWR algorithm really420

converges at a superlinear rate, and that our estimate is quite sharp. In order to get a421

norm estimate, we could also consider the norm of the iteration matrix of operators in422

the sense induced by the spectral radius, see [47, page 284, Lemma 1] or [73, page 795]:423

for every ε > 0, we can introduce an equivalent norm ‖·‖ε such that the corresponding424

operator norm satisfies425

ρ(M̃2k) ≤ ‖M̃2k‖ε ≤ ρ(M̃2k) + ε,426

where ‖x‖ε := supp≥0(ρ(M̃2k) + ε)−p‖M̃2kpx‖∞, x ∈ R4N . This then implies that427

our algorithm is also converging superlinearly in the above norm sense.428

Remark 3.6. The convergence estimate in Theorem 3.4 depends only on the size429

of the overlap L and the length of the entire time interval T of simulation, but it does430

not depend on the number of time subintervals we use in the PSWR algorithm. We431

will investigate in the next section how sharp this bound is, and if a similar bound432

would also hold for many subdomains, and optimized transmission conditions, cases433

which our current analysis does not cover.434

4. Numerical experiments. To investigate numerically how the convergence435

of the PSWR algorithm depends on the various parameters in the space-time decom-436

position, we use the 1-dimensional model problem437

(4.1)

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
, (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0, x ∈ Ω,

438

where the domain Ω = (0, 3), and the initial condition is u0 = exp−3(1.5−x)2

. The439

model problem (4.1) is discretized by a second-order centered finite difference scheme440

with mesh size h = 3/128 in space and by the Backward Euler method with ∆t =441

T/100 in time. The time interval is divided into N time subintervals, while the442

domain Ω is decomposed into J equal spatial subdomains with overlap L. We define443

the relative error of the infinity norm of the errors along the interface and initial time444

in the space-time subdomains as the iterative error of our new algorithm.445

We first study cases which are very closely related to our analysis, with the only446

difference that the spatial domain must be bounded in order to perform numerical447

computations. We thus decompose the domain Ω into 2 spatial subdomains with over-448

lap L = 2h. The total time interval length is T = 1. We show in Figure 2 on the left449

the convergence of the PSWR algorithm when the number of time subintervals equals450

1 (classical Schwarz waveform relaxation), 2, 4, 10, and 20. This shows that the con-451

vergence of the algorithm does indeed not depend on the number of time subintervals,452

as predicted by Theorem 3.4. We also observe the superlinear convergence behavior453

predicted by Theorem 3.4, which is typical for waveform relaxation algorithms, see454

for example [31], and the estimate is asymptotically quite sharp, as one can see from455

the theoretical bound we also plotted in Figure 2 on the left. Here the theoretical456

bound is obtained from the spectral radius bound in Theorem 3.4.457

We next investigate how the convergence depends on the total time interval length458

T , with T ∈ {0.1, 0.2, 0.5, 1, 2}. We divide the time interval (0, T ) each time into459

10 time subintervals, and use the same decomposition of the domain Ω into two460
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Fig. 2. Dependence of the PSWR algorithm on the number of time subintervals (left), and the
total time window length (right)
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Fig. 3. Dependence of the PSWR algorithm on the overlap (left), and on the number of spatial
subdomains (right).

subdomains with overlap L = 2h as before. The results are shown in Figure 2 on461

the right with the corresponding asymptotically rather sharp bounds. We clearly see462

that the convergence of the PSWR algorithm is much faster on short time intervals,463

compared to long time intervals, as predicted by Theorem 3.4. We see however also464

that the initial convergence behavior on long time intervals seems to be linear, and465

independent of the length of the time interval then, a fact which is not captured by466

our superlinear convergence analysis.467

We next study the dependence on the overlap. We use L = 2h, 4h, 8h and 16h,468

and divide the time interval (0, T ) with T = 1 into 10 time subintervals, still using the469

same two subdomain decomposition of Ω as before. We see on the left in Figure 3 that470

increasing the overlap substantially improves the convergence speed of the algorithm,471

as predicted by our convergence estimate in Theorem 3.4. This increases however also472

the cost of the method, since bigger subdomain problems need to be solved.473

We now investigate numerically if a similar convergence result we derived for two474

subdomains also holds for the case of many subdomains. We decompose the domain475

Ω into 2, 4, 8 and 16 spatial subdomains, keeping again the overlap L = 2h. For476

each case, we divide the time interval (0, T ) with T = 1 into 10 time subintervals.477

We see in Figure 3 on the right that the algorithm on many spatial subdomains still478

This manuscript is for review purposes only.



