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Abstract

This thesis is divided into two parts: the �rst part being dedicated to the universality of the

random-cluster model and the second to its quantum counterpart and, in particular, to the

quantum Ising model.

The random-cluster model is a generalization of Bernoulli percolation, the Ising model

and the q-color Potts model. It can be seen as a reweighted Bernoulli percolation with an

additional (real) weight parameter q > 1, which is also the number of colors in the Potts

model when it is an integer.

These models have been widely studied on planar regular graphs, especially on the square

lattice. Critical parameters are known and behaviors at the criticality and away from the

criticality are also fairly well understood. Moreover, for the Ising model, by means of the

parafermionic observable, we can prove the conformal invariance of interfaces separating

di�erent connected components.

In the thesis, we study the random-cluster model on a wider family of (planar) graphs,

called isoradial, by proving that the same properties also hold. This family of graphs is in-

teresting due to the following reasons. A parafermionic observable can be de�ned on such

graphs for our model of interest and nice combinatorial properties can be deduced. Along

with the complex analysis on isoradial graphs, we may also get some exact relations at the

discrete level. Moreover, under star-triangle transformations, the main tool that we introduce

in the thesis, random-cluster measures are preserved. This allows us to transport properties,

even only conjecturally known, from the square lattice to other isoradial graphs. In particu-

lar, results using methods which are speci�c to the square lattice (such as the transfer matrix

formulation) can be obtained on isoradial graphs in this way.

A (d + 1)-dimensional quantum model consists of d dimensions in space and 1 dimen-

sion in time, representing evolution of a quantum state under the action of a Hamiltonian.

If we represent both the space and time dimensions graphically, a (1 + 1)-quantum model

has a planar representation, and thus, we expect to �nd the same properties as its planar

counterpart.

We de�ne the quantum version of the aforementioned random-cluster model, then com-

pute its critical parameters and determine its behavior at the criticality and away from it. This

is an application of the previous part: the quantum random-cluster model can be seen as the

limit of its discrete counterpart de�ned on more and more �attened isoradial graphs. Then,

by proving uniform probability bounds on crossing events, we obtain the same properties for

the quantum model.
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Abstract

To conclude the thesis, we prove, for the (1 + 1)-dimensional quantum Ising model, a

classical result of the 2D Ising model: the conformal invariance. We work directly in the

quantum setting; in other words, on the semi-discrete lattice Z×R.
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Résumé

Cette thèse comprend deux parties : la première portant sur l’universalité du modèle de ran-

dom-cluster et la seconde sur sa version quantique, et plus précisément, sur le modèle d’Ising

quantique.

Le modèle de random-cluster est une généralisation de la percolation de Bernoulli, le mo-

dèle d’Ising et le modèle de Potts à q couleurs. Ce modèle peut être vu comme une percolation

de Bernoulli pondérée à l’aide d’un paramètre supplémentaire q > 1, qui est aussi le nombre

de couleurs dans le modèle de Potts lorsque ce dernier est un entier.

Ces modèles ont été beaucoup étudiés sur les graphes réguliers, dont le réseau carré en

particulier. Les paramètres critiques sont connus et les comportements au point critique et

en dehors du point critique sont plutôt bien compris. De plus, l’observable fermionique pour

le modèle d’Ising nous permet de prouver l’invariance conforme des interfaces qui séparent

des composantes connexes distinctes.

Dans cette thèse, nous étudions le modèle de random-cluster sur une famille de graphes

(planaires) plus large, appelés isoradiaux et nous démontrons que les mêmes propriétés sont

aussi satisfaites. Cette famille de graphes ont un intérêt particulier pour les raisons suivantes.

Une observable parafermionique peut être dé�nie sur de tels graphes pour les modèles qui

nous intéressent et à partir de celle-ci, on peut déduire de bonnes propriétés combinatoires.

De plus, avec la théorie de l’analyse complexe sur ces graphes, nous obtenons aussi des rela-

tions exactes au niveau discret. Nous introduisons aussi les transformations triangle-étoile,

qui jouent le rôle central dans cette thèse. Ce sont des transformations qui préservent les

mesures de random-cluster qui transportent des propriétés, même si elles sont seulement

conjecturales, du réseau carré à n’importe quel autre graphe isoradial. Ce qui est particuliè-

rement intéressant est que les résultats qui découlent des méthodes propres au réseau carré

(les matrices de transfert par exemple) peuvent aussi être obtenus de cette manière.

Un modèle quantique de dimension (d + 1) contient d dimensions en espace et une en

temps, qui représente l’évolution d’un état quantique sous l’action d’un Hamiltonien. Si nous

représentons l’espace et le temps graphiquement, un modèle quantique de dimension (1+1)
admet une représentation planaire, et nous nous attendons à trouver sur ce dernier les mêmes

propriétés que son homologue planaire.

Nous dé�nissons le modèle de random-cluster quantique, calculons ses paramètres cri-

tiques et déterminons ses comportements au point critique et en dehors du point critique.

Ceci est une application de la partie précédente : le modèle quantique peut être vu comme la

limite du modèle discret dé�ni sur des graphes isoradiaux de plus en plus plats. Nous établis-
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Résumé

sons des bornes uniformes sur les probabilités de croisement a�n d’étudier les comportements

mentionnés ci-dessus.

Pour conclure cette thèse, nous démontrons un résultat classique du modèle d’Ising pla-

naire pour le modèle d’Ising quantique de dimension (1 + 1) : l’invariance conforme. Nous

travaillons directement dans le cadre quantique, en d’autres termes, sur le réseau semi-discret

Z×R.
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Introduction

De�nition of models

In statistical mechanics, one is interested in systems of particles which are described at mi-

crocopic level and observed at macroscopic level. Usually, the model could be a particle

moving on a discrete lattice or a collection of interacting particles. At the microscopic level,

the system could be hard to study due to the huge amount of local information, but at the

macroscopic level, only the dominating behavior will remain because �uctuations that are

too small will disappear, which simpli�es the analysis.

In this thesis, we are interested in planar models from statistical mechanics. These models

are usually described by one (or more) parameters, which could be interpreted in physical

systems as pressure, temperature, porosity or strength of interaction, for instance. When a

parameter varies, the system may exhibit di�erent macroscopic behaviors, which are called

phases. A value below which and above which one observes di�erent macroscopic properties

is called critical and we say that a phase transition occurs at this point. At the critical point,

the model has non-trivial behaviors which are of particular interest. Before going further for

detailed analysis, let us see a few examples of such models.

The Bernoulli percolation on Z
2

is a model of statistical mechanics that can be de�ned

in a few words. Fix a parameter p ∈ [0,1], consider the in�nite graph Z
2

and remove each

of its edges one by one independently with probability 1 − p. The random outcome thus

obtained is the object of our interest, called Bernoulli percolation of parameter p. One can see

a con�guration as a function on edges, which takes 0 if it is removed (also called a closed
edge) and 1 if it is kept (also called an open edge). As such, a con�guration is also an element

ω in {0,1}E , where E is the edge set of Z
2
.

One can easily observe that when p = 0, all the edges are removed and one ends up with a

graph with only isolated vertices. When p = 1, all the edges are kept so the �nal graph is still

the whole Z
2

itself. In other words, when p = 0, the graph has a lot of small �nite connected

components while when p = 1, the model has a unique in�nite connected component. For

intermediate values of p, the situation is less trivial. One may have a look at Figure 1 for an

illustration. The value p = 1
2 is the self-dual point

1
and is actually the critical point of the

model in the following sense.

1
The dual graph of Z

2
is (Z+ 1

2 )
2

. With a con�guration ω on the edge set of Z
2

, one can associate a dual

con�guration ω∗ on the edge set of (Z + 1
2 )

2
by letting ω∗(e∗) = 1 −ω(e), where e∗ is the dual edge of e. By

self-dual point we mean that ω∗ and ω have the same distribution.
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Figure 1 – Simulations of Bernoulli percolation with parameters p = 0.35 (subcritical), p =
0.5 (critical) and p = 0.65 (supercritical).

When p < 1
2 , there is no in�nite connected component (or in�nite cluster) almost surely;

whereas when p > 1
2 , almost surely such an in�nite cluster exists and is unique. Moreover, in

the latter case, the complement of the unique in�nite cluster consists only of �nite-size con-

nected components. These two regimes are called subcritical and supercritical respectively.

In the subcritical regime, when one zooms out, these small islands of �nite-size connected

components all disappear; whereas in the supercritical regime, the connected components in

the complement disappear.

At the critical point p = 1
2 , one observes a less trivial phenomenon: no matter how one

scales the model, one observes “more or less the same picture” and one obtains similar “con-

nection properties”
2
. In particular, this suggests some self-similar behaviors of the critical

model. This property characterizes the critical point p = 1
2 and is called the Russo-Seymour-

Welsh property (RSW property)
3
. A more precise and mathematical way of describing this

property will be given in Section 1.1.10. Readers are referred to Figure 2 for a simulation.

A possible approach to describe the property of the self-similarity is to use a concept,

called “renormalization group”, proposed by theoretical physicists. This consists of a “renor-

malization map”, which changes the scale at which we study the model. In other words, this

map fusions neighboring vertices into blocks, which we call defocusing or coarse-graining,

and results roughly in the same model but with a di�erent parameter.

Let us look at Figure 3 for some simulations of the (site) Bernoulli percolation. The proce-

dure is as follows: we sample the Bernoulli percolation with parameter p and the renormal-

ization maps consists of replacing each 3× 3 block by a block of the dominating state (close

or open site). The picture thus obtained can still be described by a site percolation model

with a di�erent parameter
4
.

In the subcritical phase, for example at p = 0.35, after zooming out by a factor of 3, we

see “less” open edges: this would correspond to a percolation model with a smaller param-

eter. In the supercritical phase, for example at p = 0.65, one observes something opposite.

2
For example, the probability that there is an open path between the left and the right side of a rectangle of

size n× (n+1) is
1
2 for all integer n.

3
We note that at p = 0 and p = 1, the model is also self-similar, but since these cases are degenerated, we do

not need to care much.

4
If the original model is the site Bernoulli percolation with parameter p, then the resulting model is with

parameter p′ =
∑9
k=5

(9
k
)
pk(1− p)9−k . By solving p′ = p, one obtains p = 0, 12 ,1 as solutions.
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Figure 2 – A simulation of Bernoulli percolation at criticality. Closed edges are in black and

open edges in white. The ten largest connected components are drawn in various colors in

decreasing order: red, blue, green, etc.

Figure 3 – Simulations of the site Bernoulli percolation with parameters p = 0.35 (subcritical),

p = 0.5 (critical) and p = 0.65 (supercritical). On the bottom, the blue windows correspond

to a portion observed in the model and the red windows correspond to the observation made

after a “renormalization map” which scales out by factor 3, replacing each 3 × 3 block by a

block with the dominating color. At the critical point, the red and the blue windows have the

same “statistics” (correlations are the same).

After zooming out by a factor of 3, we see “more” open edges and this would correspond to a

percolation model with a larger parameter. Finally, we examine the behavior of this “renor-

malization map” at the critical point p = 0.5, before and after scaling. What we observe from

the simulation is that the two realizations look pretty much the same.

Therefore, a �xed point of the renormalization map, or the self-similarity of the model,

would provide us with the critical model. Readers are referred to [Car96, ZJ07] and the ref-

erences therein.

Another well-known model is the Ising model. It was invented by Wilhelm Lenz [Len20]

to understand the phenomenon of ferromagnetism. It was studied by his student Ernst Ising
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in his PhD thesis [Isi25] who proved that the model does not exhibit any phase transition in

one dimension and wrongly generalized this result to all higher dimensions.

Here, we only de�ne the Ising model on a �nite subgraph G = (V ,E) of Z
2
, where V is

the vertex set and E the edge set. We note that more care is needed to de�ne the model on

an in�nite graph such as Z
2
, which will be done by means of weak limits in Chapter 3. Fix

a parameter β > 0 which can be seen as the inverse of the temperature. A spin is usually

denoted by ↑ / ↓ or ±1 and a spin con�guration σ is a function associating a spin with each

vertex, i.e., σ is an element of {−1,+1}V .

Given a spin con�guration σ ∈ {−1,+1}V , de�ne its Hamiltonian to be

H(σ ) = −
∑
〈u,v〉∈E

σuσv , (0.1)

where the sum is taken over all the edges 〈u,v〉 in E. Then, the probability of a particular

spin con�guration σ ∈ {−1,+1}V is given by

Pβ[σ ] =
exp(−βH(σ ))

Zβ
, (0.2)

where Zβ =
∑
σ ′ exp(−βH(σ ′)) sums over all possible spin con�gurations and is called the

partition function.

A simple observation allows us to say that in a con�guration, the more the neighbours

agree with each other, the lower is the Hamiltonian. Thus, such con�gurations occur with

higher probabilities.

When β goes to 0 (temperature goes to in�nity), the exponential term in the numerator

does not di�er too much between di�erent spin con�gurations and as a consequence, they

are all “more or less” equiprobable. This is called a disordered phase. On the other side, when

β goes to in�nity (temperature goes to zero), only two con�gurations have much higher

weights than the others: one with only plus spins and the other one with only minus spins.

This phase is called ordered.

On Z
2
, the existence of phase transition can be shown by using Peierls argument [Pei36].

The idea is to expand e−βH in two di�erent ways, called low- and high- temperature expan-
sions. They are rewritings of the exponential terms eσuσv using combinatorics arguments. In

this way, one can prove that there is a value βc ∈ (0,∞), called critical value of the inverse

temperature, such that for β < βc, the model is in the disordered phase; and for β > βc, it is

in the ordered phase.

Hendrik Kramers and Gregory Wannier computed the critical value by duality [KW41]

and the fact that at the critical point, the model should be self-dual. Later, an analytic de-

scription of the model was given by Lars Onsager [Ons44] where this was solved by means

of transfer-matrix and the critical value was computed to be βc =
1
2 ln(
√
2 + 1). Later, by

using di�erential inequalities, Aizenman, Barsky and Fernández proved that the phase tran-

sition is sharp [ABF87], which, combined with Kramers-Wannier argument, provided a new

approach to compute the critical value.

The main model studied in this thesis, the random-cluster model, or Fortuin-Kasteleyn
percolation (FK-percolation), was introduced by Fortuin and Kesteleyn [FK72] to unify the

aforementioned Bernoulli percolation, the theory of electrical network and the Potts model.

Like the Ising model, this model presents a lot of dependency and cannot be de�ned directly

on an in�nite graph. Thus, we describe it for a �nite subgraphG = (V ,E) of Z
2

and a precise

de�nition of the in�nite-volume measure is postponed to Chapter 3.
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Fix p ∈ [0,1] and q > 1, called the cluster-weight. Letω ∈ {0,1}E be an edge con�guration

and let

ϕG,p,q[ω] =
po(ω)(1− p)c(ω)qk(ω)

ZG,q
, (0.3)

be a measure where ZG,p,q =
∑
ω′ p

o(ω′)(1−p)c(ω′)qk(ω′) sums over all possible edge con�gu-

rationsω′ ∈ {0,1}E . Here, o(ω), c(ω) and k(ω) denote respectively the number of open edges,

closed edges and connected components in ω, and ZG,p,q is called the partition function. The

measure ϕG,p,q is a probability measure called the random-cluster measure on G.

The model on the square lattice Z
2

is now pretty well understood. The critical value

pc was computed by Vincent Be�ara and Hugo Duminil-Copin [BDC12], which is given by

pc =
√
q

1+
√
q (see also [DCM16, DRT16, DRT17]). In the same paper, it is also shown that the

distribution of the size of �nite clusters has exponential tails when the model is non-critical.

Also, the phase transition of the model is continuous
5

if the cluster-weight q belongs to

[1,4] [DCST17] and discontinuous if it is greater than 4 [DGH
+

16].

For integer cluster-weights, the model can be coupled with the Potts model via the so--

called Edwards-Sokal coupling [ES88], also see Section 1.1.2. The Potts model is a general-

ization of the Ising model: instead of having spins ±1 on vertices, we associate with each

vertex a “color” which is described by an integer in {1, . . . , q}. Also note that the con�gura-

tions of the Potts model are de�ned on vertices whereas those of the random-cluster model

are de�ned on edges. In particular, for the cluster-weight q = 2, the Edwards-Sokal coupling

gives the Ising model; and the critical value from [BDC12] gives again the critical parameter

βc =
1
2 ln(
√
2+1) for the Ising model.

Criticality and conformal invariance

A conformal map between two simply-connected open sets of C is a biholomorphic map be-

tween them. Such a map is C-di�erentiable, hence at in�nitesimal scale, it is the composition

of a scaling and a rotation
6
. Translations, scalings, rotations and Möbius transformations

are examples of such maps. Informally speaking, a mathematical object (a stochastic process

for example) is said to be conformally invariant if under the transformation of such maps, the

resulting object remains of the same nature (in distribution) as the initial one.

At criticality, the aforementioned RSW property implies the in�nite correlation length of

the model (i.e., the correlation decreases in power laws with respect to the distance). And the

models having an in�nite correlation length are conjectured to be conformally invariant in

the scaling limit. In other words, when one zooms out such models, or “observes them from

very far away”, we should see an object which is conformally invariant.

This idea �rst aorse in seminal papers by Belavin, Polyakov and Zamolodchikov [BPZ84a,

BPZ84b] by introducing the notion of conformal �eld theory, which consists of the study of

scaling limits of quantum �elds, containing all information of planar models of statistical

mechanics, and allowing us to explain non-rigorously many of their phonemena at criticality.

However, in mathematical terms, this notion still needs to be de�ned rigorously, and one

of the possible ways, for example, is to look at some interface (one-dimensional curve) arising

5
Roughly speaking, a phase transition is said to be continuous if the free energy is continuous by di�erenti-

ation with respect to the parameter at the critical point; and discontinuous otherwise.

6
Let U and V be two simply-connected sets of C, f be a conformal map and z ∈U . One may write f ′(z) in

the polar coordinates f ′(z) = reiθ , where r > 0 and θ ∈R. At the in�nitesimal scale around z, f acts as a scaling

of factor r composed with a rotation of angle θ.
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Figure 4 – Simulations of SLE curves of parameter κ = 2 et κ = 3.5. (Courtesy of Vincent

Be�ara)

from the model. A good candidate for the scaling limit of such an interface is the (chordal)
Schramm-Löwner Evolution (or SLE) which is a one-parameter family of processes that can

be described by the following stochastic di�erential equation:

∂gt(z) =
2

gt(z)−Wt
, z ∈H,

where Wt =
√
κBt is the driving function. In the previous de�nition, κ > 0 is the parameter

of the SLE process and (Bt)t>0 the standard two-dimensional Brownian motion. These are

self-similar fractal curves and some simulations are shown in Figure 4. For all values of κ,

the process satis�es the domain Markov property and conformal invariance; and conversely,

as long as we have a stochastic process satisfying these two properties, it can be described

by an SLE curve. This was �rst introduced by Oded Schramm [Sch00] and a lot of planar

models have been shown or are conjectured to have interfaces described in the limit by some

SLE curves.

Let us discuss some results of this kind concerning the aforementioned models at the

critical point. We start from the site percolation model.

Let Ω be a simply connected open set of C. Consider the triangular lattice T on which

we de�ne the site percolation with parameter p = 1
2 , i.e., instead of having open and closed

edges, we have open and closed vertices, each with equal probability. By duality, this can

also be seen as the face percolation on the hexagonal lattice. For δ > 0, write Ωδ for the

discretization of Ω by δT . We do not need to worry too much about the way we discretize

and we can therefore take for example Ωδ to be the largest subgraph of δT which is entirely

contained inΩ. We pick up four points a, b, c and d on the boundary ∂Ω in counterclockwise

order and we write aδ, βδ, cδ and dδ for their discrete counterparts: for example, ]δ stands

for the closest vertex to ] in Ωδ for ] ∈ {a,b,c,d}. See Figure 5 for an illustration. We are

interested in the probability that the arc (aδbδ) is connected to (cδdδ) by an open path of

percolation. The Cardy formula predicts that the limit of this probability, when δ goes to 0,

is given by a simple formula which is conformally invariant [Car92].

Let 4 be any equilateral triangle embedded in C. Due to the Riemann mapping theorem,

we can �nd a unique conformal map Φ which sends Ω to 4 such that Φ(a), Φ(b) and Φ(c)
are vertices of 4 in the counterclockwise order. Therefore, the image Φ(d) is between Φ(c)
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and Φ(a). Stanislav Smirnov proved that Cardy’s formula is true [Smi01]:

lim
δ→0

Pδ

[
(aδbδ) is connected to (cδdδ)

]
=

∣∣∣∣−−−−−−−−−→Φ(c)Φ(d)
∣∣∣∣∣∣∣∣−−−−−−−−−→Φ(a)Φ(c)
∣∣∣∣ .

This limit only depends on the images of the initial data under the unique conformal map

satisfying the properties mentioned above. Thus we say that the connection probability be-

tween arcs (ab) and (cd) is conformally invariant.
Cardy’s formula along with the “locality property”

7
of the percolation process concludes

that the scaling limit of the percolation interface coincides with SLE6 [Smi01]. We point out

that this result is still unknown for other lattices and for bond-percolation on any lattice.

This remains an important open conjecture of the domain.

a

b
c

d

Ω

aδ

dδ

cδbδ

Figure 5 – The simply connected open domain Ω and its δ-discretization Ωδ. The vertices

aδ, βδ, cδ and dδ are drawn in white and the arcs (aδbδ) and (cδdδ) are drawn with thick

lines.

The Ising model is the model for which we have the best understanding. By means

of a fermionic observable, Smirnov showed that, on the square lattice, the interface of the

spin-representation of the Ising model converges to SLE3, and the one of the FK-repre-

sentation to SLE16/3 [Smi10, CDCH
+

14] (we refer to [DS12] for a review). Later, using

fermionic spinor, Hongler and Smirnov proved the conformal invariance of the energy den-

sity in the planar Ising model [HS13]. Chelkak, Hongler and Izyurov showed that the mag-

netization and multi-spin correlations are conformally invariant in the scaling limit [CHI15].

Recently, Kemppainen and Smirnov showed in a series of two papers that the collection of

critical FK-Ising loops converges to CLE(16/3), the Conformal Loop Ensemble of parameter

16/3 [KS15, KS16], by looking at what they call an exploration tree. Almost at the same

time, Benoist and Hongler gave a proof that the collection of critical spin-Ising loops con-

verges to CLE(3) [BH16]. Some other recent progress relating the conformal �eld theory

(or its representation as a Virasoro algebra) to the discrete level of the model can be found

in [GHP16, HVK17, CHI15].

Universality and isoradial graphs

Following the discussion on the conformal invariance, the conformal �eld theory also sug-

gests that when we “look at the model from far away”, the local property of the lattice struc-

7
This term will not be made precise in this thesis, that is why we put quotation marks around.
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ture should not be relevant. In other words, no matter the underlying discrete lattice on

which the model is de�ned, its scaling limit should be given by the same object.

An easy example to explain is the (planar) Brownian motion. We start with a random

walk that moves at each step according to a random vector given by a random variable.

It turns out that when scaled out correctly [Don51, Don52], in the limit, it converges to a

two-dimensional Brownian motion (with drift). This limiting object is universal in the sense

that only the expectation and the variance of the random vector characterize the resulting

Brownian motion. In particular, one can consider the simple random walk on a regular lattice

such as the square lattice, the triangular lattice or the hexagonal lattice, and it turns out that

the limiting object is as described above.

Moreover, the trajectory of the Brownian motion is conformally invariant, meaning that

it is still the trajectory of the Brownian motion under conformal transformations, up to

time-change. In other words, the Brownian motion is a stochastic process which is pre-

served under conformal maps up to time-change. To sum up, the Brownian motion is not

only the universal limit (under some condition on the expectation and the variance of its dis-

placements) of random walks, but it is also a stochastic process satisfying pretty restrictive

properties, such as the conformal invariance.

In our context, we will be interested in the universality of the models on a family of

graphs called isoradial. A planar embedded graph G = (V ,E) is said to be isoradial if all of

its faces are inscribed in circles of the same radius. See Figure 6 for an illustration. Note

that such graphs should always be in�nite since otherwise, the exterior face would not be

able to be inscribed in a circle of �nite radius. This family of graphs is huge and contains

the classical periodic graphs such as the square lattice, the triangular lattice, the hexagonal

lattice, etc. There are a few good reasons and motivation to study the universality on such

graphs:

• The star-triangle transformations which transform one isoradial graph to another, see

Section 2.6.

• The robust theory of discrete complex analysis on isoradial graphs developed in [Ken02,

Mer01, CS11].

Figure 6 – An example of isoradial graph. All the faces are inscribed in circles of the same

radius.

The universality result on (bond) Bernoulli percolation was �rst obtained by Geo�rey

Grimmett and Ioan Manolescu [GM13a, GM13b, GM14]. They used star-triangle transforma-
tions to transform one isoradial graph into another, by preserving the percolation measure

in such a way that the connection properties in di�erent isoradial graphs do not di�er too

xx



much in probability. This method did not only allow them to determine the critical parame-

ters of the random-cluster model, but also showed the behavior at the critical point, such as

the sharpness of the phase transition, the correlation length, the critical exponents, etc.

In the �rst part of this thesis, we will show advances in this direction. We are interested

in the universal behavior of the random-cluster model for q > 1 at criticality. We proceed in a

similar way as in [GM14] with the di�erence that the random-cluster model with parameter

q > 1 is a model with a lot of dependancy between edges, which demands more care while

we perform star-triangle transformations.

More precisely, for an isoradial graph G = (V ,E), let pe(β) be the probability parameter

associated with the edge e ∈ E and β > 0 be an additional parameter that we introduce. Note

that β here is di�erent from the inverse temperature in the Ising model. The probability

parameter is an increasing function in β and is de�ned by pe(β) =
ye(β)

1+ye(β)
, where

if 1 6 q < 4, ye(β) = β
√
q · sin(r(π−θe))sin(rθe)

, where r = 1
π cos

−1
(√

q
2

)
,

if q = 4; ye(β) = β ·
2(π−θe)
θe

,

if q > 4; ye(β) = β
√
q · sinh(r(π−θe))sinh(rθe)

, where r = 1
π cosh

−1
(√

q
2

)
,

where θe is the subtended angle of e, as shown in Figure 7. Moreover, we will prove that at

β = 1, the model is critical; for β < 1, the model is subcritical and for β > 1, supercritical.

e θe

Figure 7 – The primal edge e has subtended angle θe.

Let us come back to what we said previously about the conformal invariance.

A universality result on the conformal invariance was proven for the Ising model by

Dmitry Chelkak and Stanislav Smirnov [CS12, CDCH
+

14]. They proved the convergence

of the interface of the Ising model on isoradial graphs to SLE3 (spin-Ising) and to SLE16/3
(FK-Ising), which are the scaling limits of the same model on the square lattice proved a few

years earlier.

In the case of the Bernoulli percolation, the only result we know on the scaling limit of

the interface is in the case of the site percolation on the triangular lattice. As mentioned in

the previous section, this converges to SLE6. Such a result is still unknown for the site perco-

lation on other regular lattices or isoradial graphs, not to mention for the bond percolation,

no result on the scaling limit is known so far.

It was conjectured by Oded Schramm [Sch07] that the interface of the random-cluster

model with parameter 1 6 q 6 4 should converge to the Schramm-Loewner Evolution of

parameter κ = 4π/ arccos(−√q/2), which should be independent of the underlying isoradial

graph, as for the Ising model. We note that for q = 1 (Bernoulli percolation) and q = 2 (Ising

model), we �nd the values κ = 6 and κ = 16
3 mentioned above.

Up to the present, we are still far from understanding the scaling limit of the interfaces

arising from the random-cluster model. From the fermionic observable used to show the

conformal invariance of the Ising model, Smirnov also conjectured [Smi06] the existence of

a parafermionic observable which might allow us to prove the convergence of the interface

xxi



Introduction

in the random-cluster model. This observable works well for the Ising model because at the

discrete level, one has full Cauchy-Riemann relations whereas for the general random-cluster

model, unfortunately, one has only half of them.

The universality results that we will show in Chapter 3 may lead us further, although they

are not strong enough to tell us about the scaling limit of the interface. In the second part of

this thesis, we will discuss the (1+1)-dimensional
8

quantum random-cluster model, which is

believed to behave in the same way as the planar random-cluster model. As a consequence

of these universality results, we will show that some connection properties are the same for

the quantum model in Chapter 4.

The quantum random-cluster model

A special case of the isoradial lattice is the �attened square lattice Z × (εZ), as shown in

Figure 8. As before, we can de�ne a planar model on edges or vertices of this �attened

lattice. In the limit ε → 0, this model converges to a quantum model on the semi-discrete

lattice Z×R (Figure 9a). Without any surprise, this model also possesses the same properties

at criticality as its discrete counterpart due to the universality result on isoradial graphs.

1

ε

Figure 8 – A piece of the �attened square lattice.

Let us brie�y describe the quantum random-cluster model here. Its link with the discrete

model will be discussed later in Section 1.2.4.

In R
2
, we consider the collection of vertical real lines indexed by Z, which we denote by

Z×R below, it is called the (primal) semi-discrete lattice. We put independent Poisson point

processes with parameter λ > 0 on each of these real lines. The points of these processes are

called cut points. Similarly, we consider the dual of Z×R which is (Z+ 1
2 )×R. It can also be

seen as a collection of vertical real lines, this time indexed by Z+ 1
2 . We also put independent

Poisson point processes on each of these lines, with parameter µ > 0. These points are called

bridges and we draw at the same level a horizontal segment connecting the two neighboring

vertical (primal) lines. See Figure 9b and 9c for an example. Moreover, these two families of

Poisson point processes are taken to be independent of one another.

Consider a random con�guration given by the above Poisson point processes and de�ne

the notion of connectivity. Two points x and y in the semi-discrete lattice are said to be

connected if one can go from one to the other using only primal lines and horizontal bridges

without crossing any cuts. The cluster of a point x is the largest subgraph containing xwhich

is connected in this sense.

Having this notion of connectivity, we can de�ne the quantum random-cluster model

using the number of connected components as in (0.3). The model also has a loop representa-
tion, which is obtained by interfaces separating clusters in both the primal and dual lattices,

see Figure 9d.

8
A d-dimensional discrete model corresponds to a (d + 1)-dimensional quantum model with an additional

dimension describing the time evolution.
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(a) A piece of the semi-discrete lat-

tice Z×R.

(b) Red points represent the Pois-

son point processes on primal (pa-

rameter λ) and dual (parameter µ)

lines.

(c) Poisson points on primal lines

are transformed into cuts and those

on dual lines into bridges.

(d) The loop representation ob-

tained by interfaces separating

connected components.

Figure 9 – The random-cluster model on the semi-discrete lattice with di�erent representa-

tions.

Fix a parameter q > 1. The measure of the quantum random-cluster model is given as

follows,

dPλ,µ(D,B) ∝ qk(D,B)dPλ,µ(D,B)

where Pλ,µ is the law of Poisson point processes described above with parameters λ on

primal lines and µ on dual lines. Here, D and B are locally �nite sets of cuts and bridges

respectively. Given a con�guration of Poisson points (D,B), the quantity k(D,B) denotes

the number of clusters in the con�guration (on the primal lattice). Using the self-duality at

criticality, i.e., the set of parameters (λ,µ) such that µ/λ = q, one can show the following

relation

dPλ,µ(D,B) ∝ qk(D,B)dPλ,µ(D,B) ∝
√
ql(D,B)dPρ,ρ(D,B),

where ρ =
√
λµ and l(D,B) denotes the number of loops in the loop representation.

At the end of the �rst part of this thesis, we will discuss some properties of the quantum

model at criticality derived from its discrete counterpart.

The quantum Ising model

For q = 2, the quantum random-cluster model described above can also be obtained from the

quantum Ising model via the Edwards-Sokal coupling as in the discrete setting. We recall

xxiii



Introduction

that the random-cluster representation is also called FK-representation sometimes. In this

section, we quantize the Hamiltonian (0.1) in the classical setting with an additional external

�eld then explain how to obtain di�erent representations of the model, among which the

FK-representation.

The quantum Hamiltonian we de�ne later is an operator acting on the Hilbert space⊗
Z
C
2
, which is the tensor product of Hilbert spaces indexed by Z = (V ,E). More precisely,

with each x ∈ Z, we associate a Hilbert space of spin con�gurations C
2 � Span(|+〉, |−〉),

where we identify |+〉 with (1,0) and |−〉 with (0,1), for instance. Then, we de�ne the quan-

tum Hamiltonian to be

H = −µ
∑
〈x,y〉∈E

σ
(3)
x σ

(3)
y −λ

∑
x∈V

σ
(1)
x .

In the previous de�nition, λ and µ are two positive parameters, where µ is the interaction

term between particles at neighboring sites and λ is the intensity of the transverse �eld. The

Pauli matrices are given by

σ (1) =
(
0 1
1 0

)
, σ (3) =

(
1 0
0 −1

)
and act on C

2
, which we recall is the space of spin con�gurations. The operators σ

(1)
x is

de�ned by the tensor product which takes the Pauli matrix σ (1)
at coordinate x and identity

operator elsewhere; the same applies to σ
(3)
x . As consequence, the operator H makes sense

and acts e�ectively on

⊗
Z
C
2
.

The quantum Ising model (with a transverse �eld) on Z is given by the operator e−βH ,

where β > 0. This may also be seen as the quantization of the Gibbs measure given earlier

in (0.2). It is mentioned in [Pfe70] that it is an exactly solvable one-dimensional quantum

model.

Moreover, this model can also be seen as a space-time evolution of a spin con�guration via

the “path integral” method. Roughly speaking, we interprete the parameter β > 0 as the time

parameter and expand the exponential operator e−βH in di�erent ways. For ν ∈ R, we may

consider e−β(H+ν)
instead of e−βH because e−βν is just a constant factor of renormalization.

Then, we write

e−β(H+ν) = [e−∆(H+ν)]β/∆,

where we choose∆ > 0 such that β/∆ ∈N. For∆ > 0 small enough, we may expand e−∆(H+ν)

up to order O (∆) in di�erent ways, which provide us with the FK-representation (along

with the loop representation) mentioned above, and also the random-current representation.

Readers may have a look at [Iof09] for a nice and complete exposition on this topic. These

representations are useful in interpreting results from the classical Ising model [GOS08, BG09,

Bjö13].

In the second part of this thesis, we are interested in proving a result of conformal in-

variance as mentioned earlier for the discrete Ising model.

In order to state the theorem, let us recall a few more important notions. We consider a

Dobrushin domain (Ω, a,b), i.e., an open, bounded and simply connected set with two marked

points on the boundary a and b. For every positive δ, we can semi-discretize it by a Dobrushin

domain (Ωδ, aδ,bδ) which is a subgraph of the semi-discrete medial lattice
δ
2Z×R with the

so-called Dobrushin boundary conditions, consisting of wired boundary conditions on the arc

(aδbδ) and free boundary conditions on the arc (bδaδ). In this case, the loop representation

gives rise to a collection of loops and one interface connecting aδ to bδ, separating the (primal)

cluster connected to the wired arc and the (dual) cluster connected to the free arc.

xxiv



We will prove the conformal invariance of the quantum Ising model in the following

sense: the limit of interfaces when δ goes to 0 is conformally invariant. This is the �rst

quantum model proved to have such a property. The informal statement of our main theorem

is given below, while the more precised version will be given in Theorem 6.1.

Theorem. Let (Ω, a,b) be a Dobrushin domain. For all δ > 0, let (Ωδ, aδ,bδ) be its semi-
discretized counterpart. De�ne the FK-representation of the quantum Ising model on (Ωδ, aδ,bδ)
and denote byγδ the interface separating the (primal) wired boundary and the (dual) free bound-
ary. When δ goes to zero, the interface γδ converges to the chordal Schramm-Löwner Evolution
of parameter 16/3 in (Ω, a,b).

The proof is made possible by the similarity between the FK-representations of the quan-

tum and the classical Ising models. The FK-representation and the loop representation of the

quantum model can be interpreted as the same representations of the classical model living

on a more and more �attened rectangular lattice Z×εZ. Thus, the proof almost comes from

the same arguments as in the so-called isoradial case, except that some notions need to be

adapted to the semi-discrete case.

Intuitively, using the universality of the classical Ising model [CS12] on isoradial graphs

would require an inversion of limits:

• On one hand, the universality result says that the classical FK-Ising model on δ(Z ×
εZ), the �attened isoradial rectangular lattice of mesh size δ, has an interface which

is conformally invariant in the limit δ→ 0, provided that ε is kept unchanged. In this

�rst approach, the lattice “converges” to the whole plane uniformly in all directions.

• On the other hand, if we put the classical FK-Ising on δ(Z×εZ) with �atter and �atter

rectangles by making ε go to 0, we would get continuous lines in the vertical direction,

and the model we obtain is exactly the FK-representation of the quantum Ising model.

Therefore, to get the conformal invariance of the interface in the quantum FK-Ising, we

would need to make δ go to 0 afterwards, which is the distance between two neighbor-

ing vertical lines. In this second approach, the lattice “converges” to the whole plane

�rst in the vertical direction, then in the horizontal one.

The heuristic described above strongly suggests that the FK-representation of the quan-

tum Ising model should also be conformally invariant in the limit, and that the interface in the

limit should be the same as in the classical case. However, making this argument mathemat-

ically rigorous is far from immediate, and that is why we work directly in the semi-discrete

case.

To this end, some classical notions need to be adapted and new tools be constructed. We

will de�ne the Green’s function on the semi-discrete lattice, give the notion of s-holomor-

phicity, show that the fermionic observable is s-holomorphic and give a proof of the RSW

property by the second-moment method. Everything is de�ned directly in the semi-discrete

setting. Among all the notions and properties, it is worth mentioning that the construction

of the Green’s function is not totally trivial even though the method and the main idea are

pretty similar to the case of the isoradial setting [Ken02].

Other results mentioned earlier concerning the conformal invariance from the classical

Ising model are also expected to have their counterparts in the quantum case, such as the

energy density and multi-spin correlations.
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Organization of this thesis

This thesis consists of three parts. The �rst chapter is introductive in which we introduce the

basic notions required for the lecture of this thesis. The second and the thrid chapters deal

with the random-cluster model on isoradial graphs and the universality of the model. The

last three chapters deal with the quantum random-cluster model, or more speci�cally, the

quantum FK-Ising model, and the convergence of its interface to SLE16/3. More precisely,

this thesis is divided as follow:

• Chapter 1: introduction to the classical and the quantum random-cluster model along

with their useful properties.

• Chapter 2: presentation of isoradial graphs and the star-triangle transformations, which

are the key transformations towards universality.

• Chapter 3: theorems on the universality of the random-cluster model.

• Chapter 4: consequences of the previous universality results on the quantum random--

cluster model.

• Chapter 5: introduction to the semi-discrete complex analysis, which is the main tool

to proving the convergence of the FK-Ising interface.

• Chapter 6: the proof of the convergence.
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Chapter1

Definition of models

In this chapter, we will give a precise de�nition of the random-cluster model. We �rst de�ne

the model on �nite graphs with boundary conditions, then discuss its properties such as the

FKG property and the domain Markov property. This will turn out to be useful when we

come to the de�nition of the model on in�nite graphs, which can be seen as weak limits of

measures on larger and larger �nite graphs.

We �x a constant q > 1 once for all, which is the cluster-weight of the random-cluster

model.

1.1 The random-cluster model on �nite graphs

1.1.1 De�nition

Consider a �nite graph G = (V ,E) and a family of weights p = (pe)e∈E ∈ [0,1]E indexed by

its edges. A con�guration of the random-cluster model on G is an element ω of Ω := {0,1}E .

Given a con�guration ω, we say that an edge e ∈ E is open if ω(e) = 1; and close otherwise.

An equivalence relation on vertex set V can be de�ned via open edges. We say that x and

y are equivalent if there exists a sequence of vertices (xi)06i6n such that xi and xi+1 are

connected to each other by an open edge, x0 = x and xn = y. Then, we denote by k(ω) the

number of its connected components (or clusters), which is the number of equivalence classes

induced by this equivalence relation. Thus, we can assign to each con�guration a weight

de�ned by

cG,p,q(ω) =
∏
e∈E

p
ω(e)
e (1− pe)1−ω(e)qk(ω). (1.1)

Finally, we de�ne the measure of the random-cluster model on Ω to be the probability mea-

sure given by

ϕG,p,q[ω] =
cG,p,q(ω)

ZG,p,q
,

where ZG,p,q is called the partition function and is de�ned by ZG,p,q =
∑
ω′ cG,p,q(ω

′) where

the sum is taken over Ω. In other words, we de�ne the random-cluster model to be propor-

1



1. Definition of models

tional to

ϕG,p,q[ω] ∝
∏
e∈E

p
ω(e)
e (1− pe)1−ω(e)qk(ω)

∝
∏
e∈E

y
ω(e)
e qk(ω),

where we write ye =
pe

1−pe for e ∈ E for convenience. Here, the symbol∝ indicates that the two

quantities on the left-hand and the right-hand sides are equal up to a multiplicative constant

which is independent from ω.

The random-cluster model is a generalization of the two following models. When q = 1,

the dependence on the number of clusters is removed, thus we have a model in which all the

edges are independently open or close with probability pe and 1 − pe, which is exactly the

Bernoulli percolation. When q > 1 is an integer, we obtain the q-color Potts model via the

standard Edward-Sokal coupling (Section 1.1.2). In particular, for q = 2, we get the random--

cluster representation (or FK-representation) of the Ising model.

1.1.2 Edward-Sokal coupling

Given a �nite graphG = (V ,E), a family of edge weights J = (Je)e∈E ∈ (0,∞)E and an integer

q > 1. The q-color Potts model is some random distribution of q colors on vertices of G. With

a con�guration σ ∈ {1, . . . , q}V , we associate the Hamiltonian

HG,J (σ ) = −
∑

e=〈x,y〉∈E
Je1σx=σy ,

where for e ∈ E, Je can be seen as the strength of interaction between two vertices of e. Then,

the measure of the q-color Potts model is de�ned to be equal to

PG,J (σ ) =
exp(−HG,J (σ ))

ZG,J
, where ZG,J =

∑
σ ′

exp(−HG,J (σ ′)).

Now, we are ready to explain the Edward-Sokal bijection.

Given a random-cluster con�gurationω ∈ {0,1}E and a Potts con�guration σ ∈ {1, . . . , q}V ,

we say that the couple (ω,σ ) is compatible if ωe = 1, then σx = σy for e = 〈x,y〉.
Given a Potts con�guration σ ∈ {1, . . . , q}V , we associate a random-cluster con�guration

ω ∈ {0,1}E as follows. For e = 〈x,y〉 ∈ E,

• if σx , σy , then we set ωe = 0;

• if σx = σy , then we set ωe = 1 with probability pe and ωe = 0 with probability 1− pe.
We denote the joint law of (σ,ω) de�ned as above by P1.

Conversely, given a random-cluster con�guration ω ∈ {0,1}E , we associate a Potts con-

�guration σ ∈ {1, . . . , q}V by choosing uniformly a random color in {1, . . . ,q} for each cluster

of ω. We denote the joint law of (σ,ω) de�ned as above by P2.

It can be easily check that the couple of con�gurations (ω,σ ) is compatible in both di-

rections.

To show that we can couple the random-cluster measure and the Potts measure, we need

to show that the associated joint measures P1 and P2 via these two bijections have the same

law.

2



1.1. The random-cluster model on �nite graphs

We have,

P1(ω,σ ) ∝
∏
e∈E
σx=σy

eJepωee (1− pe)1−ωe

∝
∏
e∈E
σx=σy

eJeyωee (1− pe),

and

P2(ω,σ ) ∝
∏
e∈E

yωee · qk(ω) ·
(
1
q

)k(ω)
∝

∏
e∈E

yωee =
∏
e∈E
σx=σy

yωee ,

where we use the fact that (ω,σ ) is compatible in the last line. Thus,

P1(ω,σ )
P2(ω,σ )

∝
∏
e∈E
σx=σy

eJe (1− pe).

Therefore, by taking Je = − ln(1−pe), the product in the previous line equals 1. Since P1 and

P2 are both probability measures, we have P1(ω,σ ) = P2(ω,σ ) for all (ω,σ ).

1.1.3 Boundary conditions

For a �nite graphG = (V ,E), we call boundary conditions a partition of its boundary vertices.

In other words, boundary conditions ξ can be written as P = P1 t · · · t Pm where P is the

set of the boundary vertices. This induces an equivalence relation: two vertices of P are said

to be equivalent if they belong to the same subset of the partition Pi . In terms of the graph

structure, vertices in the same equivalence class are connected to each other via edges which

are always open (or fusion them into a vertex).

Consider a �nite graph G = (V ,E) with boundary conditions ξ . We take a family of pa-

rameters indexed by its edges p ∈ [0,1]E . We write Ω = {0,1}E for the associated probability

space. The weight of a con�guration ω ∈Ω is modi�ed from (1.1) as follows

cξG,p,q(ω) =
∏
e∈E

p
ω(e)
e (1− pe)1−ω(e)qk

ξ (ω), (1.2)

where kξ(ω) denotes the number of connected components inωwith respect to the boundary

conditions ξ . A connected component (in ω) is a maximal subgraph (in G induced by ω) for

the inclusion. Then, we writeϕξG,p,q for the probability measure of the random-cluster model

on G with parameters p and q and boundary conditions ξ by

ϕξG,p,q[ω] =
cξG,p,q(ω)

ZξG,p,q
, where ZξG,p,q =

∑
ω′∈{0,1}E

cξG,p,q(ω
′)

is the partition function.
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1. Definition of models

For q > 1, this model depends highly on connection properties between vertices. Thus,

the boundary conditions turn out to be important. Furthermore, at p �xed, con�gurations

with more connected components are more favoured due to the additional weight qk
ξ (ω)

.

In this thesis, we are particularly interested in the following boundary conditions: free

and wired boundary conditions. The free boundary conditions represent the partition of

boundary points into unit sets, meaning that the boundary points are all disconnected; whereas

the wired one represents the partition into only one set containing all the boundary vertices,

meaning that all the boundary points are connected. Another way to interprete this is to add

a ghost vertex vg to the graph and edges connecting vg to all the vertices on the boundary,

which are always declared closed for the free boundary conditions and open for the wired

boundary conditions. For simplicity, we may write ξ = 0 for the free boundary conditions

and ξ = 1 for the wired one. Then, the random-cluster measures resulting from these bound-

ary conditions are denoted ϕ0
G,p,q and ϕ1

G,p,q.

In mathematical terms, de�ne the augmented graph G̃ = (Ṽ , Ẽ) which is given by Ṽ =
V ∪ {vg } and Ẽ = E ∪ {(vg ,v),v ∈ ∂G}. For ξ = 0,1, we de�ne the graph G with boundary

conditions ξ , denotedGξ , to be the graph G̃ whose admissible con�gurations areω ∈ {0,1}Ẽ

such that ω(e) = ξ for all e ∈ Ẽ\E. Note that we have ϕξG,p,q = ϕ
0
Gξ ,p,q = ϕGξ ,p,q.

1.1.4 Dual model

Consider a �nite graph G = (V ,E) which is locally �nite. We de�ne its dual graph G∗ =
(V ∗,E∗) as follows. The vertex set V ∗ consists of the centers of the faces of G and the edge

set E∗ consists of the edges connecting the vertices of V ∗, corresponding to adjacent faces in

G. Here, both the primal and dual graphs are considered as combinatorial objects without any

embedding. Therefore, the graphs (G∗)∗ and G have the same graph structure. See Figure 1.1

for an illustration.

Figure 1.1 – Black vertices with solid segments represent the primal graph and white vertices

with dotted segments represent the dual graph.

Given a random-cluster measure ϕξG,p,q, we want to make sense of its dual measure,

which is coupled with the original measure but de�ned on the dual graphG∗. Since there are

boundary conditions on G, we should also take this into account.

We denote by Gξ the graph G with boundary conditions ξ = 0 or 1. Its dual graph is

then de�ned by (Gξ )∗ := (G̃∗)1−ξ , where G̃ is the augmented graph de�ned in the previous

section. By abuse of notation, we may also write (G∗)1−ξ for this.
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1.1. The random-cluster model on �nite graphs

Then, with a con�guration ω ∈ {0,1}Ẽ , we associate the canonical dual con�guration

ω∗ ∈ {0,1}(Ẽ)∗ by

ω∗(e∗) = 1−ω(e), ∀e ∈ Ẽ, (1.3)

where e∗ is the dual edge of e.
Given p = (pe)e∈E and p∗ = (pe∗)e∗∈E∗ two families of probability parameters associated

with the primal edges and the dual edges of G. De�ne ye =
pe

1−pe for e ∈ E and ye∗ =
pe∗

1−pe∗
for e∗ ∈ E∗. Let q > 1 be the cluster-weight of the random-cluster model. The following

proposition gives a criterion for ϕξG,p,q and ϕ1−ξ
G∗,p∗,q to be “dual” one to another.

Proposition 1.1. Let ω be a con�guration sampled according to the law of ϕξG,p,q. De�ne the
dual con�guration ω∗ as in (1.3). Moreover, assume that yeye∗ = q for all e ∈ E. Then, ω∗ has
the same law as ϕ1−ξ

G∗,p∗,q.

Proof. Consider ω ∈ {0,1}Ẽ and de�ne ω∗ as in (1.3). We �rst state the Euler formula which

can be shown by induction on the number of vertices:

|Ṽ | − oξ(ω) + f ξ(ω)− kξ(ω) = 1, (1.4)

where |Ṽ | is the cardinal of the vertex set of G̃, oξ(ω) the number of open edges, f ξ(ω) the

number of faces and kξ(ω) the number of clusters induced by the con�guration ω with the

boundary conditions ξ .

We are going to rewrite ϕξG,p,q(ω) in terms of ω∗. In the following steps, we might get

some additional multiplicative factors, but since they do not depend on ω, we just say that

di�erent quantities are proportional to each other using the symbol ∝. We �nd

ϕξG,p,q[ω] ∝
∏
e∈E

y
ω(e)
e qk

ξ (ω)

∝
∏
e∈E

y
ω(e)
e qf

ξ (ω)−oξ (ω)

∝
∏
e∈E

(
ye
q

)ω(e)
qf

ξ (ω)

∝
∏
e∈E

(
q

ye

)ω(e∗)
qk

1−ξ (ω∗)

∝
∏
e∈E

(ye∗)
ω(e∗)qk

1−ξ (ω∗),

where we apply (1.4) in the second line, use the fact that f ξ(ω) = k1−ξ(ω∗) in the fourth line

and the hypothesis yeye∗ = q in the last line. This shows that ϕξG,p,q[ω] and ϕ1−ξ
G∗,p∗,q[ω

∗] are

proportional to each other for all ω, thus are equal since both are probability measures. In

conclusion, the law of ω∗ is described by ϕ1−ξ
G∗,p∗,q if ω is sampled according to ϕξG,p,q.