A SUPERLINEAR CONVERGENCE ESTIMATE FOR PSWR 17

iteration

10 20 30 40 50 60 70 80 90 100 110 120

e
rr

o
r

10
-4

10
-3

10
-2

10
-1

10
0

1 time subinterval

2 time subintervals

4 time subintervals

10 time subintervals

20 time subintervals

iteration

20 40 60 80 100 120 140 160 180

e
rr

o
r

10
-4

10
-3

10
-2

10
-1

10
0

1 time subinterval

2 time subintervals

4 time subintervals

10 time subintervals

20 time subintervals
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transmission conditions. Right: corresponding convergence curves.

converges superlinearly, as predicted by our two subdomain analysis, but using more479

spatial subdomains makes the algorithm converge more slowly, like for the classical480

Schwarz method for steady problems. This can however be remedied by using smaller481

global time intervals T , and leads to the so called windowing techniques for waveform482

relaxation algorithms in general, see [34].483

We further investigate whether the convergence of the algorithm still does not484

depend on the number of time subintervals for the case of many subdomains. We485

see in Figure 4 that the convergence behavior for four spatial subdomains (left), and486

eight spatial subdomains (right) is the same as the convergence behavior for two487

spatial subdomains.488

Finally, we compare the convergence behavior of the PSWR algorithm with489

Dirichlet and optimized transmission conditions. Using optimized transmission condi-490

tions leads to much faster, so called optimized Schwarz waveform relaxation methods,491

see for example [32, 3]. We divide the time interval (0, T ) with T = 1 into 20 time492

subintervals, and the domain Ω is decomposed into 8 spatial subdomains. We use493

first order transmission conditions and choose for the parameters p = 1, q = 1.75 (for494

the terminology, see [3]). In Figure 5 we show on the left on top the third iteration495
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Fig. 6. Dependence of the PSWR algorithm with optimized transmission conditions on the
number of time subintervals (left), and the total time window length (right)
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and corresponding error using Dirichlet transmission conditions, and below the third496

iteration and corresponding error using optimized transmission conditions. We clearly497

see that with optimized transmission conditions, the error is much more effectively498

eliminated both from the initial line and the spatial boundaries. On the right in Fig-499

ure 5, the corresponding convergence curves show that using optimized transmission500

conditions lead to substantially better performance of the algorithm, even better than501

very generous overlap, and this at no additional cost, since the subdomain size and502

matrix sparsity is the same as for the case of Dirichlet transmission conditions. We503

also investigate the dependence on the number of time subintervals (on the left in Fig-504

ure 6), and the total time interval length T (on the right in Figure 6), where we choose505

the problem configuration as in the case of the Dirichlet transmission conditions in506

Figure 2. We observe that convergence is much faster with optimized transmission507

conditions (less than 10 iterations instead of over 100), and convergence has also be-508

come linear, indicating that there is a different convergence mechanism dominating509

now, due to the optimized transmission conditions. We also observe that in contrast510

to the Dirichlet transmission condition case, convergence does now not depend any511

more on the length T of the overall time interval. We also test the dependence on512

the overlap size L (on the left in Figure 7), and on the number of spatial subdomains513

J (on the right in Figure 7). Comparing with the Dirichlet transmission condition514
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case in Figure 3, we see again much faster convergence for all overlaps and spatial515

subdomain numbers, and convergence is also more linear again, except in the case516

of many spatial subdomains, where after some iterations a superlinear convergence517

mechanism seems to become active.518

5. Conclusion. We designed and analyzed a new PSWR algorithm for solving519

time-dependent PDEs. This algorithm is based on a domain decomposition of the en-520

tire space-time domain into smaller space-time subdomains, i.e. the decomposition is521

both in space and in time. The new algorithm iterates on these space-time subdomains522

using two different updating mechanisms: the Schwarz waveform relaxation approach523

for boundary condition updates, and the parareal mechanism for initial condition up-524

dates. All space time subdomains are solved in parallel, both in space and in time.525