1.1.5 Loop representation

Consider a �nite graph G = (V ,E), boundary conditions ξ = 0 or 1 and two families of

parameters (ye)e∈E and (ye∗)e∗∈E∗ as in Proposition 1.1. Due to the duality in law of ϕξG,p,q
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1. Definition of models

and ϕ1−ξ
G∗,p∗,q, we can write, for any con�guration ω ∈ {0,1}E ,

ϕξG,p,q[ω] =
√
ϕξG,p,q[ω]ϕ

1−ξ
G∗,p∗,q[ω

∗]

∝
∏
e∈E

y
ω(e)/2
e (ye∗)

ω∗(e∗)/2 · √qk
ξ (ω)+k1−ξ (ω∗)

∝
∏
e∈E

y
ω(e)/2
e (ye∗)

ω∗(e∗)/2 · √ql
ξ (ω)

∝
∏
e∈E

( ye
ye∗

)ω(e)/2
· √ql

ξ (ω)
(1.5)

where lξ(ω) is the number of loops in the con�guration ω, which depends only on ω. A

loop in a con�guration ω is a path in R
2

separating di�erent clusters. See Figure 1.2 for an

illustration.

Figure 1.2 – Left: A primal graphG1
(in solid lines) along with its dual graph (G∗)0 (in dotted

lines). Right: A primal con�guration (in solid line) with its coupled dual con�guration (in

dotted line) and the loop representation (in red).

The probability measure in (1.5), expressed in terms of weights (ye), (ye∗) and the number

of loops lξ(ω), is called the loop representation of the random-cluster model.

1.1.6 Domain Markov property

We say that F ⊂ G is a subgraph of G if the edge set E(F) is a subset of E(G) with the vertex

set V (F) given by the vertices of V (E) who are an endpoint of some edge in E(F).
Let F ⊂ G be a subset of G and ξ boundary conditions of G. Consider ψ ∈ {0,1}E(G)\E(F),

a con�guration on edges outside of F. We de�ne ξψ the induced boundary conditions of F
given by ξ and ψ: two boundary vertices of F are in the same equivalence class if they are

connected in E(G)\E(F) with the boundary conditions ξ on G.

Proposition 1.2 (Domain Markov Property). Let A be a measurable set of {0,1}E(F). We have

ϕξG,p,q[A |ω(e) = ψ(e),∀e ∈ E(G)\E(F)] = ϕ
ξψ

F,p,q[A]. (1.6)

Proof. We prove this by induction on the cardinal of E(G)\E(F). Assume that F = G\{e}
for some edge e ∈ E(G). Let ξ be boundary conditions on G and write ξe for the induced

boundary conditions on F by ξ with the edge e open. Let ω ∈ {0,1}E(G) be a con�guration

6



1.1. The random-cluster model on �nite graphs

and write ωe for the con�guration ω with the edge e open. We have

ϕξG,p,q[ω |ω(e) = 1] =
ϕξG,p,q[ω

e]

ϕξG,p,q[ω(e) = 1]

=

∏
f ∈E(G)p

ωe(f )
f (1− pf )1−ω

e(f )qk
ξ (ωe)∑

ω′∈{0,1}E(G),ω′(e)=1
∏
f ∈E(G)p

ω′(f )
f (1− pf )1−ω

′(f )qkξ
e (ω′)

=

∏
f ∈E(F)p

ω(f )
f (1− pf )1−ω(f ) · peqk

ξ (ωe)∑
ω′∈{0,1}E(F)

∏
f ∈E(F)p

ω′(f )
f (1− pf )1−ω

′(f ) · peqk
ξe (ω′)

= ϕξ
e

F,p,q[ω|E(F)],

where we use the fact that kξ(ωe) = kξ
e
(ω).

As an application, consider a subgraph F ⊂ G such that G\F is connected. De�ne ψ(e) =
1 for all e ∈ E(G)\E(F). Then, no matter the boundary conditions ξ on G, ξψ always corre-

sponds to the wired boundary conditions on F. Equation (1.6) can be rewritten as

ϕξ
ψ

G,p,q[A] = ϕ
ξ
G,p,q[A |ω(e) = 1,∀e ∈ E(G)\E(F)] = ϕ1

F,p,q[A].

Similarly, if ψ(e) = 0 for all e ∈ E(G)\E(F). Then, for any boundary conditions ξ on G, ξψ

corresponds to the free boundary conditions on F. Equation (1.6) can be rewritten as

ϕξ
ψ

G,p,q[A] = ϕ
ξ
G,p,q[A |ω(e) = 0,∀e ∈ E(G)\E(F)] = ϕ0

F,p,q[A].

This also justi�es why we write 1 for the wired boundary conditions and 0 for the free ones.

1.1.7 Positive association

The set Ω = {0,1}E can be seen as the set consisting of all binary functions on the edges of

a graph G = (V ,E). We can de�ne a partial order on Ω as follows. For ω,ω′ ∈ {0,1}E , we

write ω 6 ω′ if ω(e) 6 ω′(e) for all e ∈ E. A function f : {0,1}E → R is said to be increasing
if it is increasing for this partial order; and decreasing if −f is increasing.

Let A be an event in {0,1}E . We say that A is increasing if 1A is an increasing function;

decreasing if Ac is increasing. This can also be interpreted as follows: for ω 6 ω′ , if ω ∈ A
then ω′ ∈ A, meaning that the operation of opening edges is stable in A.

To compare two di�erent probability measures, we talk about stochastic domination. Given

two probability measures µ1 and µ2, we say that µ1 dominates µ2 stochastically, denoted by

µ1 > µ2, if for all increasing events A, we have µ1(A) > µ2(A).
To know whether a probability measure dominates another, here is an useful criterion.

Theorem 1.3 (Holley criterion [Hol74]). Let µ1,µ2 be two probability measures on {0,1}E . If
the following inequality is satis�ed

µ1(ω∨ η)µ2(ω∧ η) > µ1(ω)µ2(η) (1.7)

for all ω,η ∈ {0,1}E , then µ1 dominates µ2 stochastically.

7



1. Definition of models

Proof. The idea is to �nd a coupling (ω1,ω2) ∼ P with marginals ω1 ∼ µ1 and ω2 ∼ µ2 such

that P(ω1 >ω2) = 1. Then, for an increasing event A, we obtain

µ1(A) = P(ω1 ∈ A) = P(ω1 ∈ A,ω1 >ω2) > P(ω2 ∈ A) = µ2(A).

The measureP is constructed as the stationary measure of some Markov chain. See [Hol74]

for details.

For a con�guration ω ∈ {0,1}E and an edge e ∈ E, write ωe (respectively ωe) for the

con�guration which coincides with ω everywhere except that its value at e is set to 1 (re-

spectively 0).

We note that to show the previous stochastic domination, instead of the condition (1.7),

it is actually su�cient to check that for any ω ∈ {0,1}E and e , f ∈ E,

µ1(ω
e)µ2(ωe) > µ1(ωe)µ2(ω

e) (1.8)

and µ1(ω
ef )µ2(ωef ) > µ1(ω

f
e )µ2(ω

e
f ). (1.9)

Reders are referred to [Gri06, Thm. 2.3] for more details.

An important application of Holley criterion is the property called positive associativity on

the random-cluster model. It is also known as Fortuin-Kasteleyn-Ginibre inequality (shortened

as FKG inequality).

De�nition 1.4 (FKG inequality). Let P be a probability measure on the probability space

Ω = {0,1}E . We say that P satis�es the FKG inequality (or is a positively correlated measure)

if one of the following equivalent statements is true.

• For any increasing measurable sets A and B, we have P(A∩B) > P(A)P(B).
• For any increasing functions f ,g : {0,1}E →R, we have E(f g) > E(f )E(g).

This is actually equivalent to the same inequalities with bothA andB decreasing events or

both f and g decreasing functions. The �rst part can be done by considering the complements

and the second point by considering the opposites.

Theorem 1.5 (FKG lattice condition). Given a �nite graph G = (V ,E) and a positive measure
µ on {0,1}E . If for any con�guration ω ∈ {0,1}E and e , f ∈ E, we have

µ(ωef )µ(ωef ) > µ(ω
f
e )µ(ωef ), (1.10)

then for any increasing events A and B,

µ(A∩B) > µ(A)µ(B). (1.11)

Proof. Consider an increasing event A and measures de�ned by µ1 = µ(· | A) and µ2 = µ. We

need to show that µ1 stocastically dominates µ2. To do so, we need to check inequalities (1.8)

and (1.9) for µ1 and µ2. Fix a con�guration ω and e , f . We have

1ωe∈Aµ(ω
e)µ(ωe) > 1ωe∈Aµ(ωe)µ(ω

e),

since A is increasing. Dividing by µ(A), we get

µ(ωe | A)µ(ωe) > µ(ωe | A)µ(ωe),

which is exactly (1.8). For (1.9), we use the hypothesis (1.10) to obtain

1ωef ∈Aµ(ω
ef )µ(ωef ) > 1ωfe ∈Aµ(ω

f
e )µ(ωef ).

Again, we divide by µ(A) and get (1.9).
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1.1. The random-cluster model on �nite graphs

Proposition 1.6. For any family of parameters p = (pe)e∈E and any boundary conditions ξ on
G, the random-cluster measure ϕξG,p,q satis�es the FKG inequality.

Proof. It is enough to check the FKG lattice condition (1.10). Letω ∈ {0,1}E be a con�guration

and e , f two edges, we need to check that∏
η∈E

y
o(ωef )+o(ωef )
η qk

ξ (ωef )+kξ (ωef ) >
∏
η∈E

y
o(ωfe )+o(ωef )
η qk

ξ (ωfe )+kξ (ωef ).

The products of yη simplify on both sides, so we just need to check that kξ(ωef )+kξ(ωef ) >

kξ(ωfe ) + kξ(ωef ). To show this, we discuss whether the two endpoints of f in E\{e, f } are

connceted or not:

• connected: k(ωef ) = k(ωef ) and k(ωef ) = k(ω
f
e );

• disconnected: k(ωef ) > k(ωef )− 1 and k(ωef ) = k(ω
f
e ) + 1.

This concludes the proof.

The random-cluster measures with di�erent parameters can be shown to have stochastic

domination relations. The precise statement is given below.

Proposition 1.7. Consider a �nite graph G = (V ,E), two families of parameters p = (pe)e∈E
and p′ = (p′e)e∈E with p 6 p′ , and two cluster-weights q and q′ . Also, for e ∈ E, write

ye =
pe

1− pe
and y′e =

p′e
1− p′e

.

Moreover, assume that one of the two following conditions is satis�ed:

• 1 6 q′ 6 q and y′e > ye for all e ∈ E;

• q′ > q > 1 and y′e
q′ >

ye
q for all e ∈ E.

Then, the random-cluster measure ϕξG,p′ ,q′ dominates stochastically ϕξG,p,q for any boundary

conditions ξ . In other words, ϕξG,p,q 6 ϕ
ξ
G,p′ ,q′ .

Proof. For any random variable X, we have

ϕξG,p′ ,q′ [X] =
1
Z ′

∑
ω

X(ω)
∏
e∈E

(y′e)
ω(e)(q′)k

ξ (ω)

=
Z
Z ′

1
Z

∑
ω

X(ω)Y (ω)
∏
e∈E

y
ω(e)
e qk

ξ (ω)

=
Z
Z ′
ϕξG,p,q[XY ],

where Z and Z ′ are partition functions and Y a random variable de�ned as follow,

Z ′ =
∑
ω

∏
e∈E

(y′e)
ω(e)(q′)k

ξ (ω),

Z =
∑
ω

∏
e∈E

y
ω(e)
e qk

ξ (ω),

Y (ω) =
∏
e∈E

(
y′e
ye

)ω(e) (
q′

q

)kξ (ω)
=

∏
e∈E

(
y′e/q

′

ye/q

)ω(e) (
q′

q

)kξ (ω)+o(ω)
.

9



1. Definition of models

We claim that under both conditions of the statement, Y is an increasing random variable.

Indeed, for the �rst condition, we have that
y′e
ye
> 1,

q′

q 6 1, ω(e) increasing in ω and kξ(ω)

decreasing in ω. For the second condition, we have that
y′e/q

′

ye/q
> 1,

q′

q > 1, ω(e) increasing

in ω and kξ(ω) + o(ω) also increasing in ω, since each time when we open an edge, o(ω)
increases exactly by 1 and kξ(ω) decreases at most by 1.

Take X to be an increasing random variable. Then we have

ϕξG,p′ ,q′ [X] >
Z
Z ′
ϕξG,p,q[X]ϕ

ξ
G,p,q[Y ] = ϕ

ξ
G,p,q[X],

where ϕξG,p,q[Y ] =
Z ′
Z .

Boundary conditions correspond to a partition of the boundary vertices. On the set of

possible partitions, we can de�ne a partial order. Given boundary conditions ξ and ψ, we

say that ξ 6 ψ if vertices which are in the same equivalence class of ξ are also in the same

one for ψ, meaning that ξ is a �ner partition than ψ.

Proposition 1.8 (Comparison between two boundary conditions). Given a �nite graph G =
(V ,E), a family of parameters p = (pe)e∈E and boundary conditions satisfying ξ 6 ψ, we have

ϕξG,p,q 6 ϕ
ψ
G,p,q. (1.12)

Proof. The boundary conditions ξ correspond to a partition of boundary vertices P1t· · ·tPm.

Construct a new graph G̃ = (V ,Ẽ) from G by adding an edge between Pi and Pj with i , j
such that Pi and Pj are in the same equivalence class in ψ. Then, by the domain Markov

property, we have

ϕξG,p,q[·] = ϕ
ξ

G̃,p,q
[· | ω(e) = 0,∀e ∈ Ẽ\E],

ϕ
ψ
G,p,q[·] = ϕ

ξ

G̃,p,q
[· | ω(e) = 1,∀e ∈ Ẽ\E].

For any increasing event A depending only on E, we apply the FKG inequality to get

ϕξG,p,q[A] 6 ϕ
ξ

G̃,p,q
[A] 6 ϕψG,p,q[A].

This result is particularly important since it will allow us to de�ne in�nite-volume ran-

dom-cluster measures, which we discuss in the next section.

1.1.8 In�nite-volume measure

From now on, notations associated with in�nite graphs will be denoted in bold letters.

Given an in�nite graphG = (V ,E), the random-cluster model has no reason to be well-de-

�ned on it, since (i) the number of clusters k(ω) is in�nite for some con�gurations ω and (ii)

the partition function, or normalizing constant, may be in�nite. However, it turns out that

the positive correlation of the random-cluster measure is useful. More precisely, Proposition

1.8, which is an application of the FKG inequality, allows us to de�ne some random-cluster

measures on in�nite graphs if we proceed carefully.

Let G = (V ,E) be an in�nite graph with probability parameters p = (pe)e∈E and clus-

ter-weight parameter q. A measure P on G is an in�nite-volume random-cluster measure
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1.1. The random-cluster model on �nite graphs

with parameters p = (pe) and q if for every �nite subgraph F ⊂ G, any con�guration

ξ ∈ {0,1}E\E(F) and any measurable set A with respect to edges in E(F), we have the com-
patibility condition,

P[A |ω|E\E(F) = ξ] = ϕ
ξ
F,p,q[A],

where, by abuse of notation, the con�guration ξ is also used to denote the boundary condi-

tions on F induced by ξ .

We say that the sequence of �nite graphs (Gn)n∈N exhausts G if the two following con-

ditions are satis�ed:

• The sequence is increasing: G0 ⊂ G1 ⊂ · · · ⊂G.

• For all edge e ∈ E, there exists n ∈N such that e ∈ E(Gn).

Proposition 1.9. Let G to be an in�nite graph exhausted by (Gn)n∈N. For an increasing mea-
surable event A which depends only on �nitely many edges, we have the following inequalities

ϕ0
Gn,p,q

[A] 6 ϕ0
Gn+1,p,q

[A]

and ϕ1
Gn,p,q

[A] > ϕ1
Gn+1,p,q

[A], (1.13)

for n large enough.

Proof. Fix an increasing event A depending only on a �nite number of edges in G. Assume

that k is the smallest integer such that A is measurable with respect to E(Gk). Take n > k.

Set Ẽ to be the set of edges of E(Gn+1) which are outside of E(Gn). Let ω be distributed as

ϕ0
Gn,p,q

. Then we can write

ϕ0
Gn,p,q

[A] = ϕ0
Gn+1,p,q

[A |ω(e) = 0,∀e ∈ Ẽ] 6 ϕ0
Gn+1,p,q

[A],

where we apply the FKG inequality and the fact that {ω(e) = 0,∀e ∈ Ẽ} is an decreasing

event.

The proof is similar for the wired boundary conditions.

In consequence, for any increasing event A, the sequences (ϕ0
Gn,p,q

[A]) and (ϕ1
Gn,p,q

[A])

have limits as n goes to in�nity. Write ϕ0
G,p,q[A] and ϕ1

G,p,q[A] for their limits. By inclu-

sion-exclusion principle, we can make sense of ϕ0
G,p,q[A] and ϕ1

G,p,q[A] for any measurable

event A. As a result, we have constructed with success two in�nite-volume random-cluster

measures on in�nite graphs by taking weak limits of �nite-volume measures. Henceforth,

we can talk about “random-cluster model on an in�nite graph”.

Proposition 1.10. The in�nite-volume random-cluster measures ϕ0
G,p,q and ϕ

1
G,p,q do not de-

pend on the sequence of �nite subgraphs (Gn)n∈N which exhausts G.

Proof. Let (G′n)n∈N be another sequence of �nite graphs exhausting G. Consider an increas-

ing event A depending only on a �nite number of edges which are all in G′k for a certain

�xed k. For n > k, since the graph G′n is �nite, we can �nd a m large enough such that

G′n ⊂ Gm. Thus, by comparing boundary conditions, we have the stochastic domination

ϕ0
G′n,p,q

[A] 6 ϕ0
Gm,p,q

[A]. Taking the limit n→∞, we obtain the inequality

lim
n→∞

ϕ0
G′n,p,q

[A] 6 ϕ0
G,p,q[A].

11



1. Definition of models

By exchanging the role of (G′n) and (Gn), we get the inequality in the other direction.

Therefore, we deduce the equality

ϕ0
G,p,q[A] = lim

n→∞
ϕ0
G′n,p,q

[A].

Given any in�nite-volume random-cluster measure P, we have the following inequality

in the sense of stochastic domination,

ϕ0
G,p,q 6 P 6 ϕ1

G,p,q.

In particular, when the two in�nite-volume random-cluster measures ϕ0
G,p,q and ϕ1

G,p,q co-

incide, there exists only one unique in�nite-volume random-cluster measure.

1.1.9 Finite-energy property

Consider an in�nite graphG = (V ,E) and a family of edge parameters (pe)e∈E. The �nite-en-

ergy property says that the probability that a given edge e is open can be bounded away from

0 and 1 if pe can be bounded away from 0 and 1.

Lemma 1.11. Let e ∈ E. Take ε > 0 such that pe ∈ [ε,1 − ε]. Then, there exists c = c(ε) > 0
such that

c 6 ϕξ
G,p,q[ω(e) = 1] 6 1− c.

Proof. We �rst note that the event {ω(e) = 1} is increasing.

When we condition on the states of the edges di�erent from e, the inducing bound-

ary conditions on the endpoints of e is either free or wired. In consequence, by denoting

G0 = (V0,E0) where E0 = {e = 〈u,v〉} and V0 = {u,v} and comparing di�erent boundary

conditions, we get

ϕξ
G,p,q[ω(e) = 1] 6 ϕ1

G0,pe ,q
[ω(e) = 1] = pe 6 1− ε

and

ϕξ
G,p,q[ω(e) = 1] > ϕ0

G0,pe ,q
[ω(e) = 1] =

pe
pe + (1− pe)q

>
ε

ε+ (1− ε)q
.

Proposition 1.12. Let F be a �nite subgraph of G. Take ε > 0 such that pe ∈ [ε,1− ε] for all
e ∈ E(F). Then, there exists c = c(ε) > 0 such that for any con�guration η ∈ {0,1}E(F) and any
boundary condition ξ ,

c 6 ϕξ
G,p,q[ω|F = η] 6 1− c.

Proof. Enumerate the edges in F : e1, . . . em, wherem = |E(F)|. De�ne F0 = ∅ and Fi = {ej , j 6
i} for 1 6 i 6m. We write

ϕξ
G,p,q[ω|E(F) = η] =

m∏
i=1

ϕξ
G,p,q[ω(ei) = η(ei) |ω|Fi−1 = η|Fi−1].

12



1.1. The random-cluster model on �nite graphs

Let c0 be the constant provided by Lemma 1.11. Then, for all i, we have

c0 6 ϕ
ξ
G,p,q[ω(ei) = η(ei) |ω|Fi−1 = η|Fi−1] 6 1− c0

by the FKG inequality and the domain Markov property. Thus, we can take c = cm0 to con-

clude.

Proposition 1.13. Let F be a �nite subgraph of G. Take ε > 0 such that pe ∈ [ε,1 − ε] for
all e ∈ E(F). Then, there exists c = c(ε) > 0 such that for any increasing event A depending on
edges not in E(F), any con�guration η ∈ {0,1}E(F) and any boundary conditions ξ ,

ϕξ
G,p,q[A∩ {ω|E(F) = η}] > cϕ

ξ
G,p,q[A].

Proof. Let c be as given in the previous proposition. We write

ϕξ
G,p,q[A∩ {ω|E(F) = η}]

=
∑

ψ∈{0,1}E\E(F)
ϕξ
G,p,q[{ωE\E(F) = ψ} ∩ {ωE(F) = η} ∩A]

=
∑

ψ∈{0,1}E\E(F)
ϕξ
G,p,q[{ωE\E(F) = ψ} ∩A]ϕ

ξ
G,p,q[ωE(F) = η |ωE\E(F) = ψ]

=
∑

ψ∈{0,1}E\E(F)
ϕξ
G,p,q[{ωE\E(F) = ψ} ∩A]ϕ

ξψ

G,p,q[ωE(F) = η]

> c
∑

ψ∈{0,1}E\E(F)
ϕξ
G,p,q[{ωE\E(F) = ψ} ∩A] = cϕ

ξ
G,p,q[A],

where in the third line, we drop the conditioning on A because if ψ is not in A, the terms in

the second and the third lines are both 0.

1.1.10 Russo-Seymour-Welsh property

In this section, we de�ne the Euclidean version of the Russo-Seymour-Welsh property. It can

also be de�ned at the lattice level, but actually, it can be proven that the two de�nitions are

equivalent. As mentioned earlier in Introduction, this is a property about self-similarity of

the model and is a good criterion to determine the critical point of the random-cluster model.

See [DCST17] for more details.

De�nition 1.14 (Euclidean RSW property). Let G = (V ,E) be an in�nite planar graph. Take

a family of edge parameters p = (pe)e∈E , an cluster-weight parameter q > 1 and boundary

conditions ξ = 0 or 1. We say that the random-cluster measure ϕξ
G,p,q satis�es the RSW

property if for any ρ > 1, there exists c := c(ρ) > 0 such that for all n > 0, we have

c 6 ϕξR′n,p,q[Ch(Rn)] 6 1− c, (1.14)

where R′n = [−(ρ + 1)n, (ρ + 1)n]× [−2n,2n] and Rn = [−ρn,ρn]× [−n,n] denote Euclidean

domains; ϕξR′n,p,q denotes the random-cluster measure on R′n ∩G whose boundary is given

by edges of G with one endpoint inside R′n and another one outside; and Ch(Rn) denotes the

event that there is a path inω∩Rn connecting the left-boundary of Rn to its right-boundary.

Note that we require the constant c > 0 to be uniform in n.

13



1. Definition of models

The lattice RSW property can be de�ned in a similar way. In this case, we would need a

coordinate system on the graph to be able to de�ne “rectangles”. This can be done for isoradial

graphs with the square-grid property, see further in De�nition 2.1. By gluing rectangles

together, it is not hard to see that these two versions of RSW property are equivalent. More

details can be found in Appendix B.

1.1.11 Known results

Here, we discuss the homogeneous random-cluster model on the square lattice Z
2
. Fix p ∈

[0,1], q > 1 and boundary conditions ξ = 0 or 1. Consider the random-cluster model on Z
2

with edge parameters pe = p for all e ∈ E(Z2). Proposition 1.1 states that for p = p
sd
(q) :=√

q
1+
√
q , the model is self-dual in the following sense: if ω is sampled according to ϕξ

Z
2,p

sd
,q,

then the dual con�guration ω∗, de�ned via (1.3), follows the law of ϕ1−ξ
Z

2,p
sd
,q. This is due to

the equalities y
sd
(q) = p

sd
(q)

1−p
sd
(q) =

√
q and y

sd
(q)2 = q.

For p ∈ [0,1] and boundary conditions ξ ∈ {0,1}, de�ne the connectivity to be

θξ(p) = ϕξ
Z

2,p,q[0↔∞].

It can be shown that the random-cluster model is critical at the self-dual point p = pc(q) =

p
sd
(q) =

√
q

1+
√
q in the following sense [BD12]:

• for p < pc(q), θ0(p) = θ1(p) = 0 and

• for p > pc(q), θ0(p) = θ1(p) > 0.

Moreover, at p = pc(q), two di�erent cases could happen:

• continuous or second-order phase transition: θ0(pc) = θ1(pc) = 0;

• discontinuous or �rst-order phase transition: θ1(pc) > θ0(pc) = 0.

In [DCST17], some criteria are given to determine whether the phase transition is con-

tinuous or discontinuous. In particular, the existence of the in�nite cluster, decay of the

connection probability between 0 and the box of size n or the RSW property. As a conse-

quence, they prove that for q ∈ [1,4], the phase transition is continuous. Later on, using

the coupling between the six-vertex model and the q-color Potts model, Duminil-Copin et al.

prove that the phase transition is discontinuous for q > 4 [DGH
+

16].

For q = 2, the classic Edward-Sokal coupling of the random-cluster measure gives the

Ising model. It is proven in [Smi06, CDCH
+

14] that the interface of this model converges to

some conformally invariant limit. This limit can be identi�ed with the SLE curve of parameter

3 for the spin-Ising model and with the SLE curve of parameter 16/3 for the FK-Ising model.

1.2 Quantum random-cluster model

1.2.1 Semi-discrete lattice and domain

The semi-discrete lattice is de�ned by the Cartesian product Z×R. It can be seen as a collec-

tion of vertical lines R indexed by Z with horizontal edges connecting neighboring vertical

lines with the same y-coordinate. In our graphical representation, horizontal edges are not

drawn for simplicity.

If we are given a planar graph, we know how to de�ne its dual graph (Section 1.1.4). This

will be the same for Z ×R, using the fact that it can be seen as the “limit” of a more and
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1.2. Quantum random-cluster model

ε

(a) The primal graph is given by black vertices and

think edges. The dual graph is given by white vertices

and dasehed edges.

(b) The medial graph is given by black and white ver-

tices along with think edges. The mid-edge graph is

given by square vertices and dotted edges.

Figure 1.3 – The primal, dual, medial and mid-edge graphs of (a part of) the �attened square

lattice.

more �attened rectangular lattice Z×εZ as illustrated in Figure 1.3. The faces are “crushed”

together so that vertically, the notion of being neighbors gets degenerated. We will only call

neighbors two sites whose x-coordinates di�er by 1. More details will be given below in a

general setting.

Take δ > 0. We will de�ne here the following notions related to the semi-discrete lattice
with mesh size δ: primal, dual, medial and mid-edge lattices. Formal de�nitions are given

below and to visualize them, we refer to Figure 1.4.

Figure 1.4 – Thick lines represent the primal semi-discrete lattice Lδ, dashed lines represent

the dual semi-discrete lattice L
?
δ and dotted lines represent the mid-edge semi-discrete lattice

L
[
δ.

LetLδ be the semi-discrete primal lattice δZ×R. We denote byL
?
δ , the lattice δ(Z+ 1

2 )×R
with the same notion of connectivity as δZ × R, the dual of Lδ. We can notice that the

dual lattice is isomorphic to the primal one, by translation of
δ
2 in the x-coordinate. As in

the discrete setup, the dual lattice is given by the center of faces in the primal lattice, and

edges by connecting two primal faces sharing a common edge. Since the faces of Lδ are all

crushed together vertically, the same happens to vertically-ordered dual vertices, giving us

continuous lines isomorphic to R.

Moreover, we de�ne the medial lattice by taking L
�
δ = Lδ ∪L?δ . It is again isomorphic to

the primal or dual lattice by scaling of factor
1
2 .

Finally, we de�ne the mid-edge lattice δ(12Z+ 1
4 )×R, denoted by L

[
δ. The vertices of this

lattice are sometimes called mid-edges. It is isomorphic to the medial lattice.

In the following graphical presentations, we will draw a �lled black dot to represent a

vertex on the primal lattice, a �lled white dot a vertex on the dual lattice, and a �lled white

square when it is a vertex on the mid-edge lattice. See Figure 1.4.

We need to de�ne some more notions related to the semi-discrete lattice Lδ, including

segments, paths and domains.
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1. Definition of models

A primal vertical segment is denoted by [δk + ia,δk + ib] := {δk} × [a,b], where k ∈ Z
and a < b are real numbers. A primal horizontal segment is denoted by [δk + ia,δl + ia] :=
([δk,δl] × {a}) ∩Lδ = {δj + ia,k 6 j 6 l} where k < l are integers and a is a real number.

When a primal horizontal segment is of length δ, we call it an elementary primal segment.
A sequence of points (zi)06i6n on Lδ forms a path if the consecutive points share the

same y-coordinate (forming horizontal segments) or the same x-coordinate (forming vertical

segments).

A primal domain is a �nite region delimited by primal horizontal and vertical segments.

More precisely, it is given by a self-avoiding path consisting of 2n+1 points z0, z1, . . . , z2n on

Lδ such that

• [z2i , z2i+1] are horizontal segments for i ∈ ~0,n− 1�;

• [z2i+1, z2i+2] are vertical segments for i ∈ ~0,n− 1�;

• these points form a closed path, i.e., z0 = z2n.

The set consisting of segments ∂ = {[z2iz2i+1], [z2i+1, z2i+2], i ∈ ~0,n− 1�} separates the

plane into two connected open components, a bounded one which is simply connected and

an unbounded one. The �rst one is called the domain and is usually denoted by Ωδ. And ∂,

or ∂Ωδ, is called the boundary of Ωδ. Except otherwise mentioned, the points zi are ordered

counterclockwise.

These same de�nitions apply to the dual lattice L
?
δ to get a dual domain, usually denoted

by Ω?
δ , or to the medial lattice to get a medial domain, Ω�δ.

The interior of a primal domain Ωδ, denoted by IntΩδ, is the largest dual domain con-

tained in Ωδ. It can also be seen as the set of dual vertices in Ωδ having both (primal)

neighbors inside Ωδ. Similarly, the interior of a dual domain Ω?
δ or a medial domain Ω�δ,

denoted by IntΩ?
δ or IntΩ�δ, can also be de�ned in a similar way by replacing the word

“primal” by “dual” or “medial”.

Now we de�ne a semi-discrete Dobrushin domain, which is a medial domain with so-called

Dobrushin boundary conditions. This will be useful in studying the interface of the quantum

Ising model in Chapter 6. Given (awab) and (bbbw) two horizontal edges, consider a primal

path from ab to bb and a dual path from bw to aw, such that the concatenation of both (�rst

primal then dual) forms a counterclockwise non self-intersecting boundary. We write ∂ab
and ∂?ba for the primal and dual parts. See Figure 1.5.

ab
aw

bb bw

∂ab

∂?
ba

Figure 1.5 – A Dobrushin domain.
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1.2. Quantum random-cluster model

1.2.2 Quantum Bernoulli percolation

The quantum Bernoulli percolation model can be de�ned on the semi-discrete lattice or any

semi-discrete primal, dual or medial domain. We start with its de�nition on the semi-discrete

lattice.

Given the mesh size of the lattice δ > 0 and two parameters λ,µ > 0. Recall that Lδ

denotes the collection of primal vertical lines, separated by distance δ one from another; and

L
?
δ denotes the collection of dual vertical lines, which are at equal distance between two

neighboring vertical primal lines. We consider two independent (one-dimensional) Poisson

point processes with parameters λ and µ on Lδ and L
?
δ respectively. We denote by (D,B)

such a con�guration, where D contains the points in Lδ and B the points in L
?
δ . The points

in D are called cuts. They cut vertical (primal) lines into disjoint segments. The points in

B are called bridges. They create horizontal connections between two neighboring vertical

segments. See Figure 1.6 for an example. We denote this probability measure by P
(δ)
Q,λ,µ or

PQ,λ,µ.

Figure 1.6 – Left: Example of a (random) con�guration on a part of the semi-discrete lattice.

Red crosses are points given by Poisson point processes. Right: Representation with cuts

and bridges of the con�guration on the left-hand side. Red points on primal lines become

cuts and those on dual lines become bridges connecting the two neighboring primal vertical

lines.

Given a con�guration of the quantum Bernoulli percolation (D,B), we can de�ne the

notion of primal (or dual) connectivity with respect to it.

Two points in the primal domain are said to have a primal connection if there is a primal

path going from one to another by taking primal vertical segments and horizontal bridges

without crossing any cuts. The notion of having a dual connection is similar by taking the dual

graph, reversing primal and dual segments and the role of cuts and bridges. More precisely,

two points in the dual domain are said to have a dual connection if there is a path going from

one to another by taking dual lines and cuts without crossing any bridges.

In the following, except otherwise mentioned, the connectivity always refers to the pri-

mal domain. We call (primal) connected component of v ∈ Lδ the maximal subset composed

only of connected (primal) vertical lines and bridges. It may also be called cluster.

1.2.3 Quantum random-cluster model

To de�ne the quantum random-cluster model on the semi-discrete lattice, we need to be care-

ful with the boundary conditions as in the case of the random-cluster model on in�nite graphs

(Section 1.1.8). The idea behind is exactly the same: we start by de�ning the random-clus-

ter model on larger and larger �nite domains with wired or free boundary conditions and

take the weak limit of this. The details are not given here and in the rest of this chapter,
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1. Definition of models

since the main idea follows as in Section 1.1.8. We will only give a precise de�nition of the

random-cluster measure on �nite domains.

Fix one more parameter q > 1, called cluster-weight, and boundary conditions ξ = 0,1.

We de�ne the random-cluster measure on a primal domainΩδ with cluster-weight parameter

q and boundary conditions ξ , denoted by ϕξQ,Ωδ
, as follows. We write PQ,Ωδ

for the measure

of the quantum Bernoulli percolation on Ωδ, which is the restriction on Ωδ of the measure

of quantum Bernoulli percolation on the semi-discrete lattice PQ,λ,µ. Given a con�guration

(D,B) on Ωδ, we de�ne dϕξQ,Ωδ
via the following relation of proportionality,

dϕξQ,Ωδ
(D,B) ∝ qk

ξ (D,B)
dPQ,Ωδ

(D,B),

where kξ(D,B) denotes the number of clusters in the con�guration (D,B) with respect to the

boundary conditions ξ . When the boundary conditions are wired (ξ = 1), one should count

all the clusters touching the boundary ∂Ωδ as one; and when the boundary conditions are

free (ξ = 0), they are all considered as di�erent clusters.

In other words, we write

dϕξQ,Ωδ
(D,B) =

qk
ξ (D,B)

Zξq,Ωδ

dPQ,Ωδ
(D,B). (1.15)

In the above de�nition, we have

Zξq,Ωδ
=

∫
qk

ξ (D,B)
dPQ,Ωδ

(D,B)

6

∫
q|D |dPQ,Ωδ

=
∞∑
n=0

qn
(λC)n

n!
e−λC = e(q−1)λC <∞,

where C is the one-dimensional Lebesgue measure of Ωδ ∩Lδ, which is �nite due to the

boundedness of Ωδ.

We mention that the quantum model also has the same properties as the classical one, in

particular, the FKG property and the domain Markov property. Hence, as a consequence, we

can de�ne in�nite-volume measures such as ϕ0
Q and ϕ1

Q on the whole semi-discrete lattice

by taking weak limits.

1.2.4 Limit of the discrete random-cluster model

From now on, when we talk about the semi-discrete lattice, we assume that δ = 1, which is to

say that we consider Z×R as the standard semi-discrete lattice, since up to a scaling factor,

they are the same thing.

The semi-discrete lattice Z ×R can be viewed as the “graph limit” of Z × εZ when ε
goes to 0. Moreover, it is also the limit of G

ε
de�ned below, which is a better graph to study

despite its more complicated de�nition.

The medial graph of G
ε

is given by rhombi of size 1 with angles ε and π−ε, as shown on

the left-hand side of Figure 1.7. The graph is bipartite, we attribute primal and dual vertices

alternatively. We can choose an arbitrary primal vertex and set the origin of R
2

at this vertex.

The primal graph thus obtained is shown on the right-hand side of Figure 1.7.

Observe that G
ε

contains two types of edges: those of length 2sin( ε2 ) and those of length

2cos( ε2 ). As we will take ε to 0, we call the �rst short edges and the latter long edges. Write pε
and pπ−ε for the percolation parameters associated with short and long edges respectively.
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1.2. Quantum random-cluster model

ε

1

t0

Figure 1.7 – Left: The medial lattice of G
ε
. Right: The primal lattice with dual vertices.

We remind that they denote the probability that a short or a long edge is open. Assume there

exist constants λ0,µ0 > 0 such that asymptotically, pε and pπ−ε behave as follows when

ε→ 0:

pε ∼ 1− ελ0 and pπ−ε ∼ εµ0.

Write ϕ(ε) = ϕ
G
ε for the measure of Bernoulli percolation on G

ε
with parameters given

above. Taking ε→ 0, we obtain in the limit the quantum Bernoulli percolation on 2Z ×R,

where the cuts are described by Poisson points with parameter λ0 on primal lines and the

bridges by Poisson points with parameter µ0 on dual lines.

Note that by a scaling of factor
1
2 , the above model is the same as the quantum Bernoulli

percolation on Z ×R, where the cuts are Poisson points with parameter λ on primal lines

and the bridges are Poisson points with parameter µ on dual lines where

λ = 2λ0 and µ = 2µ0. (1.16)

To see that when ε goes to 0, we obtain the quantum model described above, we may

proceed as follows. Consider L > 0 and a collection of N = L
ε consecutive short edges, each

of whom is closed with probability λ0ε. Consider a sequence of i.i.d. Bernoulli random

variables (Xi)16i6N with parameterλε: Xi = 1 if the i-th edge is closed andXi = 0 otherwise.

Set S =
∑N
i=1Xi , which counts the number of closed edges in this collection of edges. Then,

for any �xed k > 0 and ε→ 0, we have that

P[S = k] =
(
N
k

)
(λ0ε)

k(1−λ0ε)N−k

∼ N
k

k!
(λ0ε)

ke−Nλ0ε

= e−Lλ0
(Lλ0)k

k!
,

where the quantity in the last line is the probability that a Poisson variable with parameter

Lλ0 takes the value k. As a consequence, when ε→ 0, the N vertical short edges converge

to a vertical segment of length L, among which closed edges (at ε scale) give us cuts that can

be described by a Poisson point process with parameter λ0. And the same reasoning also

applies to the long edges.

For the quantum random-cluster model, we can proceed in a similar way by taking weak

limits of their discrete counterparts.

In Chapter 2, we will see that the graphs G
ε

are isoradial, and we will study the random--

cluster model on such graphs in Chapter 3. In particular, Theorem 3.1 provides us with the
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1. Definition of models

critical value of the model on such graphs, which are

pε =
yε

1+ yε
and pπ−ε =

yπ−ε
1+ yπ−ε

,

where yε and yπ−ε are given by (2.2) with β = 1, where we consider θe = ε if e is a short

edge; θe = π−ε if e is a long edge. A more detailed statement will be given in Proposition 4.2.

Here, we just mention that the computation from Section 4.2 gives

if 1 6 q < 4, λ0 =
2r√

q(4− q)
, µ0 =

2r
√
q√

4− q
;

if q = 4, λ0 =
1
2π
, µ0 =

2
π
;

if q > 4, λ0 =
2r√

q(q − 4)
, µ0 =

2r
√
q√

q − 4
.

(1.17)

From Theorem 4.1, we deduce the critical parameters for the quantum model, which are

given by (λ,µ) such that µ/λ = q. The special case of q = 2 is what we call the quantum

Ising model, which is supposed to have the same behavior as the classical Ising model. In

Chapter 6, we study the quantum Ising model and we prove the convergence of its interface

to a conformally invariant limit.

1.2.5 Critical quantum model: loop representation

In this section, we explain how to obtain the loop representation of the quantum random-clus-

ter model on semi-discrete domains. A loop is a simple closed path living on the mid-edge

lattice L
[
δ. For our convenience, we may orient it using the following operation: replace the

pieces of our domain according to the rules explained in Figure 1.8. Then, loops arise as

contours around primal or dual clusters.

replaced

by

replaced

by

replaced

by

replaced

by

Figure 1.8 – Transformation to get the loop representation of a FK-con�guration of the quan-

tum Bernoulli percolation.

We notice that if we work on a Dobrushin domain (Ω�, a,b), then we get a collection of

loops surrounding either primal or dual connected components together with one interface

connecting a to b. This is illustrated in Figure 1.9.

Now, let us come to the quantitative side. We want to rewrite the quantum random-clus-

ter measure in terms of the number of loops. To do so, we couple the quantum random-cluster

model with its dual model and look at them together.

Let Ω be a primal domain and we write PQ,λ,µ for the quantum Bernoulli percolation on

Ω. We put boundary conditions ξ = 0,1 onΩ and for q > 1, we write the associated quantum

random-cluster measure ϕξQ,Ω. On the dual graph Ω?
, we inverse the role of primal and dual

lines (by switching primal and dual lines and inversing cuts and bridges), and write P
∗
Q,µ,λ

20



1.2. Quantum random-cluster model

a

b

Figure 1.9 – The loop representation corresponding of a con�guration on the Dobrushin

domain (Ω�, a,b).

for the coupled measure of the quantum Bernoulli percolation. In consequence, we have, for

any �nite sets D of primal vertical lines and B of dual vertical lines, that

dPQ,µ,λ(D,B) = dP
∗
Q,µ,λ(D

∗,B∗),

where D∗ = B and B∗ =D .

Given a subset of primal lines of Lebesgue measure a and a subset of dual lines of Lebesgue

measure b. LetD be a set of cuts and B a set of bridges of cardinality k and l on these subsets.

Fix ω = (D,B) a con�guration. We can calculate the Radon-Nikodym derivative between

dPλ,µ(D,B) and dPµ,λ(D,B),

dPλ,µ(D,B)

dPµ,λ(D,B)
=
e−λa (λa)

k

k! e
−µb (µb)l

l!

e−µa (µa)
k

k! e
−λb (λb)l

l!

= e−(λ−µ)(a−b)
(
λ
µ

)k−l
.

Thus, by denoting D∗ = B, B∗ = D and ω∗ = (D∗,B∗), and knowing that dPµ,λ(D,B) =
dP
∗
λ,µ(D

∗,B∗), we can write

dϕ1−ξ
Q,Ω? (D∗,B∗) = dϕξQ,Ω(D,B)

∝ qk
ξ (ω)

dPλ,µ(D,B)

∝ qk
ξ (ω)

(
λ
µ

)|D |−|B|
dPµ,λ(D,B)

∝
(
qλ

µ

)kξ (ω) (µ
λ

)k1−ξ (ω∗)
dP
∗
λ,µ(D

∗,B∗).

where we use Euler’s formula |D | − |B| + f ξ(ω) − kξ(ω) = cst. and f ξ(ω) = k1−ξ(ω∗). At

criticality, we have qλ/µ = 1, thus, the last line gives

dϕ1−ξ
Q,Ω? (ω∗) ∝ qk

1−ξ (ω∗)
dP
∗
λ,µ(D

∗,B∗).

This shows that the model at criticality is self-dual.

We will apply the same technique as in Section 1.1.5 to get the loop representation for

the quantum random-cluster model. We have,

dϕξQ,Ω(ω) =
√

dϕξQ,Ω(ω
∗)dϕ1−ξ

Q,Ω∗(ω
∗) =
√
ql(ω)

√
dPλ,µ(D,B)dPµ,λ(D,B) (1.18)
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where l(ω) = k(ω) + k(ω∗) is the number of loops in ω (or ω∗). We note that this quantity is

symmetric in primal and dual lattice. We should now estimate the square root of two Poisson

point processes. Let us denote it by dQλ,µ. As before, consider a subset of primal axes and a

subset of dual axes of Lebesgue measure respectively a and b. Let D and B be the set of cuts

and the set of bridges on them. We need to estimate this square root for the event |D | = k
and |B| = l,

Qλ,µ(|D | = k, |B| = l) =

√(
e−λa

(λa)k

k!
e−µb

(µb)l

l!

)(
e−µa

(µa)k

k!
e−λb

(λb)l

l!

)
= e−

1
2 (λ+µ)(a+b)

(
√
λµa)k

k!
(
√
λµb)l

l!

which is proportional to a Poisson point process of same intensity

√
λµ on primal and dual

axes, independent on everything.

In consequence, the critical model can be seen in two ways.

1. FK representation: we put independent Poisson point processes on primal and dual

axes, with parametersλ on primal axes and µ on dual axes. We weigh con�gurations by

qk(ω) where k(ω) is the number of primal connected components in the con�guration.

The critical model is obtained by setting µ/λ = q.

2. Loop representation: we put independent Poisson point processes on primal and dual

axes, with the same parameter, and all of them are independent of each other. The

weight of a con�guration is proportional to

√
ql(ω) where q is the parameter and l(ω)

the number of loops in the con�guration.

In Chapter 6, we will be particularly interested in the loop representation of the critical

quantum FK-Ising model, or the random-cluster model corresponding to the case of q = 2.

Our goal will be to get a result on conformal invariance of the critical model. The critical

parameters of this model are given by (λ,µ) such that the relation µ/λ = 2 [Pfe70, BG09]

is satis�ed. However, to get an isotropic model, we need to consider parameters obtained

in (1.17) and the scaling relation 1.16, which give

λ =
1
2δ

and µ =
1
δ
. (1.19)

Using (1.18), the loop representation of the critical quantum FK-Ising measure can be

rewritten as follows,

dP
QI
λ,µ(D,B) ∝

√
2
l(D,B)

dPρ,ρ(D,B), (1.20)

where l(D,B) denotes the number of loops in a given con�guration (D,B) and Pρ,ρ a Poisson

point process on primal and dual vertical lines with parameter ρ =
√
λµ = 1√

2δ
.

Let Ω be a simply connected domain of C
2

and a,b ∈ ∂Ω be two marked boundary

points. For δ > 0, write (Ω�δ, aδ,bδ) for the δ-approximated semi-discrete Dobrushin do-

main of (Ω, a,b). We consider the loop representation of the FK-Ising model on the domain

(Ω�δ, aδ,bδ) to get a collection of loops and an interface going from aδ to bδ, denoted γδ. We

will show that the limiting curve of γδ when δ goes to 0 is conformally invariant.
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Chapter2

Isoradial graphs and star-triangle

transformation

2.1 Isoradial graphs

In this section, we de�ne the notion of isoradial graphs. They are in�nite planar graphs with

an embedding to be precised later. This includes a huge class of regular graphs which we are

interested in: square lattice, triangular lattice, hexagonal lattice, etc. In Chapter 3, we will

study the random-cluster model on such graphs and show the universality of its universal

behavior at the critical point. Moreover, on this family of graphs, a theory of complex analysis

have been developped [Ken02, CS11], which was used to study the Ising model on isoradial

graphs and to prove the conformal invariance of its interface [CS12, CDCH
+

14]. A similar

result is conjectured to hold as well for the random-cluster model [Sch07].

2.1.1 De�nition

An embedded planar graph G = (V ,E) is said to be isoradial if it satis�es the three following

properties:

• All its faces are inscribed in circles of the same radius.

• The center of each circumcircle is in its own face.

• All its edges are straight segments.

In particular, such a graph should be in�nite since otherwise, we would have an in�nite face

on the exterior which cannot be inscribed in a circle of �nite radius. We note that in the �rst

condition, up to scaling, we may assume that the radius of the circumcircles are all equal to

1.

An isoradial graph G is said to be doubly-periodic if it is invariant under translations

which form a group action Λ � τ1Z⊕τ2Z with τ1/τ2 <R. The complex numbers τ1 and τ2
are called periods of G. Note that their choice is not unique.

In this thesis, most of the time we will consider doubly-periodic isoradial graphs but ac-

tually, some proofs can be adapted without too much di�culty to more general graphs, such

as those satisfying the bounded-angles property (Section 2.1.2) and the square-grid property

(De�nition 2.1).

The canonical way to de�ne the dual graph of an isoradial graph is to take the centers

of circumcircles as the set of dual vertices, and to embed all the dual edges to be straight

segments. It is not hard to see that the dual graph G
∗ = (V ∗,E∗) embedded in this way is
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2. Isoradial graphs and star-triangle transformation

also isoradial since the distance between a primal (resp. dual) vertex and the center of its

circumcircle, which is a dual (resp. primal) vertex, is a constant over the graph. We notice

that by taking twice the isoradial dual (G∗)∗, we obtain exactly G with the same isoradial

embedding.

An isoradial graph gives rise to a diamond graph or quad graph, denoted G
� = (V �,E�),

which is de�ned as follows. The vertex set V
�

consists of all the primal and dual vertices,

which means V
� = V ∪V ∗. The edge set E

�
consists of all the unordered pairs 〈v,c〉 where

v is a primal vertex and c is the center of the circumcircle of a face containing v. These edges

are also called mid-edges. We also denote by C
�

the set of rhombi centers, which are given

by intersection between primal and dual edges. We also have C
� = (V �)∗. By isoradiality,

all these edges are of the same length, which is the radius of the circumcircles mentionned

above. Moreoever, all the faces are rhombi, with two vertices in V and two others in V
∗
.

We notice that the previous de�nition is symmetric in G and G
∗
, which means that the

diamond graphs of G and G
∗

are the same. In other words, we can switch the role of primal

and dual vertices to de�ne G
�
. Conversely, starting from a rhombi tiling of the plane, we

may obtain two isoradial graphs. More precisely, a rhombi tiling is a bipartite graph, thus

admits two black-white colorings on its vertices, corresponding to two di�erent isoradial

graphs, that are dual of each other. This shows that there is a 2-to-1 correspondance between

isoradial graphs and diamond graphs.

Figure 2.1 – The graph with black vertices and thick edges is (a �nite part of) an isoradial

graph. Left: The isoradial graph with all the circumcircles in dashed gray. Right: Its dual

embedding and diamond graph in gray.

2.1.2 Bounded-angles property

Let G be an isoradial graph. Recall that G
�

is the diamond graph associated with G, whose

faces are rhombi. Each edge e of G corresponds to a face of G
�
, and the angle θe associated to

e is one of the two angles of that face. We say thatG satis�es the bounded-angles propertywith

parameter ε > 0 if all the angles θe of edges of e ∈ E are contained in [ε,π−ε]. Equivalently,

edges of G have parameter pe bounded away from 0 and 1 uniformly. The property also

implies that the graph distance on G
�

or G and the euclidean distance are quasi-isometric.

Write G(ε) for the set of double-periodic isoradial graphs satisfying the bounded-angles

property with parameter ε > 0.
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2.1. Isoradial graphs

Figure 2.2 – The hexagonal lattice (in black) and the triangular lattice (in red) are dual one to

the other. Their rhombic lattice is drawn in gray.