We proved for the model problem of the one dimensional heat equation and a two526

subdomain decomposition in space, and arbitrary subdomain decomposition in time527

that the new algorithm converges superlinearly on bounded time intervals when using528

Dirichlet transmission conditions in space. We then tested the algorithm numerically529

and observed that our superlinear theoretical convergence estimate also seems to hold530

in the case of many subdomains, and as predicted, for fast convergence the overall531

time interval should not be too large (which can be achieved using a time windowing532

technique), or the overlap should be not too small. We then showed numerically that533

both these drawbacks can be greatly alleviated when using optimized transmission534

conditions, and we also observed that convergence then is more linear. Our results535

open up the path for many further research directions: is it possible to capture the536

different, linear convergence mechanism in the case of optimized transmission condi-537

tions using a different type of convergence analysis from ours? Can we prove that538

convergence then becomes independent of the length of the overall time interval? Is539

it possible to remove the dependence on the number of spatial subdomains using a540

coarse space correction, like it is done in [6] for optimized transmission conditions in541

the steady case? What is the convergence behavior when applied to the wave equa-542

tion? Can one use in space also a Dirichlet-Neumann or Neumann-Neumann iteration,543

as in [26] without time decomposition? Answering these questions by analysis will544

be even more challenging than our first convergence estimate for this new algorithm545

presented here.546

Appendix A. Representation formula for the solution of the G propaga-547

tor. We derive here the representation formula for the solution of the G propagator548

using Backward Euler. For the ordinary differential equation549

∂2u

∂x2
− a2u = f, a > 0,550

its general solution can be expressed in the form551

u(x) = C1e
ax +

∫
eax−aτ

f(τ)

2a
dτ − C2

e−ax

a
−
∫
eaτ−ax

df(τ)

2a
dτ.552

On a bounded domain in the presence of boundary conditions, as in553

∂2u

∂x2
− a2u = f, x ∈ [L1, L2], a > 0,

u(L1) = g1, u(L2) = g2,

554
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one can still obtain a closed form solution, namely555

u(x) = C1e
ax +

∫ x

L1

eax−aτ
f(τ)

2a
dτ − C2e

−ax

a
−
∫ x

L1

eaτ−ax
f(τ)

2a
dτ,556

where557

C1 =
g2 − g1e

aL1−aL2 −
∫ L2

L1
(eaL2−aτ − eaτ−aL2) f(τ)

2a dτ

eaL2 − e2aL1−aL2
,

C2 = a
g2 − g1e

aL2−aL1 −
∫ L2

L1
(eaL2−aτ − eaτ−aL2)

f(τ)

2a
dτ

eaL2−2aL1 − e−aL2
.

558

Denoting by δL := L2 − L1 we obtain after some simplifications559

u(x) =
eax−aL1 − e−ax+aL1

eaδL − e−aδL
g2 +

eaL2−ax − e−aL2+ax

eaδL − e−aδL
g1

+
eaL1−ax − eax−aL1

eaδL − e−aδL

∫ L2

L1

(eaL2−aτ − eaτ−aL2)
f(τ)

2a
dτ

+

∫ x

L1

(eax−aτ − e−ax+aτ )
f(τ)

2a
dτ.

560

In particular, if L1 → −∞, L2 = L and g1 = 0, then we have561

u(x) =g2e
a(x−L) +

∫ L

−∞
ea(x+τ−2L) f(τ)

2a
dτ −

∫ L

x

ea(x−τ) f(τ)

2a
dτ

−
∫ x

−∞
e−a(x−τ) f(τ)

2a
dτ,

562

and if L1 = 0, L2 → +∞ and g2 = 0, then we have563

u(x) = g1e
−ax +

∫ +∞

0

e−a(x+τ) f(τ)

2a
dτ −

∫ x

0

e−a(x−τ) f(τ)

2a
dτ −

∫ +∞

x

ea(x−τ) f(τ)

2a
dτ.564
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