2.1.3 Track systems

If we take the diamond graph representation of an isoradial graph, each edge is shared by

exactly two rhombi and each rhombus has exactly four neighboring rhombi. Therefore, we

can de�ne train track as a double-in�nite sequence of rhombi (ri)i∈Z if all the intersections

(ri ∩ ri+1)i∈Z are non-empty, distinct and parallel segments (Figure 2.3).

A train track as above may also be viewed as an arc in R
2

which connects the midpoints

of the edges (ri ∩ ri+1)i∈Z. These edges are called the transverse segments of the track, and

the angle they form with the horizontal line is called the transverse angle of the track.

Figure 2.3 – The train track representation (in dotted red lines) of the isoradial graph in

Figure 6. Transverse edges of a track are drawn in blue.

Given an isoradial graph G, we write T (G) the set of its train tracks. We notice that

T (G) = T (G∗) since again, it is a notion associated to the diamond graph, but not to the

primal or dual graph.
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2. Isoradial graphs and star-triangle transformation

One can easily check that the rhombi forming a track are distinct, thus a track does not

intersect itself. Furthermore, two distinct tracks can only have at most one intersection. A

converse theorem has been showned by Kenyon and Schlenker [KS05]. Let Q be an in�nite

quad-graph (every face is of degree four) on which we adapt the notion of train tracks from

above de�nition. Moreover, assume that (i) each track does not cross itself and (ii) any two

distinct two train tracks may cross each other only at most once. Then Q can be embedded

isoradially.

Each face of G
�

corresponds to an intersection of two train tracks. A hexagon in G
�

(that is a star or triangle in G) corresponds to the intersection of three train tracks, as in

Figure 2.9. The e�ect of a star-triangle transformation is to locally permute the three train

tracks involved in the hexagon by “pushing” one track over the intersection of the other two.

Let e be a primal (resp. dual) edge, we write θe its subtended angle with respect to one of

the two neighboring dual (resp. primal) vertices, as illustrated in Figure 2.4.

e θe

Figure 2.4 – In the �gure, the primal edge e has subtended angle θe.

Let G be an isoradial graph and denote by T (G) the set of its train tracks. We call a grid
of G two bi-in�nite families of tracks (sn)n∈Z and (tn)n∈Z of G with the following properties.

• The tracks within the same family do not intersect each other.

• All tracks of T (G)\{sn : n ∈Z} intersect all those of (sn)n∈Z.

• All tracks of T (G)\{tn : n ∈Z} intersect all those of (tn)n∈Z;

• The intersections of (sn)n∈Z with t0 appear in order along t0 (according to some arbi-

trary orientation of t0) and the same holds for the intersections of (tn)n∈Z with s0.

The tracks (sn)n∈Z are called vertical and (tn)n∈Z horizontal.

De�nition 2.1. An isoradial graph G is said to have the square-grid property (SQP) if it has

a grid given by (sn)n∈Z and (tn)n∈Z in the above sense; and it is said to have the strict square-
grid property (SSQP) if, additionally, the two families (sn)n∈Z and (tn)n∈Z form a partition of

T (G).

The strict square-grid property of an isoradial graph G gives rise to a natural coordinate

system de�ned by its grid. Notice that a rhombus is exactly the intersection of two train

tracks, so we may write ri,j for the rhombus at the intersection between si and tj . We shall

call it the rhombus at position (i, j). The vertex at the bottom-left corner of ri,j (surrounded

by tracks si−1, si , tj−1 and tj ) is written xi,j . This is illustrated in Figure 2.5.

2.2 Isoradial square lattices

An isoradial square lattice is encoded by two bi-in�nite sequences of angles. Let α = (αn)n∈Z
and β = (βn)n∈Z be two sequences of angles in [0,π) such that

sup{αn : n ∈Z} < inf{βn : n ∈Z},
inf{αn : n ∈Z} > sup{βn : n ∈Z} −π. (2.1)
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2.3. Doubly-periodic isoradial graphs

Then de�ne Gα,β to be the isoradial embedding of the square lattice with horizontal train

tracks (sn)n∈Z with transverse angles (αn)n∈Z and vertical train tracks (tn)n∈Z with trans-

verse angles (βn)n∈Z. As such, the isoradial graph Gα,β satis�es BAP (ε) for ε = inf{βn −
αm,αn − βm + π : m,n ∈ Z} > 0. Moreover, an isoradial square lattice satis�es the strict

square-grid property and vice versa.

ti

sj

αj

βi

xi,j

xi+1,j

ri,j

Figure 2.5 – A piece of an isoradial embedding of a square lattice with the associated coor-

dinate system. The square lattice is drawn in red, the diamond graph in black and the tracks

in blue.

We will call the regular square lattice the embedding corresponding to sequences βn =
π
2

and αn = 0 for all n ∈Z.

Note that “having the strict square-grid property” and “being an isoradial square lattice”

are two equivalent notions. Therefore, we will rather use the term “isoradial square lattice”

since it is more convenient to say.

Next, we will have a closer look at doubly-periodic isoradial graphs and the grid property.

2.3 Doubly-periodic isoradial graphs

Let G be a doubly-periodic isoradial graph with periods τ1 and τ2 (τ1/τ2 <R). We note that

G is in G(ε) for some ε > 0. Denote by K a fundamental domain of G. Given a,b ∈Z, write

τa,b for the translation by the vector aτ1+bτ2. Set Ka,b := τa,bK , the fundamental domain K
translated by τa,b. Note that the sets (Ka,b)a,b∈Z are disjoint and cover G.

2.3.1 Asymptotic direction

Lemma 2.2. For a track s of G, de�ne

Hs = {(a,b) ∈Z2, τa,bs = s},

which is a subgroup of rank 1 of Z2. A generator of Hs is called asymptotic direction s. More-
over, two distinct tracks s and t intersect each other if and only if Hs ∩Ht = {0}; or in other
words, the asymptotic dirctions of s and t are not parallel.

Proof. The Abelian group Z
2

acts transitively on {τa,bs | a,b ∈Z} and Hs is the stabilizer of

s under this action. The track s can also be seen as a closed curve living on the torus, andHs
is exactly its homology class, denoted [s] ∈Z2

.

Let s and t be two intersecting train tracks of G such that Hs ∩Ht , {0}. Write K for a

fundamental domain in which s and t intersect each other. Let (a,b) ∈ Hs ∩Ht and (a,b) ,
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2. Isoradial graphs and star-triangle transformation

(0,0). For any n ∈ N, the tracks τan,bns = s and τan,bnt = t also intersect each other in

Kan,bn , K . We just show that s and t have in�nitely many intersections, which is not possible

for two distinct train tracks.

Let s and t two train tracks of Gwhich do not intersect each other such thatHs∩Ht = {0}.
WriteHs = (as,bs)Z andHt = (at ,bt)Z. LetKs andKt be two fundamental domains in which

s and t go through respectively. By the de�nition of stabilizer, s should also go through

τasn,bsnKs and t thourgh τatn,btnKt for all n ∈ Z. Since the tracks are continuous curves in

R
2
, they should intersect because (as,bs) and (at ,bt) are linearly independent.

This lemma gives the two following corollaries as consequences. They give a better de-

scription of intersections between train tracks of a doubly-periodic isoradial graph G.

Corollary 2.3. If t and t′ are two tracks that intersect each other. Then for any other track s
di�erent from t and t′ , we have one of the following three possibilities in terms of intersection
of s with t and t′ :

• s intersects only with t but not with t′ ;
• s intersects only with t′ but not with t;
• s intersects with both t and t′ .

In other words, given three distinct tracks t, t′ and t′′ in G, we can either have 0, 2 or 3 inter-
sections between them.

Proof. Since t and t′ intersect each other, we know that Ht ∩Ht′ = {0}. Assume that s does

not intersect neither t nor t′ , which means that Hs ∩Ht and Hs ∩Ht′ are both subgroups of

rank 1 of Hs. Hence, the quotient

Hs/(Hs ∩Ht ∩Ht′ ) �Hs/(Hs ∩Ht)⊕Hs/(Hs ∩Ht′ )

is �nite, which contradicts the fact that Ht ∩Ht′ = {0}.

Corollary 2.4. If s intersects t, then s also intersects τa,bt for all a,b ∈Z.

Proof. If τa,bt = t, the corollary is clear. Assume that they are di�erent. By Corollary 2.3,

τa,bt should intersect at least either t or s. But since Hτa,bt = Ht , Lemma 2.2 says that t and

τa,bt do not intersect each other. As a consequence, τa,bt intersects s.

2.3.2 Square-grid property

Here, we will show the following proposition.

Proposition 2.5. Let G be a doubly-periodic isoradial graph. Then G contains a grid given
by (sn)n∈Z and (tn)n∈Z which are bi-in�nite periodic sequences. Moreover, if G is an isoradial
square lattice, then any grid contains all tracks of G.

Proof. Consider G a biperiodic isoradial graph with periods τ1 and τ2. Take t̃0 and s̃0 two

intersecting tracks of G and K a fundamental domain of G containing this intersection. We

will then construct two families of tracks by recurrence.

To start with, consider T̃ = {̃t0} and T̃ ′ = {̃s0}. For any track s going through K (there is

only a �nite number of them), when we look at its intersection (in G) with tracks in T̃ and

those in T̃ ′ , we are in one of the following three possible cases by Lemma 2.3.

• If s intersects with some (all) tracks in T̃ but not with those in T̃ ′ , add s to T̃ ′ .
• If s intersects with some (all) tracks in T̃ ′ but not with those in T̃ , add s to T̃ .
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2.4. Random-cluster model on isoradial graphs

• If s intersects with some (all) tracks in T̃ and some others (all) in T̃ ′ , keep s apart.

Finally, let

T =
⋃
a,b∈Z

τa,bT̃ and T ′ =
⋃
a,b∈Z

τa,bT̃ ′ .

We claim that the families of tracks T and T ′ form a grid of G.

First, note that in the construction, we can replace “some” by “all” due to Corollary 2.3.

Then, by de�nition, it is easy to see that each translationKa,b ofK intersects at least one track

of T and T ′ (it intersects τa,b t̃0 and τa,b s̃0). Let us check that the tracks in T do not intersect

each other. If there are t1, t2 ∈ T intersecting each other, then by Corollary 2.4, we can �nd

two tracks t̃1 and t̃2 both in T̃ intersecting each other by translation. This contradicts the

construction of T̃ . The same property holds for the tracks in T ′ .
Let us check that all the tracks of G not in T intersect all those of T . Take t1 a track

not in T and t2 ∈ T . Consider t̃1 and t̃2 two translations of t1 and t2 respectively such that

both go through K . Hence, by the construction, they should intersect each other, because

otherwise they would have been put both into T . So t1 and t2 intersect each other as well

by Corollary 2.4. To show that all tracks of G not in T ′ intersect all those of T ′ , the proof is

the same.

Finally, it is always possible to order tracks in T and those in T ′ according to intersections

with some referential tracks s0 ∈ T ′ and t0 ∈ T . The periodicity of the tracks follows from

the periodicity of the graph G.

For the last part of the lemma, we note that in a square lattice, any three di�erent (hor-

izontal or vertical) tracks have either 0 (3 of the same type) or 2 (2 of one type and 1 of the

other type) intersections between them. If there is a grid (sn)n∈Z and (tn)n∈Z not containing

all the tracks of G. Take s which is not one of the sn or tn. Then, between s0, t0 and s there

are three intersections, which is not possible.

To conclude this part about the construction of a grid in a doubly-periodic isoradial graph

(Proposition 2.5), we note that Lemma 2.2 provides us with an alternative. Write (ρi)16i6` the

set of (distinct) asymptotic directions seen as unit complex numbers. There is only a �nite

number of them due to the double periodicity of G. Denote by T (ρi )(G) the set of tracks

whose asymptotic direction is ρi . Then it is easy to see that

T (G) =
⋃̀
i=1

T (ρi )(G).

Pick up two distinct ρi and ρj , then the families T (ρi ) and T (ρj )
form a grid of G.

2.4 Random-cluster model on isoradial graphs

2.4.1 De�nition

Previously, we de�ned the random-cluster model on any �nite graph and extended the def-

inition to in�nite graphs with speci�c boundary conditions. Here we de�ne the model on

(in�nite) isoradial graphs with respect to what we call the isoradial parameters.
Fix the cluster weight q > 1 and an additional parameter β > 0. We de�ne the family of

edge parameters p(β) = (pe(β))e∈E via the relation

pe(β) =
ye(β)

1 + ye(β)
,
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2. Isoradial graphs and star-triangle transformation

where ye(β) is de�ned according to the value of q and θe, the subtended angle of the edge e
as shown earlier in Figure 2.4:

if 1 6 q < 4, ye(β) = β
√
q
sin(r(π −θe))

sin(rθe)
, where r =

1
π
cos−1

(√q
2

)
;

if q = 4, ye(β) = β
2(π −θe)

θe
;

if q > 4, ye(β) = β
√
q
sinh(r(π −θe))

sinh(rθe)
, where r =

1
π
cosh−1

(√q
2

)
. (2.2)

The parameters p de�ned by these formulae are called isoradial probability parameters. The

associated in�nite-volume random-cluster measure will be denoted by ϕξ
G,β,q, where the

boundary conditions ξ can be either 0 (free) or 1 (wired), as given in the previous sections.

Proposition 2.6. We have the following duality relations for the random-cluster model:

ϕξ
G,β,q

(d)
= ϕ1−ξ

G
∗,1/β,q, where ξ = 0,1.

In particular, at β = 1, the random-cluster model is self-dual up to the boundary conditions, that

is ϕ0
G,1,q

(d)
= ϕ1

G
∗,1,q and ϕ

1
G,1,q

(d)
= ϕ0

G
∗,1,q.

Proof. According to Proposition 1.1, it is enough to check that yθ(β)yπ−θ(
1
β ) = q. This is

immediate by (2.2).

2.4.2 Loop representation

The loop representation was already mentioned in Section 1.1.5 for any �nite graph. Here,

we give a more precise description for isoradial graphs.

Given a �nite graph G = (V ,E) and a random-cluster con�guration ω ∈ {0,1}E on it,

we connect midpoints of edges in E
�

by avoiding intersection with the edges given by ω. In

other words, we connect midpoints to separate vertices in V and V
∗

and thus create interface

between di�erent connected components. Figure 2.6 illustrates how this is done locally for

each rhombus. In consequence, we obtain the loop representation of the model.

θ∗

θ

sin(rθ) sin(rθ∗)

Figure 2.6 – The local lines connecting midpoints of edges of E
�

are drawn in red. On the

left, the primal edge is open and on the right, the dual one is open.
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2.4. Random-cluster model on isoradial graphs

We continue the calculation from (1.5). We have

ϕξ
G,1,q[ω] ∝

∏
e∈E

(
ye
ye∗

)ω(e)/2
· √ql

ξ (ω)

∝
∏
e∈E

(sin(rθ∗)
sin(rθ)

)ω(e)
· √ql

ξ (ω)

∝
∏
e∈E

sin(rθ∗)ω(e) sin(rθ)ω
∗(e∗) · √ql

ξ (ω),

where θ∗ = π −θ, as indicated in Figure 2.6. This is the loop representation of the random--

cluster model on the isoradial graph G.

We note that when we are on the quare lattice, we have θ = θ∗, which means that

ϕξ
G,1,q[ω] is proportional to

√
ql

ξ (ω)
.

2.4.3 Uniqueness of the measure for doubly-periodic isoradial graphs

Here, we will determine some conditions under which we can deduce the uniqueness of the

in�nite-volume random-cluster measure. From what precedes, without any further infor-

mation, we could have more than one in�nite-volume random-cluster measures. However,

using the same techniques as for the square lattice [Gri06], we can show that this measure

is actually unique, except for a set of parameters which is at most countable, for any dou-

bly-periodic isoradial graph.

Proposition 2.7. There exists a subset Dq of (0,+∞) at most countable such that if β < Dq,
then ϕ0

G,β,q = ϕ
1
G,β,q. Thus, the in�nite-volume random-cluster measure is unique for values of

β outside of a countable set.

Before showing the proposition, we need to introduce the notion of the free energy.

Proposition 2.5 provides us with two families of train tracks (sn)n∈Z and (tn)n∈Z which

form a grid. Due to the periodicity of G, there exist M,N ∈ N such that the region K =
[0,M)×[0,N ) is a fundamental domain of G. Moreover, the number of edges on its boundary

can be bounded |∂EK | 6 c(M +N ) for some c > 0.

For k ∈N, let Gk = [−2kM,2kM)× [−2kN,2kN ) and write Vk and Ek its vertex set and

edge set. Note that |∂Gk | 6 2k+1c(M +N ) and that Gk+1 contains four copies of Gk with

edges connecting them, thus |Ek+1| = 4|Ek |.
For k ∈N, ξ = 0,1 and β > 0, de�ne the following quantities

Zξk (β) := Z̃
ξ
Gk ,β,q

=
∑

ω∈{0,1}Ek

∏
e∈Ek

ye(β)
ω(e)qk

ξ (ω), (2.3)

f ξk (β) =
1
|Ek |

lnZξk (β). (2.4)

Lemma 2.8. For all β > 0, the limits f 0k (β) and f
1
k (β) exist and coincide when k→∞. Write

f (β) = limf 0k (β) = limf 1k (β). Moreoever, the function β 7→ f (β) is convex.

Proof. Cut Gk+1 into four disjoint copies of Gk , denoted by G1
k , G2

k , G3
k and G4

k and let F

be the set of edges connecting boundaries of di�erent Gik . We can bound Z0
k+1 from below

by taking into account only the con�gurations with all the edges in F closed. Given such
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2. Isoradial graphs and star-triangle transformation

a con�guration ω ∈ {0,1}Ek+1 , write k0,i(ω) for the number of clusters in Gik , then we have

k0(ω) = k0,1(ω) + k0,2(ω) + k0,3(ω) + k0,4(ω). This gives,

Z0
k+1(β) > Z

0
k (β)

4.

Hence, f 0k (β) is an increasing function in k, its limit exists in (−∞,∞]. Denote it by f (β).
Notice that we have the relation k0(ω) > k1(ω) > k0(ω) − |∂Gk |. Since |∂Gk |/ |Vk | → 0,

we deduce that limf 0k (β) = limf 1k (β) = f (β).

For ξ = 0,1, we are going to show that β 7→ f ξk (β) is a convex function for all k ∈ N.

Then, the statement of the lemma follows because the pointwise limit of convex functions

is still convex. Due to the continuity of the functions β 7→ f ξk (β) (polynomial in β), it is

su�cient to show that their derivatives are increasing in β.

We start by writing Zξk (β) di�erently,

Zξk (β) =
∑

ω∈{0,1}Ek
exp

[∑
e∈Ek

ω(e)πe(β)
]
qk

ξ (ω),

where πe(β) = lnye(β). Then, we compute the derivative of f ξk (β) with respect to β,

df ξk (β)

dβ
=

1
|Ek |

1

Zξk (β)

dZξk (β)

dβ

=
1
|Ek |

1

Zξk (β)

1
β

∑
ω∈{0,1}Ek

(∑
e∈Ek

ω(e)
)
· exp

[∑
e∈Ek

ω(e)πe(β)
]
qk

ξ (ω)

=
1
β

1
|Ek |

ϕξk,β
[∑
e∈Ek

ω(e)
]

=
1
β

1
|Ek |

∑
e∈Ek

ϕξk,β [e is open] > 0, (2.5)

where we use the fact that
dπe(β)

dβ = 1
β in the second line. Moreover, since β 7→ pe(β) is

increasing for all e ∈ Ek , from Proposition 1.7, the last term is also increasing in β. The proof

is complete.

For ξ = 0,1, de�ne

hξ(β) =
1
|E0|

∑
e∈E0

ϕξβ [e is open] .

Note that here we use the in�nite-volume measure ϕξβ to de�ne hξ(β). By translational

invariance of the measure by periods of G, we also have, for all k ∈N,

hξ(β) =
1
|Ek |

∑
e∈Ek

ϕξβ [e is open] .

The following proposition gives a criterion in terms of hξ for the uniqueness of the in-

�nite-volume measure.

Lemma 2.9. If h1(β) = h0(β), then ϕ1
β = ϕ

0
β and the in�nite-volume random-cluster measure

is unique.
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Proof. Knowing that for all k > 0, the measure ϕ1
k,β dominates ϕ0

k,β stochastically. There

exists a coupling Pk with marginals ω0 ∼ ϕ0
k,β , ω1 ∼ ϕ1

k,β and Pk(ω0 6 ω1) = 1. Take

the weak limits and we have a coupling P with marginals ω0 ∼ ϕ0
β and ω1 ∼ ϕ1

β such that

P(ω0 6ω1) = 1.

Then, for an increasing event A depending on a �nite set of edges, say F, and for k large

enough such that F ⊂ Ek , we have

0 6 ϕ1
β(A)−ϕ

0
β(A) = P(ω1 ∈ A,ω0 < A)

6
∑
e∈F

P(ω1(e) = 1 and ω0(e) = 0)

=
∑
e∈F

[P(ω1(e) = 1)−P(ω0(e) = 1)]

=
∑
e∈F

[
ϕ1
β[ω(e) = 1]−ϕ0

β[ω0(e) = 1]
]

6 |F||E0|[h1(β)− h0(β)] = 0.

Thus, we obtain the equalityϕ1
β(A) = ϕ

0
β(A) for all increasing eventsA depending on �nitely

many edges. From the construction of these two in�nite-volume measures as mentioned in

Section 1.1.8, we conclude that ϕ1
β and ϕ0

β are equal.

Now we are ready to prove Proposition 2.7.

Proof of Proposition 2.7. A standard argument says that a convex function is di�erentiable at

all but countably many points. Moreover, from the limit given by Lemma 2.8, at β > 0 where

f is di�erentiable, its derivative is given by the limit of (f ξk )
′(β), ξ = 0 or 1. From (2.5),

(f 1k )
′(β) =

1
β

1
|Ek |

∑
e∈Ek

ϕ1
k,β [e is open]

>
1
β

1
|Ek |

∑
e∈Ek

ϕ1
β [e is open] = h1(β)

>
1
β

1
|Ek |

∑
e∈Ek

ϕ0
β [e is open] = h0(β)

>
1
β

1
|Ek |

∑
e∈Ek

ϕ0
k,β [e is open] = (f 0k )

′(β).

This shows that at points of di�erentiability of f , since lim(f 1k )
′(β) = lim(f 0k )

′(β), we should

also have h1(β) = h0(β), which implies uniqueness of the in�nite-volume measure at β ac-

cording to Lemma 2.9. Moreover, the convexity of f implies that it is not di�erentiable at

most on a countable set.

2.5 Known results

It is shown in [GM14] that the percolation on isoradial graphs is critical for parameters de-

�ned in (2.2) at β = 1. The main idea is based on the star-triangle transformations which are

going to be introduced in the next section. In Section 3, we generalize this method to the

random-cluster model with cluster-weight q > 1 to show the criticality is also at β = 1.
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2. Isoradial graphs and star-triangle transformation

When it comes to critical behaviors, the interface of the Ising model on isoradial Do-

brushin domains converges to a conformally invariant limit as mentioned before for the case

of Z
2
. This result is given in [CS12, CDCH

+
14] and the authors use the discrete complex

analysis developped in [Ken02, CS11].

2.6 Star-triangle transformation

In this section, we introduce the main tool of the �rst part of the thesis: the star-triangle trans-
formation, also known as the Yang-Baxter relation. This transformation was �rst discovered

by Kennelly in 1899 in the context of electrical networks [Ken99]. Then, it was discovered

to be a key relation in di�erent models of statistical mechanics [Ons44, Bax82] indicative of

the integrability of the system.

2.6.1 Abstract star-triangle transformation

For a moment, we consider graphs as combinatorial objects without any embedding. Con-

sider the triangle graph 4 = (V ,E) and the star graph = (V ′ ,E′) shown in Figure 2.7; the

boundary vertices of both graphs are {A,B,C}. Write Ω = {0,1}E and Ω′ = {0,1}E′ for the

two spaces of percolation con�gurations associated to these two graphs. Additionally, con-

sider two triplets of parameters, p = (pa,pb,pc) ∈ (0,1)3 for the triangle andp′ = (p′a,p
′
b,p
′
c) ∈

(0,1)3 for the star, associated with the edges of the graph as indicated in Figure 2.7. For

boundary conditions ξ on {A,B,C}, denote by ϕξ4,p,q (and ϕξ,p′ ,q) the random-cluster mea-

sure on4 (and , respectively) with cluster-weight q and parameters p (and p′ , respectively).

For practical reasons write

yi =
pi

1− pi
and y′i =

p′i
1− p′i

.

pa

pbpc

A

B C

O

p′a

p′b p′c

A

B C

Figure 2.7 – Triangle and star graphs with parameters indicated on edges.

The two measures are related via the following relation.

Proposition 2.10 (Star-triangle transformation). Fix a cluster weight q > 1 and suppose the
following conditions hold:

yaybyc + yayb + ybyc + ycya = q, (2.6)

yiy
′
i = q, ∀i ∈ {a,b,c}. (2.7)

Then, for any boundary conditions ξ , the connections between the points A,B,C inside the
graphs 4 and have same law under ϕξ4,p,q and ϕ

ξ
,p′ ,q, respectively.

Remark 2.11. In light of (2.7), the relation (2.6) is equivalent to

y′ay
′
by
′
c − q(y′a + y′b + y

′
c) = q

2. (2.8)
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2.6. Star-triangle transformation

The proof of the proposition is a straightforward computation of the probabilities of the

di�erent possible connections between A, B and C in the two graphs.

Proof. The probabilities of the di�erent possible connections between A, B and C in 4 and

with di�erent boundary conditions are summarized in the following tables. For ease of

notation, the probabilities are given up to a multiplicative constant; the multiplicative con-

stant is the inverse of the sum of all the terms in each column. Di�erent tables correspond

to di�erent boundary conditions; each line to one connection event. We exclude symmetries

of boundary conditions. It is straightforward to check that the corresponding entries in the

two columns of each table are proportional, with ratio (right quantity divided by the left one)

q2/yaybyc each time.

{{A,B},C} In 4 In

all disconnected q q(q+ y′a + y
′
b + y

′
c)

A↔ B= C ycq y′ay
′
bq

B↔ C= A ya y′by
′
c

C↔ A= B yb y′cy
′
a

A↔ B↔ C yayb + ybyc + ycya + yaybyc y′ay
′
by
′
c

{A,B,C} In 4 In

all disconnected 1 q+ y′a + y
′
b + y

′
c

A↔ B= C yc y′ay
′
b

B↔ C= A ya y′by
′
c

C↔ A= B yb y′cy
′
a

A↔ B↔ C yayb + ybyc + ycya + yaybyc y′ay
′
by
′
c

{{A}, {B}, {C}} In 4 In

all disconnected q2 q2(y′a + y
′
b + y

′
c + q)

A↔ B= C ycq y′ay
′
bq

B↔ C= A yaq y′by
′
cq

C↔ A= B ybq y′cy
′
aq

A↔ B↔ C yayb + ybyc + ycya + yaybyc y′ay
′
by
′
c

Table 2.1 – Probabilities of di�erent connection events with di�erent boundary conditions.

In light of Proposition 2.10, the measures ϕξ4,p,q and ϕξ,p′ ,q may be coupled in a way that

preserves connections. For the sake of future applications, we do this via two random maps

T and S from {0,1} to {0,1}4, and conversely. These random mappings are described in

Figure 2.8; when the initial con�guration is such that the result is random, the choice of the

resulting con�guration is done independently of any other randomness.

Proposition 2.12 (Star-triangle coupling). Fix q > 1, boundary conditions ξ on {A,B,C} and
triplets p ∈ (0,1)3 and p′ ∈ (0,1)3 satisfying (2.6) and (2.7). Let ω and ω′ be con�gurations
chosen according to ϕξ4,p,q and ϕ

ξ
,p′ ,q, respectively. Then,

1. S(ω) has the same law as ω′ ,

2. T (ω′) has the same law as ω,
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2. Isoradial graphs and star-triangle transformation

and similarly for all pairs of edges

y′a
P ′

q

P ′
y′b
P ′

y′c
P ′

ybyc
P

yaybyc
P

ycya
P

yayb
P

and similarly for all single edges

S

S

T

T

T

S

Figure 2.8 – The random maps T and S . Open edges are represented by thick segments,

closed edges by dashed ones. In the �rst and last lines, the outcome is random: it is chosen

among four possibilities with probabilities indicated below. The normalizing constants are

P ′ = q+ y′a + y
′
b + y

′
c = y

′
ay
′
by
′
c/q and P = yaybyc + yayb + ybyc + ycya = q.

3. for x,y ∈ {A,B,C}, x 4, ω←−−→ y if and only if x
, S(ω)
←−−−−→ y,

4. for x,y ∈ {A,B,C}, x , ω′←−−→ y if and only if x
4, T (ω′)
←−−−−−→ y.

Proof. The points 3 and 4 are trivial by Figure 2.8. Points 1 and 2 follow by direct computation

from the construction of S and T , respectively, with the crucial remark that the randomness

in S and T is independent of that of ω and ω′ , respectively.

2.6.2 Star-triangle transformation on isoradial graph

Next, we study the star-triangle transformation for isoradial graphs. We will see that when

star-triangle transformations are applied to isoradial graphs with the random-cluster mea-

sure given by isoradiality when β = 1, what we get is exactly the random-cluster measure

on the resulting graph.

Proposition 2.13. Fix q > 1 and β = 1. Then, the random-cluster model is preserved under
star-triangle transformations in the following sense.

• For any triangle ABC contained in an isoradial graph, the parameters yAB, yBC and yCA
associated by (2.2) with the edges AB, BC and CA, respectively, satisfy (2.6). Moreover,
there exists a unique choice of point O such that, if the triangle ABC is replaced by the
star ABCO, the resulting graph is isoradial and the parameters associated with the edges
CO, AO, BO by (2.2) are related to yAB, yBC and yCA as in (2.7).

• For any star ABCO contained in an isoradial graph, the parameters yOC , yOA and yOB
associated by (2.2) with the edges CO, AO and BO, respectively, satisfy (2.6). Moreover,
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2.6. Star-triangle transformation

if the star ABCO is replaced by the triangleABC, the resulting graph is isoradial and the
parameters associated with the edges AB, BC, CA by (2.2) are related to yOC , yOA and
yOB as in (2.7).

Proof. We only give the proof of the �rst point; the second may be obtained by considering

the dual graph. Let ABC be a triangle contained in an isoradial graph G. Write a,b,c for the

angles subtended to the edges BC, AC, AB, respectively. Then, a+b+c = 2π. A straightfor-

ward trigonometric computation shows that then yaybyc + yayb + ybyc + ycya − q = 0.

Permute the three rhombi of G� corresponding to the edges AB, BC, CA as described in

Figure 2.9 and let O be their common point after permutation. Let G̃ be the graph obtained

from G by adding the vertex O and connecting it to A,B and C and removing the edges AB,

BC, CA. Since G̃ has a diamond graph (as depicted in Figure 2.9), it is isoradial. Moreover,

the angles subtended by the edges OA, OB and OC are π − a, π − b and π − c, respectively.

It follows from (2.2) that the parameters of the edgesOA,OB andOC are related to those of

the edges AB, BC and CA by (2.7).

A

B
C

b

a

c

A

B
C

π − b
π − a

π − c

O

Figure 2.9 – A local triangle subgraph with corresponding subtended angles a, b and c. Note

that a+ b+ c = 2π. The order of crossing of the three tracks involved is changed.

Triangles and stars of isoradial graphs correspond to hexagons formed of three rhombi

in the diamond graph. Thus, when three such rhombi are encountered in a diamond graph,

they may be permuted as in Figure 2.9 using a star-triangle transformation. We will call the

three rhombi the support of the star-triangle transformation.

Let ω be a con�guration on some isoradial graph G and σ a star-triangle transformation

that may be applied to G. When applying σ to G, the coupling of Proposition 2.12 yields a

con�guration that we will denote by σ (ω).
Consider an open path γ in ω. Then, de�ne σ (γ) the image of γ under σ to be the open

path of σ (ω) described as follows.

• If an endpoint of γ is adjacent to the support of σ , then we set σ (γ) to be γ plus the

additional possibly open edge if the latter has an endpoint on γ , which is given by the

�rst line of Figure 2.8.

• If γ does not cross (and is not adjacent to) the support of σ , we set σ (γ) = γ .

• Otherwise, γ intersects the support of σ in one of the ways depicted in the �rst two

lines of Figure 2.10. Then, we set σ (γ) to be identical to γ outside the support of σ .

And in the support of star-triangle transformation, since σ preserves connections, the

part of γ inside may be replaced by an open path as in the same �gure. Notice the

special case when γ ends in the centre of a star and the corresponding edge is lost

when applying σ (third line of Figure 2.10).
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2. Isoradial graphs and star-triangle transformation

or

or

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

transforms
to

transforms
to

transforms
to

Figure 2.10 – The e�ect of a star-triangle transformation on an open path. In the second line,

the second outcome is chosen only if the edge AB is closed. The fact that the result is always

an open path is guaranteed by the coupling that preserves connections. In the last case, the

open path may loose one edge.

2.7 Observable on isoradial graphs

2.7.1 Discrete complex analysis

A function F : C�→ C de�ned on the rhombi centers of the rhombic lattice G
� = (V �,E�)

is said to be s-holomorphic if for each pair of neighboring centers z1 and z2, we have the

following projection relation,

Proj[F(z1);`(e)] = Proj[F(z2);`(e)] (2.9)

where e = [wb] = [z1z2]∗ ∈ E�, b and w the closest primal and dual vertices to both z1 and

z2 and `(e) = [i(w − b)]−
1
2 . See Figure 2.11 for notations.

z1

z2

w

b

Figure 2.11 – Notations used to de�ne s-holomorphicity in (2.9).

In a rhombus, write b1,w1, b2 andw2 its four vertices indexed in counterclockwise order,

where b1 and b2 are primal, w1 and w2 are dual. Given a s-holomorphic function F de�ned

on C
�
, de�ne a function G on the edges of the rhombic lattice E

�
by

G(e) = Proj[F(z);ν(e)], (2.10)

where e = [wb] is a mid-edge and z the center of one of the two lozenges sharing e as commun

edge. The function G is well-de�ned due to the s-holomorphicity relation (2.9)

38



2.7. Observable on isoradial graphs

Conversely, a function G de�ned on mid-edges satisfying the two following properties

also gives rise to a s-holomorphic function on the rhombic lattice:

1. G(e) // ν(e) for all mid-edges e = [wb].
2. For any rhombus given by b1, w1, b2 and w2, we have G([b1w1]) + G([b2w2]) =
G([w1b2]) +G([w2b1]).

We simply set F(z) = G([b1w1]) +G([b2w2]) for all z ∈ C�, surrounded by vertices b1, w1,

b2 and w2. We also call such a function s-holomorphic (on mid-edges).

2.7.2 Observable on Dobrushin domains

An isoradial Dobrushin domain is the data (Ω�, a�,b�) where Ω� ⊂G
�

is a simply-connected

domain of G
�

containing

• inner rhombi z ∈ IntΩ�;
• boundary half-rhombi ζ ∈ ∂Ω�;
• two marked boundary edges [a�wa

�
b], [b

�
wb
�
b] ∈ E

�
with centers a� and b�,

such that the arc (with counterclockwise orientation) ∂ = [b�ba
�
b] contains only vertices in

V and the arc ∂∗ = [a�wb
�
w] contains only vertices in V

∗
. See Figure 2.12 for an example. A

con�guration of the random-cluster model on Ω� is an element ω ∈ {0,1}E(IntΩ�), which is

equivalent to choosing the primal or the dual connection in each of the rhombi of IntΩ�.
TheDobrushin boundary conditions onΩ� is the mixed boundary condition with wired on

∂ and free boundary condition on ∂∗. In other words, we connect primal vertices on the arc ∂
and dual vertices on the arc ∂∗. For q > 1 and β > 0, we write ϕDob

Ω�,β,q for the random-cluster

measure on Ω� with the Dobrushin boundary condition.

The loop representation of the random-cluster model on isoradial graphs was described

in Section 2.4.2. In the case or regular boundary condition such as wired or free boundary

condition, we only get loops separating connected components; whereas in the case of the

Dobrushin boundary condition, we get not only loops but also an extra interface going from

a to b. It separates the primal connected component connected to ∂ and the dual connected

component connected to ∂∗. We denote this interface by γ . See Figure 2.12 for an example.

For 1 6 q 6 4, we de�ne the parafermionic observable as follows. Given a mid-edge

e = [bw], with b primal and w dual, the parafermionic observable at e is de�ned by

F(e) := FΩ�,β,q(e) = ϕΩ�,β,q

[
exp(− iσW (a�, e))1e∈γ

]
, where σ =

2
π
arcsin

(√q
2

)
. (2.11)

In the previous de�nition, W (a�, e) denotes the winding of the interface γ going from a� to

e. Note that for di�erent con�gurations, this value di�ers by a multiple of 2π.

2.7.3 Behavior under star-triangle transformations in the Ising model

When star-triangle transformations are performed locally, the observable de�ned on mid-edges

is only modi�ed locally since the random-cluster measure is preserved (Proposition 2.13). In

particular, when q = 2, we are in the case of the FK-Ising model and the parafermionic ob-

servable given in (2.11) can be rewritten as

F(e) := FΩ�,β,q(e) = ϕΩ�,β,q

[
exp

(
− i
2
W (a�, e)

)
1e∈γ

]
, (2.12)

which is called fermionic observable because σ evaluates to
1
2 . The fermionic observable is

s-holomorphic [CS12] and actually, this can be translated into a local linear relation between
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2. Isoradial graphs and star-triangle transformation

a⋄b
a⋄wa⋄

b⋄w

b⋄b

b⋄

Figure 2.12 – A con�guration on a Dobrushin domain. Solid lines represent primal open

edges and dashed lines represent dual open edges. Loops separating di�erent clusters are

drawn in red and the interface separating the primal cluster connected to ∂ and the dual

cluster connected to ∂∗ is drawn in orange.

the observable before and after a local star-triangle transformation, independently of the

boundary condition.

To be more precise, let us consider the notations as in Figure 2.13. On the left, we have

the star graph ? and on the right, the triangle graph 4. Since the star-triangle transformation

preserves the random-cluster measure outside of this hexagon, the observable takes the same

values on the boundary of both ? and 4.

b1

b3

b2 w2

w3

w1

b1

b3

b2 w2

w3

w1

g1

g3

g2 h1

h3

h2

f1

f2

f3

f4

f5

f6

f1

f2

f3

f4

f5

f6

a

b

c

Figure 2.13 – A local star-triangle transformation with notations that we use in Proposi-

tions 2.14.

Proposition 2.14. Write G = (g1, g2, g3)T and H = (h1,h2,h3)T two column matrices con-
sisting of the values of the observable at the triangle mid-edges and the star mid-edges (cf. Fig-
ure 2.13). There exist two 3× 3 matrices P and Q such that

H = PG and G =QH.

Moreover, we have P =Q which are given by the following formula

P =Q =
1

sasbsc


sacbcc casbνc cascνb
cbsaνc sbccca cbscνa
ccsaνb ccsbνa sccacb

 (2.13)
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2.7. Observable on isoradial graphs

where c] = cos( ]2 ) and s] = cos( ]2 ) for ] ∈ {a,b,c}.

Proof. We apply Lemma 2.15. Write F = (f1, f2, f3, f4, f5, f6)T , then in the star graph ?, we

can write the vector F in terms of G; in the triangle graph 4, we can write F in terms of H .

These relations are given by the explicit relation F =DMG =D ′M ′H , where

D = i ·Diag(s−1a , s
−1
a , s

−1
b , s

−1
b , s

−1
c , s

−1
c ), D ′ = i ·Diag(s−1b , s

−1
c , s

−1
c , s

−1
a , s

−1
a , s

−1
b ),

M =



0 νa −ca
0 ca −νa
−cb 0 νb
−νb 0 cb
νc −cc 0
cc −νc 0


, M ′ =



−νb 0 cb
νc −cc 0
cc −νc 0
0 νa −ca
0 ca −νa
−cb 0 νb


.

Also let

N =
1
2


0 0 cb −νb νc −cc
νa −ca 0 0 cc −νc
ca −νa νb −cb 0 0

 .
We note that N · (−D2) ·M = I3, thus we have G =QH where Q = −NDD ′M ′ . A computa-

tion shows that Q is of the form (2.13). To conclude, we use the fact that Q is invertible and

is an involution.

Lemma 2.15. Let f be a s-holomorphic function de�ned on mid-edges. Given a rhombus whose
vertices are denoted by v1, v2, v3 and v4 (two are primal and two others are dual) in the coun-
terclockwise order with angle α between −−−−→v1v2 and −−−−→v1v4 . Let fi = f ([vi−1vi]) for i = 1,2,3,4
with v0 = v4. Then, for the both possible ways of choosing primal and dual vertices, we can
write f3 and f4 in terms of f1 and f2,

f3 =
i
sα

(ναf2 − cαf1) and f4 =
i
sα

(cαf2 − ναf1),

where cα = cos(α2 ), sα = sin(α2 ) and να = exp(i α2 ) = cα + isα .

v1

v3

v2

v4

f1

f2

f3

f4

α

Figure 2.14 – A rhombus

Proof. We just need to show one of the possible way of choosing primal and dual vertices. Say,

v1 and v3 are primal and v2 and v4 are dual as shown in Figure 2.14. Let f = f1+ f3 = f2+ f4
which is the corresponding value of the function f at the center of the rhombus. Write

θ = arg(i(v2 − v1)). Then, we have

f1 = Proj
[
f ,`([v1v4])

]
=
1
2
(f + f e− i(θ+α)),

f2 = Proj
[
f ,`([v1v2])

]
=
1
2
(f + f e− iθ).
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2. Isoradial graphs and star-triangle transformation

This gives a formula of f in terms of f1 and f2,

f =
i
sα

(ναf2 − ναf1).

Then, we use the fact that f3 = f − f1 and f4 = f − f2 to conclude.
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Chapter3

Universality of the random-cluster

model

3.1 Results

The square lattice embedded so that each face is a square of side-length

√
2 is an isoradial

graph. We will denote it abusively byZ
2

and call it the regular square lattice. The edge-weight

associated to each edge of Z
2

by (2.2) is

√
q

1+
√
q . This was shown in [BD12] to be the critical

parameter for the random-cluster model on the square lattice. Moreover, the phase transition

of the model was shown to be continuous when q ∈ [1,4] [DCST17] and discontinuous when

q > 4 [DGH
+

16]. The following two theorems generalise these results to periodic isoradial

graphs.

Theorem 3.1. Fix a doubly-periodic isoradial graph G and 1 6 q 6 4. Then,

• ϕ1
G,1,q[0↔∞] = 0 and ϕ0

G,1,q = ϕ
1
G,1,q;

• there exist a,b > 0 such that for all n > 1,

n−a 6 ϕ0
G,1,q

[
0↔ ∂Bn

]
6 n−b;

• for any ρ > 0, there exists c = c(ρ) > 0 such that for all n > 1,

ϕ0
R,1,q

[
Ch(ρn,n)

]
> c,

where R = [−(ρ+1)n, (ρ+1)n]× [−2n,2n] and Ch(ρn,n) is the event that there exists a
path in ω∩ [−ρn,ρn]× [−n,n] from {−ρn} × [−n,n] to {ρn} × [−n,n].

The last property is called the strong RSW property (or simply RSW property) and may be

extended as follows: for any boundary conditions ξ ,

c 6 ϕξR,1,q
[
Ch(ρn,n)

]
6 1− c, (3.1)

for any n > 1 and some constant c > 0 depending only on ρ. In words, crossing probabilities

remain bounded away from 0 and 1 uniformly in boundary conditions and in the size of the

box (provided the aspect ratio is kept constant). For this reason, in some works (e.g. [GM14])

the denomination box crossing property is used.

The strong RSW property was known for Bernoulli percolation on the regular square

lattice from the works of Russo and Seymour and Welsh [Rus78, SW78], hence the name. The

43



3. Universality of the random-cluster model

term strong refers to the uniformity in boundary conditions; weaker versions were developed

in [BD12] for the square lattice. Hereafter, we say the model has the strong RSW property

if (3.1) is satis�ed.

The strong RSW property is indicative of a continuous phase transition and has numerous

applications in describing the critical phase. In particular, it implies the �rst two points of

Theorem 3.1. It is also instrumental in the proofs of mixing properties and the existence of

certain critical exponents and subsequential scaling limits of interfaces. We refer to [DCST17]

for details.

Theorem 3.2. Fix a doubly-periodic isoradial graph G and q > 4. Then,

• ϕ1
G,1,q[0↔∞] > 0;

• there exists c > 0 such that for all n > 1, ϕ0
G,1,q[0↔ ∂Bn] 6 exp(−cn).

Note that the above result is also of interest for regular graphs such as the triangular

and hexagonal lattices. Indeed, the transfer matrix techniques developed in [DGH
+

16] are

speci�c to the square lattice and do not easily extend to the triangular and hexagonal lattices.

The strategy of the proof for Theorems 3.1 and 3.2 is the same as in [GM14]. There,

Theorem 3.1 was proved for q = 1 (Bernoulli percolation). The authors explained how to

transfer the RSW property from the regular square lattice model to more general isoradial

graphs by modifying the lattice step by step. The main tool used for the transfer is the

star-triangle transformation.

In this article, we will follow the same strategy, with two additional di�culties:

• The model has long-range dependencies, and one must proceed with care when han-

dling boundary conditions.

• For q 6 4, the RSW property is indeed satis�ed for the regular square lattice (this is the

result of [DCST17]), and may be transferred to other isoradial graphs. This is not the

case for q > 4, where a di�erent property needs to be transported, and some tedious

new di�culties arise.

The results above may be extended to isoradial graphs which are not periodic but satisfy

the so-called bounded angles property and an additional technical assumption termed the

square-grid property in [GM14]. We will not discuss this generalisation here and simply stick

to the case of doubly-periodic graphs. Interested readers may consult [GM14] for the exact

conditions required for G; the proofs below adapt readily.

A direct corollary of the previous two theorems is that isoradial random-cluster models

are critical for β = 1. This was already proved for q > 4 in [BDCS15] using di�erent tools.

Corollary 3.3. Fix G a doubly-periodic isoradial graph and q > 1. Then, for any β , 1, one
has ϕ1

G,β,q = ϕ
0
G,β,q and

• when β < 1, there exists cβ > 0 such that for any x,y ∈ V ,

ϕ1
G,β,q[x↔ y] 6 exp(−cβ‖x − y‖);

• when β > 1, ϕ0
G,β,q[x↔∞] > 0 for any x ∈ V .

For 1 6 q 6 4, arm exponents at the critical point β = 1 are believed to exist and to

be universal (that is they depend on q and the dimension, but not on the structure of the

underlying graph). Below we de�ne the arm events and e�ectively state the universality of

the exponents, but do not claim their existence.
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3.2. Switching between isoradial graphs

Fix k ∈ {1} ∪ 2N. For N > n, de�ne the k-arm event Ak(n,N ) to be the event that there

exists k disjoint paths P1, . . . ,Pk in counterclockwise order, contained in [−N,N ]2 \ (−n,n)2,

connecting ∂[−n,n]2 to ∂[−N,N ]2, with P1,P3, . . . contained in ω and P2,P4, . . . contained

in ω∗. Note that this event could be void if n is too small compared to k; we will always

assume n is large enough to avoid such degenerate situations.

For continuous phase transitions (that is for q ∈ [1,4]) it is expected that,

ϕ0
R,1,q[Ak(n,N )] =

( n
N

)αk+o(1)
,

for some αk > 0 called the k-arm exponent. The RSW theory provides such polynomial upper

and lower bounds, but the exponents do not match.

The one-arm exponent of the model describes the probability for the cluster of a given

point to have large radius under the critical measure; the four-arm exponent is related to the

probability for an edge to be pivotal for connection events.

Theorem 3.4 (Universality of arm exponents). Fix G a doubly-periodic isoradial graph and
1 6 q 6 4. Then, for any k ∈ {1} ∪ 2N, there exists a constant c > 0 such that, for all N > n
large enough,

cϕ0
Z

2,1,q[Ak(n,N )] 6 ϕ0
G,1,q[Ak(n,N )] 6 c−1ϕ0

Z
2,1,q[Ak(n,N )].

Section 2.6 contains background on the star-triangle transformation and how it acts on

isoradial graphs. It also sets up the strategy for gradually transforming the regular square

lattice into general isoradial graphs. This is done in two stages: �rst the regular square lattice

is transformed into general isoradial square lattices, then into bi-periodic isoradial graphs.

This two-stage process is repeated in each of the following two sections.

The proofs of Theorems 3.1 and 3.4 are contained in Section 3.3, while that of Theorem 3.2

in Section 3.4. The reason for this partition is that the tools in the case 1 6 q 6 4 and q > 4
are fairly di�erent. Chapter 4 contains the adaptation to the quantum case (Theorem 4.1).

Several standard computations involving the random-cluster model and the RSW tech-

nology are necessary. Details are given in appendixes.

3.2 Switching between isoradial graphs

As explained in the introduction, the strategy of the proof is to transform the regularly

embedded square lattice into arbitrary doubly-periodic isoradial graphs using star-triangle

transformations. This will enable us to transfer estimates on connection probabilities from

the former to the latter. Below, we explain the several steps of the transformation.

3.2.1 From regular square lattice to isoradial square lattice

In this section we recall the de�nition of isoradial embeddings of the square lattice from

Section 2.2. As described in [GM14], a procedure based on track exchanges transforms one

isoradial embedding of the square lattice into a di�erent one. In addition to [GM14], the e�ect

of boundary conditions needs to be taken into account; a construction called convexi�cation
is therefore required.

Isoradial embeddings of the square lattice may be encoded by two doubly-in�nite se-

quences of angles. Let α = (αn)n∈Z and β = (βn)n∈Z be two sequences of angles in [0,π)
such that Equation 2.1 is satis�ed. Then, de�ne Gα,β to be the isoradial embedding of the
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3. Universality of the random-cluster model

square lattice with vertical train tracks (sn)n∈Z with transverse angles (αn)n∈Z and horizon-

tal train tracks (tn)n∈Z with transverse angles (βn)n∈Z. Condition (2.1) ensures that Gα,β
satis�es the bounded-angles property for ε = inf{βn −αm,αn − βm +π :m,n ∈Z} > 0.

In the following, we mainly consider doubly-periodic isoradial graphs, hence periodic

sequences (αn)n∈Z and (βn)n∈Z. The bounded-angles property is then automatically ensured

if it is satis�ed for a period of (αn) and (βn).
The same notation may be used to denote “rectangular” �nite subgraphs of isoradial

square lattices. Indeed, for �nite sequences α = (αn)M−6n6M+
and β = (βn)N−6n6N+

, de�ne

Gα,β to be a (�nite) isoradial square lattice withM+−M−+1 vertical tracks andN+−N−+1
horizontal tracks. We will think of this graph as part of an in�nite isoradial graph, thus we

call the right boundary ofGα,β the vertices to the right of sM+
, the left boundary those to the

left of sM− , the top boundary the vertices above tN+
and the bottom boundary those below

tN− . The term rectangular refers to the diamond graph rather than to Gα,β ; the boundary

denominations are also used for G�α,β .

The regular square lattice is the embedding corresponding to sequences βn =
π
2 and αn =

0 for all n ∈Z.

Track exchange Let us start by describing a simple but essential operation composed of

star-triangle transformations, which we call track exchange. In the language of transfer ma-

trices, this amounts to that the transfer matrices associated with two adjacent rows commute

with each other, which is the usual formulation of the Yang-Baxter transformation.

Let G be a �nite rectangular subgraph of an isoradial square lattice and t and t′ be two

parallel adjacent horizontal train tracks. Suppose that we want to switch their positions

using star-triangle transformations. That is, we would like to perform a series of star-triangle

transformations that changes the graph G into an identical graph, with the exception of

the train tracks t and t′ that are exchanged (or equivalently that their transverse angles are

exchanged). We will suppose here that the transverse angles of t and t′ are distinct, otherwise

the operation is trivial.

Since t and t′ do not intersect, no star-triangle transformation may be applied to them.

Suppose however thatG contains one additional rhombus (gray in Figure 3.1) at either the left

or right end of t and t′ that corresponds to the intersection of these two tracks. (Depending

on the transverse angles of the tracks, there is only one possible position for this rhombus.)

Then, a series of star-triangle transformations may be performed as in Figure 3.1. In e�ect,

these transformations “slide” the gray rhombus from one end of the tracks to the other, and

exchange the two tracks in the process.

t

t′
t

t′

Figure 3.1 – We move the gray rhombus from the right to the left by a sequence of star-triangle

transformation. Observe that these transformations only a�ect the tracks t and t′ , and that

their ultimate e�ect is to exchange them.

As seen in Section 2.6.2, each star-triangle transformation of an isoradial graph preserves

the random-cluster measure and connection properties. Thus, the procedure above, which
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3.2. Switching between isoradial graphs

we call a track exchange, allows us to deduce connection properties of the resulting graph

from those of the initial graph.

In [GM14], the gray rhombus was added before exchangin the tracks and removed after-

wards. Thus, the track exchange could be perceived as a measure- and connection-preserving

transformation between isoradial square lattices. By repeating such track exchanges, blocks

of tracks of a square lattice were exchanged, and RSW-type estimates were transported from

one block to another.

In the present context, adding a rhombus (and hence an edge) to a graph a�ects the

random-cluster measure of the entire graph. We therefore prefer to “prepare” the graph by

adding all necessary gray rhombi for all the track exchanges to be performed at once. The

operation is called the convexi�cation of a �nite part of a square lattice.

Convexi�cation Consider a �nite rectangular portion G = Gα,β of an isoradial square lat-

tice, with α and β two �nite sequences of angles. Suppose that β = (βn)06n6N for some

N > 0. We call the vertices below t0 (in the present case the bottom boundary) the base level
of G.

We say that G̃ is a convexi�cation of G = Gα,β if

• G is a subgraph of G̃ and G̃ has no other tracks than those of G;

• the top and bottom boundary of G� are also boundaries of G̃�;

• as we follow the boundary of G̃� in counterclockwise direction, the segment between

the top and bottom boundaries (which we naturally call the left boundary) and that

between the bottom and top boundaries (called the right boundary) are convex.

The second condition may be read as follows: in G̃, the vertical tracks (sn) only intersect

the horizontal tracks (tn); however, additionally to G, G̃ may contain intersections between

horizontal tracks.

The third condition is equivalent to asking that all horizontal tracks of G with distinct

transverse angles intersect in G̃. Indeed, the left and right boundaries of G̃� are formed of

the transverse segments of the horizontal tracks of G, each track contributing once to each

segment of the boundary. That both the left and right boundaries of G̃� are convex means

that the transverse segments of two tracks ti , tj with distinct transverse angles appear in

alternative order along the boundary of G̃�, when oriented in counterclockwise direction.

Hence, they necessarily intersect in G̃. The converse may also be easily checked.

Figure 3.2 – An isoradial square lattice and a convexi�cation of it. Only the diamond graph

is depicted.

Below, we will sometimes call G the square lattice block of G̃; G̃ \G is naturally split into

a left and a right part.
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3. Universality of the random-cluster model

The following two simple lemmas will come in useful when performing track exchanges.

Lemma 3.5. For any adjacent horizontal tracks t, t′ of G with distinct transverse angles, there
exists a convexi�cation G̃ of G in which the rhombus corresponding to the intersection of t and
t′ is adjacent to G�.

Lemma 3.6. For any two convexi�cations G̃ and G̃′ ofG, there exists a sequence of star-triangle
transformations that transforms G̃ into G̃′ and that does not a�ect any rhombus of G�.

Proof of Lemma 3.5. We start by describing an algorithm that constructs a convexi�cation of

G. Let 〈,〉 be the scalar product on R
2
.

1. Set H = G, which is the graph to be convexi�ed.

2. Orient the edges on the right boundary ofH� above the base level upwards and denote

the corresponding unit vectors by
−→e0 , . . . , −−→eN .

3. If there exists j such that 〈−−−→ej+1 − −→ej , (1,0)〉 > 0, �x such a value j and proceed to Step

4. Otherwise, go to the Step 5.

4. Add a rhombus toH� whose boundary is given by
−→ej , −−−→ej+1 ,−−→ej and −−−−→ej+1 to the right

of the edges
−→ej ,
−−−→ej+1 . Set H to be the graph thus obtained, and go back to Step 2.

5. Proceed the same for the left boundary of G.

Each rhombus added in Step 4 corresponds to an intersection of two horizontal tracks of G.

As such, only a �nite number of such rhombi may be added, which shows that the algorithm

necessarily terminates. Moreover, it is obvious to see that when it terminates, the resulting

graph, which we denote by G̃, is indeed a convexi�cation of G.

The construction of G̃ does not ensure that the successive tracks t and t′ intersect in G̃
adjacently to G. However, we may choose j corresponding to the index of t the �rst time the

algorithm arrives at Step 3 for either the right or left boundary. If such choice is made, the

intersection of the tracks t and t′ in the resulting graph G̃ will be adjacent to G.

Proof of Lemma 3.6. By symmetry, it is su�cient to show that there exists a sequence of star--

triangle transformations that transforms the right part (call it Gr ) of G̃\G into the right part

of G̃′\G (which we call G′r ) without a�ecting any rhombus of G�. Notice that G�r and (G′r )
�

have the same boundary. Indeed, the left boundaries of G�r and (G′r )
�

coincide both with the

right boundary of G�. Their right boundaries are both formed of the segments of length 1,

with angles β, arranged in increasing order. Then, [Ken93, Thm. 5] ensures the existence of

the transformations as required.

Consider a �nite rectangular regionG of an isoradial square lattice and consider any of its

convexi�cation G̃. Using the previous two lemmas, one can switch the transverse angles of

any two neighbouring horizontal train tracks by a sequence of star-triangle transformations.

A more precise statement is given below.

Corollary 3.7. LetG = Gα,β be as above and let t and t′ be two adjacent horizontal train tracks
with distinct transverse angles. Then, for any convexi�cation G̃ of G, there exists a sequence of
star-triangle transformations σ1, . . . ,σk that may be applied to G̃ with the following properties:

• there exists 0 6 ` < k such that the transformations σ1, . . . ,σ` only a�ect either the right
or the left side of G̃ \G;

• in (σ` ◦ · · · ◦ σ1)(G̃), the tracks t and t′ intersect at a rhombus adjacent to G;
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3.2. Switching between isoradial graphs

• the transformations σ`+1, . . . ,σk applied to (σ` ◦ · · · ◦σ1)(G̃) are ”sliding” the intersection
of t and t′ from one side of G to the other, as described in Figure 3.1.

Write Σt,t′ = σk ◦ · · · ◦ σ1. If τ denotes the transposition of the indices of tracks t and t′ , then
Σt,t′ (G) is a convexi�cation of Gα,τβ .

Proof. Suppose for simplicity that the tracks t and t′ intersect in G̃ to the right of G (which

is to say that the transverse angle of the lower track is greater than that of the above).

Write G̃′ for a convexi�cation of G in which the tracks t, t′ intersect in a rhombus ad-

jacent to G� (as given by Lemma 3.5). It is obvious that the left side of G̃′ may be chosen

identical to that of G̃, and we will work under this assumption.

Let σ1, . . . ,σ` be a sequence of star-triangle transformations as that given by Lemma 3.6

that a�ects only the right side of G̃ and that transforms G̃ into G̃′ . Let σ`+1, . . . ,σk be the

series of star-triangle transformations that slides the intersection of t and t′ from right to left

of G, as in Figure 3.1. Then, σ1, . . . ,σk obviously satis�es the conditions above.

In the following, we will apply repeated line exchanges Σti ,tj to a convexi�cation G̃ of

some �nite portion of a square lattice. Thus, we will implicitly assume Σti ,tj is a series of

star-triangle transformations as in the lemma above, adapted to the convexi�cation to which

it is applied. When ti and tj have same transverse angles, we will simply write Σti ,tj for

the empty sequence of transformations. We note that tracks are indexed with respect to the

starting graph and are not reindexed when track exchanges are applied. This is the reason

why neighboring tracks do not necessarily have indices which di�er by 1; thus, we call them

ti and tj with the only constraint i , j .
All of the above may be summarised as follows. A convexi�cation of G provides all the

horizontal track intersections necessary to exchange any two horizontal tracks (that is the

gray rhombus in Figure 3.1 for any pair of horizontal tracks). In order to exchange two ad-

jacent horizontal tracks ti and tj , the sequence of transformations Σti ,tj starts from bringing

the intersection of ti and tj next toG (this is done through star-triangle transformations that

do not a�ect G), then slides it through ti and tj .
In certain arguments below, it will be more convenient to work with a “double” strip of

square latticeG = Gα,β whereα and β are �nite sequences of angles and β = (βn)−N6n6N for

some N > 0. We will then separately convexify the upper half Gα,(β0,...,βN ) and Gα,(β−N ,...,β−1)
(as in Figure 3.4). Track exchanges will only be between tracks above t0 or strictly below t0;

the base (that is the vertices between t−1 and t0) will never be a�ected by track exchanges.

Construction of the mixed graph by gluing Consider two isoradial square lattices with

same sequence α of transverse angles for the vertical tracks. Write G
(1) = Gα,β(1) and G

(2) =
Gα,β(2) . Additionally, suppose that they both belong to G(ε) for some ε > 0.

Fix integers N1,N2,M ∈N. We create an auxiliary graph G
mix

, called the mixed graph,

by superimposing strips of G
(1)

and G
(2)

of width 2M + 1, then convexifying the result.

More precisely, let β̃ = (β(1)0 , . . . ,β
(1)
N1
,β

(2)
0 , . . . ,β

(2)
N2

) and α̃ = (αn)−M6n6M . De�ne G
mix

to be

a convexi�cation of Gα̃,β̃ .

Write G(1) = G
α̃,β̃

(1) and G(2) = G
α̃,β̃

(2) , where

β̃
(1)

= (β(1)0 , . . . ,β
(1)
N1

) and β̃
(2)

= (β(2)0 , . . . ,β
(2)
N2

).

These are both subgraphs of G
mix

; we call them the blocks of G
(1)

and G
(2)

inside G
mix

.

Next, we aim to switch these two blocks of G
mix

using star-triangle transformations.

That is, we aim to transform G
mix

into a graph G′
mix

obtained as above, with the sequence
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β̃ replaced by (β(2)0 , . . . ,β
(2)
N2
,β

(1)
0 , . . . ,β

(1)
N1

). There are two ways of doing this, each having its

own advantages.

One way is to use track exchanges to send the tracks tN1+1, . . . , tN1+N2+1 of G
mix

all the

way down, one by one. Using the notation of the previous section, this corresponds to the

following sequence of track exchanges

Σ↓ = Σ
↓
N1+N2+1

◦ · · · ◦Σ↓N1+1
,

where Σ
↓
k = Σt0,tk ◦· · ·◦ΣtN1 ,tk is a sequence of star-triangle transformations sending the track

tk to the bottom of the blockG(1)
inG

mix
. This will be useful in the proof of Proposition 3.15,

where we need to control the upward drift of an open path.

The other is to push the tracks tN1
, . . . , t0 all the way up, one by one. It formally reads

Σ↑ = Σ
↑
0 ◦ · · · ◦Σ

↑
N1
,

where Σ
↑
k = Σtk ,tN1+N2+1

◦ · · · ◦Σtk ,tN1+1 is a sequence of star-triangle transformations sending

the track tk to the top of the block G(2)
in G

mix
. This will be used to study the downward

drift of an open path in Proposition 3.16.

One may easily check that the sequences Σ↓ and Σ↑ may be applied to G
mix

. That is

that whenever a track exchange Σt,t′ is applied, the previous track exchanges are such that

the tracks t and t′ are adjacent. The two sequences of track exchanges are illustrated in

Figure 3.3.

G(1)

G(2)

N2

N1 + 1 Σ↓
N1+1

ΣtN1
,tN1+1

Σt0,tN1+1

...

 G(1)

G(2)

N2

N1 + 1

Σ↑
N1



ΣtN1
,tN1+N2

ΣtN1
,tN1+1

...

...

Figure 3.3 – The graph G
mix

is obtained by superimposing G(1)
and G(2)

then convexifying

the result (in gray). Left: The sequence Σ
↓
N1+1

moves the track tN1+1 below the block G(1)
.

Right: The sequence Σ
↑
N1

moves the track tN1
above the block G(2)

.

The resulting graphs Σ↑(G
mix

) and Σ↓(G
mix

) both contain the desired block of isoradial

square lattice, but their convexi�cation may di�er. However, by Lemma 3.6, we may �x

one convexi�cation G′
mix

of the resulting square lattice block and add star-triangle trans-

formations at the end of both Σ↑ and Σ↓ that only a�ect the convexi�cation and such that

Σ↑(G
mix

) = Σ↓(G
mix

) = G′
mix

. Henceforth, we will always assume that both Σ↑ and Σ↓ con-

tain these star-triangle transformations.

Since each star-triangle transformation preserves the random-cluster measure, we have

Σ↑ϕξG
mix

= Σ↓ϕξG
mix

= ϕξG′
mix

for all boundary conditions ξ . Above, ϕξG
mix

and ϕξG′
mix

denote the random-cluster measures

with β = 1 and boundary conditions ξ on G
mix

and G′
mix

respectively. The action of Σ↑ (and
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Σ↓) should be understood as follows. For a con�guration ω chosen according to ϕξG
mix

, the

sequence Σ↑ of star-triangle transformations is applied toω with the resulting con�guration

sampled as described in Figure 2.8, independently for each star-triangle transformation. Then

the �nal con�guration follows ϕξG′
mix

. The same holds for Σ↓.

The reader may note that we do not claim that Σ↑(ω) and Σ↓(ω) have the same law for

any �xed con�guration ω on G
mix

; this is actually not the case in general.

G(1)

G(1)

G(2)

G(2)

N2 + 1

N1 + 1

N1

N2

M

t0

t−1

M

G(1)

G(1)

G(2)

G(2)

N1

N2

N2 + 1

N1 + 1

Figure 3.4 – Left: The graph G
mix

constructed in both the upper and lower half plane. The

convexi�cation is drawn in gray Right: By exchanging tracks, the relative positions of G(1)

and G(2)
are switched, the resulting graph is Σ↑(G

mix
) = Σ↓(G

mix
) = G′

mix
. Note that there is

a slight assymetry in the upper-half and the lower-half planes.

In certain parts of the proofs that follow, we construct a mixture as described above, in

both the upper and lower half-plane, as depicted in Figure 3.4. That is, we set

β̃ = (β(2)−N2
, . . . ,β

(2)
−1 ,β

(1)
−N1

, . . . ,β
(1)
N1
,β

(2)
0 , . . . ,β

(2)
N2

)

and α̃ = (αn)−M6n6M and de�ne the base as the vertices of G�
α̃,β̃

between t−1 and t0. Then,

set G
mix

to be the separate convexi�cation of the portions of Gα̃,β̃ above and below the base.

We will call G
mix

the symmetric version of the mixed graph.

The sequences Σ↑ and Σ↓ of track exchanges are de�ned in this case by performing the

procedure described above separately on both sides of the base. For instance, Σ↑ is the se-

quence of star-triangle transformations that pushes tN1
all the way to the top and t−N1

all the

way to the bottom, then tN1−1 and t−N1+1 all the way to the top and bottom respectively, etc.

Observe that the blocks below the base, and therefore the number of line exchanges applied,

di�er by one from those above due to the track t0.

Local behaviour of an open path In the proofs of the coming sections we will utilize the

line exchanges de�ned above to transport certain connection estimates from G
(1)

to G
(2)

.

To that end, we will need to control the e�ect that the line exchanges have on open paths.

Recall that the coupling of Figure 2.8 is designed to preserve connections. As such, any open

path before a star-triangle transformation has a corresponding open path in the resulting

con�guration.
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Let G
mix

be a mixed graph and t, t′ be two adjacent horizontal tracks. Let ω be a con-

�guration on G
mix

and γ be a simple path, open in ω, and contained in the square lattice

block of G
mix

. Then, the intersection of γ with the tracks t and t′ may be split into disjoint

segments of two edges (or of one edge if the endpoint of γ is on the line between t and t′).
The e�ect of the transformations on γ may therefore be understood simply by studying how

each individual segment is a�ected. Each segment is actually only a�ected by at most three

consecutive star-triangle transformations of Σt,t′ , and the e�ect of these is summarized in

Figure 3.5.

A very similar analysis appears in [GM14, Sec. 5.3]. The only di�erence between Fig-

ure 3.5 and [GM14, Fig. 5.5.] is in the probabilities of secondary outcomes, which are adapted

to the random-cluster model. The exact values will be relevant in Chapter 4, when studying

the quantum model.

Principal
outcome

Secondary
outcome

Probability
of secondary
outcome

yπ−θ1
yθ2

q

yπ−θ1
yπ−θ2+θ1

q

yθ2yπ−θ2+θ1

q

yθ2yπ−θ2+θ1

q

yπ−θ1
yπ−θ2+θ1

q

Initial
configuration

θ1

θ2

θ1

θ2

θ1

θ2

θ1

θ2

θ1

θ2

Figure 3.5 – Path transformations. The left column exhausts all the possible intersections

of γ (in thick red lines) with t and t′ . The second column depicts the “principal” outcome,

which arises with probability 1 when there is no secondary outcome or when the dotted red

edge in the initial diagram is closed. Otherwise, the resulting con�guration is random: either

the principal or the secondary outcome (third column) appear, the latter with the probability

given in the last column. Dashed edges in the secondary outcome are closed. The randomness

comes from a star-triangle transformation, and hence is independent of any other random-

ness.

Finally, if an endpoint of γ lies between the two adjacent horizontal tracks t and t′ , a

special segment of length 1 appears in the intersection of γ with t and t′ . This segment obeys

separate rules; in particular it may be contracted to a single point, as shown in Figure 3.6.
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Initial Resulting ResultingInitial

Figure 3.6 – If an endpoint of a path lies between two tracks, the corresponding edge is

sometimes contracted to a single point.

3.2.2 From isoradial square lattices to general graphs

Let G be an isoradial graph. We call a grid of G two bi-in�nite families of tracks (sn)n∈Z and

(tn)n∈Z of G with the following properties.

• The tracks of each family do not intersect each other.

• All tracks of G not in (tn)n∈Z intersect all those of (tn)n∈Z.

• All tracks of G not in (sn)n∈Z intersect all those of (sn)n∈Z.

• The intersections of (sn)n∈Z with t0 appear in order along t0 (according to some arbi-

trary orientation of t0) and the same holds for the intersections of (tn)n∈Z with s0.

The tracks (sn)n∈Z and (tn)n∈Z are called vertical and horizontal respectively. The vertices of

G
�

below and adjacent to t0 are called the base of G.

In our setting, the existence of a grid is guaranteed by the following lemma.

Lemma 3.8. Let G be an isoradial graph. Then,

• if G is doubly-periodic, it contains a grid;

• G is an embedding of the square lattice if and only if any of its grid contains all its tracks.

It may be worth mentioning that if G has a grid (sn)n∈Z and (tn)n∈Z and σ1, . . . ,σK are

star-triangle transformations that may be applied to G, then the tracks (sn)n∈Z and (tn)n∈Z
of (σK ◦· · ·◦σ1)(G) also form a grid of the transformed graph (σK ◦· · ·◦σ1)(G). Observe also

that generally, grids are not unique.

Proof. Let G be a doubly-periodic isoradial graph, invariant under the translation by two

linearly independent vectors τ1, τ2 ∈R2
. First notice that, by the periodicity of G, each track

t of G is also invariant under some translation aτ1+bτ2 for a certain pair (a,b) ∈Z2\{(0,0)}.
Thus, t stays within bounded distance of the line of direction aτ1+bτ2, which we now call the

asymptotic direction of t. Call two tracks parallel if they have the same asymptotic direction.

By the periodicity of G, the set of all asymptotic directions of tracks of G is �nite. Thus,

the tracks of G may be split into a �nite number of sets of parallel tracks. It is immediate that

two tracks which are not parallel intersect. Conversely, if two parallel tracks intersect, they

must do so in�nitely many times, due to periodicity. This is impossible, since two tracks can

intersect at most once. In conclusion, tracks intersect if and only if they are not parallel.

Let t0 and s0 be two intersecting tracks of G. Orient each of them in some arbitrary direc-

tion. Write . . . , t−1, t0, t1, . . . for the tracks parallel to t0, ordered by their intersections with

s0. Similarly, let . . . , s−1, s0, s1, . . . be the tracks parallel to s0, in the order of their intersections

with t0.
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3. Universality of the random-cluster model

Then, the two families (sn)n∈Z and (tn)n∈Z de�ned above form a grid for G: the tracks of

each family do not intersect each other since they are parallel, but intersect all other tracks,

since these have distinct asymptotic directions.

The second point of the lemma is straightforward.

In an isoradial graph G with grid (sn)n∈Z and (tn)n∈Z, write R(i, j;k,`) for the region

enclosed by si , sj , tk and t` , including the four boundary tracks. We say that R(i, j;k,`) has

a square lattice structure if it is the subgraph of some isoradial square lattice. This will be

applied to local modi�cations of bi-periodic graphs, thus inside R(i, j;k,`) there may exist

tracks not belonging to (sn)i6n6j which do not intersect any of the tracks (sn)i6n6j . Such

tracks would be vertical in a square lattice containing R(i, j;k,`), but are not vertical in G.

See the right-hand side of Figure 3.7 for an illustration.

t0

t1

t2

s0 s1 s2 s3 s4s−1

s̃0 s̃2 s̃4 s̃6 s̃8s̃−2 s̃1 s̃3 s̃5 s̃7s̃−1

t0

t1

t2

s0 s1 s2 s3 s4s−1

s̃0 s̃2 s̃4 s̃6 s̃8s̃−2 s̃1 s̃3 s̃5 s̃7s̃−1

Figure 3.7 – Left: The train tracks of a portion of a doubly-periodic isoradial graph G. A

grid of G is given by horizontal tracks (sn) and vertical tracks (tn). We denote by (̃sn) its

non-horizontal tracks. We want to make the region R(0,2;0;2) have a square lattice structure

by removing all the black points using star-triangle transformations. Right: The black points

are removed (from the top) from the region R(0,2;0;2), making a square structure appear

inside. This region contains tracks s̃1 and s̃3 which would be vertical in a square lattice

containing R(0,2;0,2) but are not vertical in the original graph G on the left.

In the second stage of our transformation from the regular square lattice to arbitrary

doubly-periodic isoradial graphs, we use star-triangle transformations to transfer crossing

estimates from isoradial square lattices to periodic graphs. To that end, given a doubly-pe-

riodic isoradial graph, we will use star-triangle transformations to construct a large region

with a square lattice structure. The proposition below is the key to these transformations.

A star-triangle transformation is said to act between two tracks t and t′ if the three

rhombi a�ected by the transformation are all between t and t′ , including potentially on t
and t′ .

Proposition 3.9. LetG be a doubly-periodic isoradial graph with grid (sn)n∈Z, (tn)n∈Z. There
exists d > 1 such that for allM,N ∈N, there exists a �nite sequence of star-triangle transfor-
mations (σk)16k6K , each acting between s−(M+dN ) and sM+dN and between tN and t0, none of
them a�ecting any rhombus of t0 and such that in the resulting graph (σk ◦ · · · ◦ σ1)(G), the
region R(−M,M;0,N ) has a square lattice structure.

This is a version of [GM14, Lem. 7.1] with a quantitative control over the horizontal

position of the star-triangle transformations involved. Obviously, the lemma may be applied

also below the base level t0 by symmetry.
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Proof. We only sketch this proof since it is very similar to the corresponding one in [GM14].

We will only refer below to the track system of G; we call an intersection of two tracks a

point. Fix M,N ∈N.

Index all non-horizontal tracks of G as (̃sn)n∈Z, in the order of their orientation with t0,

such that s̃0 = s0. Then the vertical tracks (sn)n∈Z of G form a periodically distributed subset

of (̃sn)n∈Z. Let M+ and M− be such that s̃M+
= sM and s̃M− = s−M .

We will work with G and transformations of G by a �nite number of star-triangle trans-

formations. The tracks of any such transformations are the same as those of G, we therefore

use the same indexing for them. Call a black point of G, or of any transformation of G, an

intersection of a track s̃k withM− 6 k 6M+ with a non-horizontal track, contained between

t0 and tN . See Figure 3.7 for an example.

Observe that, if in a transformation (σk ◦ · · · ◦σ1)(G) of G there are no black points, then

(σk ◦ · · · ◦σ1)(G) has the desired property. The strategy of the proof is therefore to eliminate

the black points one by one as follows.

Orient all non-horizontal tracks of G upwards (that is from their intersection with t0 to

that with t1). We say that a black point is maximal if, along any of the two tracks whose inter-

section gives this black point, there is no other black point further. One may then check (see

the proof of [GM14]) that if black points exist, then at least one maximal one exists. More-

over, a maximal black point may be eliminated by a series of star-triangle transformations

involving its two intersecting tracks and the horizontal tracks between it and tN . Thus, black

points may be eliminated one by one, until none of them is left (by the fact that (sn)n∈Z and

(tn)n∈Z form a grid, only �nitely many black points exist to begin with). Call σ1, . . . ,σK the

successive star-triangle transformations involved in this elimination. Then (σK ◦ · · · ◦σ1)(G)
has a square lattice structure in R(−M,M;0,N ).

We are left with the matter of controlling the region where star-triangle transformations

are applied. Notice that σ1, . . . ,σK each involve exactly one horizontal track tk with 0 < k 6
N . Thus, they all only involve rhombi between t0 and tN , but none of those along t0.

Also observe that, due to the periodicity of G, between t0 and tN , a track s̃k intersects

only tracks s̃j with |j − k| 6 cN for some constant c depending only on the fundamental

domain of G. It follows, by the periodicity of the tracks (sn)n∈Z in (̃sn)n∈Z, that all black

points are initially in R(−M − dN,M + dN ;0,N ) for some constant d > 0 depending only

on the fundamental domain of G. Finally, since all star-triangle transformations (σk)06k6K
involve one horizontal track and two others intersecting at a black point, each σk acts in the

region of (σk−1 ◦ · · · ◦ σ1)(G) delimited by s−M−dM , sM+dN , t0 and tN .

3.3 Proofs for 1 6 q 6 4

Starting from now, �x q ∈ [1,4] and letG be a doubly-periodic graph with grid (sn)n∈Z, (tn)n∈Z.

Recall that G ∈ G(ε) for some ε > 0. All the constants below depend on the value of ε. Write

ϕξ
G
:= ϕξ

G,1,q for the random-cluster measure with parameters q and β = 1 and boundary

conditions ξ ∈ {0,1} on G.

3.3.1 Notations and properties

For integers i 6 j and k 6 ` recall that R(i, j;k,`) is the subgraph of G contained between

tracks si and sj and between tk and t` (including the boundary tracks). Write R(i;k) for the

centred rectangle R(−i, i;k,k) and Λ(n) = R(n;n). The same notation applies to G
�

and G
∗
.

We de�neR and Λ in the same way using Euclidean distances. Note that R and Λ are domains
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3. Universality of the random-cluster model

with respect to a grid of G whereas R and Λ are Euclidean ones and they should all be seen

as subregions of R
2
.

Similarly to the crossings events de�ned in the introduction, set

• Ch(i, j;k,`): the event that there exists an open path in R(i, j;k,`) with one endpoint

left of the track si and the other right of the track sj . This is called a horizontal crossing
of R(i, j;k,`).

• Cv(i, j;k,`): the event that there exists an open path in R(i, j;k,`) with one endpoint

below tk and the other above t` . This is called a vertical crossing of R(i, j;k,`).

The crossings Ch and Cv can also be de�ned for symmetric rectangular domains R(m;n), in

which case we write Ch(m;n) and Cv(m;n). Also write C∗h(i, j;k,`), C
∗
v(i, j;k,`), C∗h(m;n) and

C∗v(m;n) for the corresponding events for the dual model.

To abbreviate the notation, we will henceforth say that G satis�es the RSW property if

the random-cluster model on G with β = 1 satis�es this property. It will be easier to work

with the crossing events de�ned above, rather than the one of the introduction, hence the

following lemma.

Lemma 3.10. Fix ρ > 1 and ν > 0. Then, G has the RSW property if and only if there exists
δ := δ1(ρ,ν) > 0 such that for all n > 1,

ϕ0
R((ρ+ν)n,(1+ν)n)

[
Ch(ρn;n)

]
> δ, ϕ1

R((ρ+ν)n,(1+ν)n)

[
C∗h(ρn;n)

]
> δ,

ϕ0
R((1+ν)n,(ρ+ν)n)

[
Cv(n;ρn)

]
> δ, ϕ1

R((1+ν)n,(ρ+ν)n)

[
C∗v(n;ρn)

]
> δ. (BXP(ρ, ν))

In other words, crossing estimates for Euclidean rectangles and rectangles in G
�

imply

each other. Moreover, the aspect ratio ρ and distance νn to the boundary conditions is irrel-

evant; indeed it is a by-product of the lemma that the conditions (BXP(ρ, ν)) with di�erent

values of ρ > 1 and ν > 0 are equivalent (obviously with di�erent values for δ > 0).

In general, one would also require crossing estimates as those of (BXP(ρ, ν)) for translates

of the rectangles R(n;ρn) and R(ρn;n). This is irrelevant here due to periodicity.

The proof of the lemma is elementary. It emploies the quasi-isometry between Euclidean

distance and the graph distance of G
�
, the FKG inequality and the comparison between

boundary conditions. A similar statement was proved in [GM14, Prop. 4.2] for Bernoulli

percolation. Since the boundary conditions matter, additional care is needed here, and the

proof is slightly more technical. Details are skipped here and are given in Appendix B.

It is straightforward (as will be seen in Section 3.3.4) that the RSW property implies the

rest of the points of Theorem 3.1 for 1 6 q 6 4. The following two sections will thus focus

on proving the RSW property for isoradial square lattices (Section 3.3.2), then on general

doubly-periodic isoradial graphs (Section 3.3.3), when 1 6 q 6 4.

3.3.2 Isoradial square lattices

The relevant result for the �rst stage of the proof (the transfer from regular to arbitrary square

lattices) is the following.

Proposition 3.11. Let G(1) = Gα,β(1) and G
(2) = Gα,β(2) be two isoradial square lattices in

G(ε). If G(1) satis�es the RSW property, then so does G(2).

The proposition is proved in the latter subsections of this section. For now, let us see how

it implies the following corollary.
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2n 2(1 + ν)n

2ρn

2(ρ+ ν)n

2(ρ+ ν)n2ρn

2n

2(1 + ν)n

Figure 3.8 – Crossing events in the condition (BXP(ρ, ν)). The dotted lines represent the

tracks enclosing the domain in which the event takes place, the dashed lines represent the

domain in which the random-cluster measure is de�ned.

Corollary 3.12. For any 1 6 q 6 4 and any isoradial square lattice G ∈ G(ε), G satis�es the
RSW property.

Proof of Corollary 3.12. For the regular square lattice G0, π2
, the random-cluster measure as-

sociated by isoradiality (see (2.2)) is that with edge-parameter pe =
√
q

1+
√
q . It is then known

by [DCST17] that G0, π2
satis�es the RSW property.

It follows from the application of Proposition 3.11 that for any sequence β ∈ [ε,π − ε]Z,

the graph G0,β also satis�es the RSW property.

Let Gα,β ∈ G(ε) be an isoradial square lattice. Below β0 stands for the constant sequence

equal to β0. Then, Gα,β0 is the rotation by β0 of the graph G0,α̃−β0+π, where α̃ is the sequence

α with reversed order. By the previous point, G0,α̃−β0+π satis�es the RSW property, and

hence so does Gα,β0 . Finally, apply again Proposition 3.11 to conclude that Gα,β also satis�es

the RSW property.

The rest of the section is dedicated to proving Proposition 3.11.

3.3.2.1 RSW: an alternative de�nition

Fix an isoradial square lattice G = Gα,β ∈ G(ε) for some ε > 0. Recall that q ∈ [1,4] is �xed;

the estimates below depend only on q and ε. Let xi,j be the vertex of G
�

between tracks

si−1, si and tj−1, tj . Suppose that G is such that its vertices are those xi,j with i + j even. The

base of G is then the set {(xi,0 : i ∈ Z}. Moreover, G is translated so that x0,0 is the origin 0
of the plane.

De�ne C(m1,m2;n) to be the event that there exists an open (primal) circuit contained in

R(m2;n) that surrounds the segment of the base between vertices x−m1,0 and xm1,0
1
. Write

C∗(., .; .) for the same event for the dual model. See �gure 3.9 for an illustration.

1
Formally, we allow the circuit to visit vertices of the base, but it is not allowed to cross the base between

x−m1,0 and xm1,0.
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t0

tn

t−n

s−m2
s−m1

sm1
sm2

Figure 3.9 – The event C(m1,m2;n). Such a circuit should not cross the bold segment.

The following two results o�er a convenient criterion for the RSW property. The advan-

tage of the conditions of (3.2) is that they are easily transported between di�erent isoradial

square lattices, unlike those of (BXP(ρ, ν)). The main reason is that, due to the last case of

Figure 2.10, paths may shrink at their endpoints during star-triangle transformations. Cir-

cuits avoid this problem.

Lemma 3.13. Suppose G is as above and suppose that the following conditions hold. There
exists δv > 0 such that for any δh > 0, there exist constants a > 3 and b > 3a such that for all n
large enough, there exist boundary conditions ξ on Λ(bn) such that

ϕξΛ(bn)
[
C(3an,bn;bn)

]
> 1− δh and ϕξΛ(bn)

[
C∗(3an,bn;bn)

]
> 1− δh,

ϕξΛ(bn)
[
Cv(an;2n)

]
> δv and ϕξΛ(bn)

[
C∗v(an;2n)

]
> δv ,

ϕξΛ(bn)
[
C(an,3an;n)

]
> δv and ϕξΛ(bn)

[
C∗(an,3an;n)

]
> δv . (3.2)

Then G has the RSW property.

Let us mention that the boundary conditions ξ above may be random, in which case

ϕξΛ(bn) is simply an average of random-cluster measures with di�erent �xed boundary con-

ditions. The only important requirement is that they are the same for all the bounds.

Again, if we were to consider also non-periodic graphs G, we would require (3.2) also for

all translates of the events above.

The conditions of the lemma above should be understood as follows. The last two lines

e�ectively o�er lower bounds for the probabilities of vertical and horizontal crossings of

certain rectangles. For Bernoulli percolation, these estimates alone would su�ce to prove

the RSW property; for the random-cluster model however, boundary conditions come into

play. The �rst line is then used to shield the crossing events from any potentially favorable

boundary conditions. Notice that the fact that δv > 0 is �xed and δh may be taken arbitrarily

small ensures that events such as those estimated in the �rst and second (or third) lines must

occur simultaneously with positive probability. This is the key to the proof.

Even though the proof is standard (and may be skipped by those familiar with the RSW

techniques for the random-cluster measure), we present it below.

Proof. Suppose to start that the condition (3.2) is satis�ed. Let δv > 0 be �xed. Choose

δh 6 δv/2. Fix a,b as given by the condition. Then, for n large enough, by assumption and

the inclusion-exclusion formula, there exists ξ such that

ϕξΛ(bn)
[
C∗(3an,bn;bn)∩Cv(an;2n)

]
> δv − δh > δh.
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Notice that the vertical path de�ning Cv(an;2n) is necessarily inside the dual circuit de�ning

C∗(3an,bn;bn), since the two may not intersect. Also, notice that Cv(an;2n) induces a verti-

cal crossing of R(an;2n). Thus, we can use the following exploration argument to compare

boundary conditions.

For a con�guration ω, de�ne Γ ∗(ω) to be the outmost dually-open circuit as in the de�-

nition of C∗(3an,bn;bn) if such a circuit exists. Let Int(Γ ∗) be the region surrounded by Γ ∗,
seen as a subgraph of G. We note that Γ ∗ can be explored from the outside and as a con-

sequence, the random-cluster measure in Int(Γ ∗), conditionally on Γ ∗, is given by ϕ0
Int(Γ ∗).

Thus,

ϕξΛ(bn)
[
C∗(3an,bn;bn)∩Cv(an;2n)

]
=

∑
γ∗
ϕξΛ(bn)

[
Cv(an;2n)

∣∣∣Γ ∗ = γ∗]ϕξΛ(bn)[Γ ∗ = γ∗]
=

∑
γ∗
ϕ0
Int(Γ ∗)

[
Cv(an;2n)

]
ϕξΛ(bn)

[
Γ ∗ = γ∗

]
6

∑
γ∗
ϕ0
Λ(bn)

[
Cv(an;2n)

]
ϕξΛ(bn)

[
Γ ∗ = γ∗

]
6 ϕ0

Λ(bn)

[
Cv(an;2n)

]
,

where the summations are over all possible realisations γ∗ of Γ ∗. The �rst inequality is based

on the comparison between boundary conditions and on the fact that Int(γ∗) ⊂ Λ(bn) for all

γ∗. Hence, we deduce that,

ϕ0
Λ(bn)

[
Cv(an;2n)

]
> δh.

Similarly, observe that

ϕξΛ(bn)
[
C∗(3an,bn;bn)∩C(an,3an;n)

]
> δh.

Again, the circuit de�ning C(an,3an;n) is necessarily inside the dual circuit de�ning C∗(3an,bn;bn)
and it therefore induces a horizontal crossing of R(an;n). Using the same exploration argu-

ment as above, we deduce that

ϕ0
Λ(bn)

[
Ch(an;n)

]
> δh. (3.3)

The same may be performed for the dual model. Since these computations hold for arbitrary

n large enough, we obtain for all n > 1

ϕ0
Λ(bn)

[
Cv(an;2n)

]
> δh, ϕ0

Λ(bn)

[
Ch(an;n)

]
> δh and

ϕ1
Λ(bn)

[
C∗v(an;2n)

]
> δh, ϕ1

Λ(bn)

[
C∗h(an;n)

]
> δh.

We claim that (BXP(ρ, ν)) follows from the above. Indeed, the inequalities above for

horizontal crossing are of the desired form. However, vertical crossings are only bounded

for short and potentially wide rectangles. Notice however that, by combining crossings as in

Figure 3.10 and using the FKG inequality,

ϕ0
Λ(abn)

[
Cv(an;a2n)

]
> ϕ0

Λ(bn)

[
Cv(an;2n)

]a2−1
ϕ0
Λ(bn)

[
Ch(an;n)

]a2−1
> δ2a

2−2
h (3.4)

Equations (3.3) and (3.4) imply (BXP(ρ, ν)) with ρ = a and ν = a(b − a), and Lemma 3.10

may be used to conclude.
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2an

2a2n

Figure 3.10 – A vertical crossing in R(an;a2n) created by superimposing shorter vertical and

horizontal crossings. The distance between two consecutive horizontal dotted lines is 2n.

As the next lemma suggests, condition (3.2) is actually equivalent to the RSW property.

The following statement may be viewed as a converse to Lemma 3.13.

Lemma 3.14. Assume that G has the RSW property. Fix a > 1. Then, there exists δv > 0 such
that for any δh > 0, there exist b > 3a such that for all n large enough, the following condition
holds,

ϕ0
Λ(bn)

[
C(3an,bn;bn)

]
> 1− δh/2 and ϕ1

Λ(bn)

[
C∗(3an,bn;bn)

]
> 1− δh/2,

ϕ0
Λ(bn)

[
Cv(an2 ;

an
2 )

]
> 2δv and ϕ1

Λ(bn)

[
C∗v(an2 ;

an
2 )

]
> 2δv ,

ϕ0
Λ(bn)

[
C(an,2an; na )

]
> 2δv and ϕ1

Λ(bn)

[
C∗(an,2an; na )

]
> 2δv . (3.5)

The proof is a standard application of the RSW theory and is deferred to Appendix B. Let

us only mention that it uses the fact that

ϕ0
Λ(bn)

[
C(3an,bn;bn)

]
−−−−−→
b→∞

1, uniformly in n.

This is a typical consequence of the strong RSW property; it appears in other forms in various

applications.

3.3.2.2 Transporting RSW: proof of Proposition 3.11

Fix G
(1) = Gα,β(1) and G

(2) = Gα,β(2) two isoradial square lattices in G(ε). Suppose G
(1)

satis�es the RSW property.

Let G
mix

be the symmetric mixed graph of G
(1)

and G
(2)

constructed in Section 3.2.1,

where the width of each strip is 2M + 1 and the height is N = N1 = N2 (for M and N
to be mentioned below). We use here the construction both above and below the base,

where each side is convexi�ed separately. Let G̃
mix

= Σ↑(G
mix

) = Σ↓(G
mix

) be the graph

obtained after exchanging the tracks t0, . . . , tN of G
mix

with tN+1, . . . , t2N+1 and t−1, . . . , t−N
with t−(N+1), . . . , t−2N . Write ϕG

mix

and ϕG̃
mix

for the random-cluster measures on G
mix

and

G̃
mix

, respectively, with parameters q ∈ [1,4], β = 1 and free boundary conditions.

The estimates below are the key to the proof of Proposition 3.11. They correspond to

similar statements in [GM14] for Bernoulli percolation.
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Proposition 3.15 (Prop. 6.4 of [GM14]). There exist λ,n0 > 1, depending on ε only, such that,
for all ρout > ρin > 0, n > n0 and sizesM > (ρout +λ)n and N > λn,

ϕG̃mix

[
C(ρinn, (ρout +λ)n;λn)

]
> (1− ρoute−n)ϕGmix

[
C(ρinn,ρoutn;n)

]
.

Proposition 3.16 (Prop. 6.8 of [GM14]). There exist δ ∈ (0, 12 ) and cn > 0 satisfying cn→ 1
as n→∞ such that, for all n and sizesM > 4n and N > n,

ϕG̃mix

[
Cv(4n;δn)

]
> cnϕGmix

[
Cv(n;n)

]
.

The proofs of the two statements are similar to those of [GM14]. They do not rely on the

independence of the percolation measure, they do however use crucially the independence of

the randomness appearing in the star-triangle transformations. More details about this step

are given in Section 4.3 when we will treat the quantum case, since more explicit estimates

will be needed. However, we will not provide full proofs since they are very similar to the

corresponding statements in [GM14].

Let us admit the two propositions above for now and �nish the proof of Proposition 3.11.

Proof of Proposition 3.11. Fix parameters n0,λ > 1 and δ > 0 as in Propositions 3.15 and 3.16.

Since G
(1)

satis�es the RSW property, Lemma 3.14 applies to it. Choose a =max{λ, 2δ ,1} and

an arbitrary δh > 0. By Lemma 3.14, there exist b > 3a and δv > 0 such that, for all n large

enough,

ϕ0
Λ(bn)

[
C(3an,bn;bn)

]
> 1− δh/2,

ϕ0
Λ(bn)

[
Cv(an2 ;

an
2 )

]
> 2δv ,

ϕ0
Λ(bn)

[
C(an,2an; na )

]
> 2δv . (3.6)

We will prove that G
(2)

satis�es (3.2) for these values of a, δv and δh, with b replaced by

b̃ = (1 + λ)b. The boundary conditions ξ will be �xed below. We start by proving (3.2) for

the primal events.

TakeM =N > (λ+1)bn for constructingG
mix

. Then, since the balls of radius bn inG
mix

and in G
(1)

are identical, we deduce from the above that

ϕG
mix

[
C(3an,bn;bn)

]
> 1− δh/2,

ϕG
mix

[
Cv(an2 ;

an
2 )

]
> 2δv ,

ϕG
mix

[
C(an,2an; na )

]
> 2δv .

We used here that the boundary conditions on Λ(bn) in (3.6) are the least favorable for the

existence of open paths.

For n > an0, Propositions 3.15 and 3.16 then imply

ϕG̃
mix

[
C(3an, (λ+1)bn;λbn)

]
> (1− e−bn)(1− δh/2),

ϕG̃
mix

[
Cv(an; δ2an)

]
> 2cnδv ,

ϕG̃
mix

[
C(an, (2a+ λ

a )n;
λ
an)

]
> 2(1− 2a2e−n/a)δv .

Now, take n large enough so that 2e−bn < δh, 2cn > 1 and a2e−n/a < 1/4. These bounds

ultimately depend on ε only. Observe that this implies (3.2) for the primal model. Indeed, set
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b̃ = (λ+1)b, then, due to the choice of a,

ϕG̃
mix

[
C(3an, b̃n; b̃n)

]
> (1− δh/2)2 > 1− δh,

ϕG̃
mix

[
Cv(an;n)

]
> δv ,

ϕG̃
mix

[
C(an,3an;n)

]
> δv .

The same procedure may be applied for the dual model to obtain the identical bounds for

C∗(., .; , ) and C∗v(.; .).
By choice of M and N , the region Λ(̃bn) of G̃

mix
is also a subgraph of G

(2)
. This im-

plies (3.2) for G
(2)

. The boundary conditions ξ appearing in (3.2) are those induced on Λ(̃bn)
by the free boundary conditions on G̃

mix
. These are random boundary conditions, but do

not depend on the events under study. In particular, they are the same for all the six bounds

of (3.2).

3.3.2.3 Sketch of proof for Propositions 3.15 and 3.16

The proofs of Propositions 3.15 and 3.16 are very similar to those of Propositions 6.4 and

6.8 in [GM14], with only minor di�erences. Nevertheless, we sketch them below for com-

pleteness. The estimates in the proofs are speci�c to the random-cluster model and will be

important in Chapter 4.

We keep the notations G
mix

and G̃
mix

introduced in the previous section.

Proof of Proposition 3.15. We adapt the proof from Proposition 6.4 (more precisely, Lemma

6.7) of [GM14] to our case.

Recall the de�nition ofΣ↓, the sequence of star-triangle transformations to consider here:

above the base level, we push down tracks of G
(2)

below those of G
(1)

one by one, from the

bottom-most to the top-most; below the base level, we proceed symmetrically. Let P be a

probability measure de�ned as follows. Pick a con�guration ω on G
mix

according to ϕG
mix

;

apply the sequence of star-triangle transformations Σ↓ to it using the coupling described

in Figure 2.8, where the randomness potentially appearing in each transformation is inde-

pendent of ω and of all other transformations. Thus, under P we dispose of con�gurations

on all intermediate graphs in the transformation from G
mix

to G̃
mix

. Moreover, in light of

Proposition 2.12, Σ↓(ω) has law ϕG̃
mix

.

We will prove the following statement

P

[
Σ↓(ω) ∈ C(ρ

in
n, (ρ

out
+λ)n;λn)

∣∣∣ω ∈ C(ρ
in
n,ρ

out
n;n)

]
> 1− ρ

out
e−n, (3.7)

for any values ρ
out
> ρ

in
> 0, n > n0, M > (ρ

out
+λ)n and N > λn, where λ,n0 > 1 will be

chosen below. This readily implies Proposition 3.15.

Fix ρ
out
,ρ

in
,n,M andN as above. Chooseω0 ∈ C(ρin

n,ρ
out
n;n) and let γ be anω0-open

circuit as in the de�nition of C(ρ
in
n,ρ

out
n;n). As the transformations of Σ↓ = σK ◦ · · · ◦ σ1

are applied to ω0, the circuit γ is transformed along with ω0. Thus, for each 0 6 k 6 K ,

(σk ◦ · · · ◦ σ1)(γ) is an open path in (σk ◦ · · · ◦ σ1)(ω0) on the graph (σk ◦ · · · ◦ σ1)(Gmix
).

Since no star-triangle transformation of Σ↓ a�ects the base, Σ↓(γ) remains a circuit sur-

rounding the segment of the base between x−ρ
in
n,0 and xρ

in
n,0. Therefore, the only thing that

is left to prove is that

P

[
Σ↓(γ) ∈ R

(
(ρ

out
+λ)n;λn

) ∣∣∣ω =ω0

]
> 1− ρ

out
e−n. (3.8)
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Set

γ (k) = (Σ↓N1+k
◦Σ↓−(N1+k)

) ◦ · · · ◦ (Σ↓N1+1
◦Σ↓−(N1+1)

),

where Σ
↓
i = Σt0,ti ◦ · · · ◦ΣtN1 ,ti for i > 0 and Σ

↓
i = Σt−1,ti ◦ · · · ◦Σt−N1 ,ti for i < 0. The path γ (k)

thus de�ned is the transformation of γ after the �rst k tracks of G
(2)

above the base were

sent down, and the symmetric procedure was applied below the base.

In [GM14], the vertices of G
mix

visited by γ (k)
were shown to be contained in a region

whose evolution with k = 0, . . . ,N2 + 1 is explicit. This is done separately above and below

the base level, and we focus next on the upper half-space.

Let H0 = {(i, j) ∈ Z ×N : −(ρ
out

+ 1)n 6 i − j and i + j 6 (ρ
out

+ 1)n and j 6 n}. Then,

Hk+1
is de�ned from Hk

as follows. If (i, j) ∈ Z ×N is such that (i, j), (i − 1, j) or (i + 1, j)
are in Hk

, then (i, j) ∈ Hk+1
. Otherwise, if (i, j − 1) ∈ Hk

, then (i, j) is included in Hk
with

probability η ∈ (0,1), independently of all previous choices. We will see later how the value

of η is chosen using the bounded-angles property.

In consequence, the sets (Hk)06k6N are interpreted as a growing pile of sand, with a

number of particles above every i ∈Z. At each stage of the evolution, the pile grows laterally

by one unit in each direction; additionally, each column of the pile may increase vertically

by one unit with probability η (see Figure 3.11).

Figure 3.11 – One step of the evolution of H : Hk
is drawn in black, Hk+1

contains the ad-

ditional blue points (since they are to the left or right of vertices in Hk
) and the red points

(these are added due to the random increases in height).

Loosely speaking, [GM14, Lem. 6.6] shows that, if η is chosen well, then all vertices xi,j
visited by γ (k)

have (i, j) ∈ Hk 2
. More precisely, the process (Hk)06k6N may be coupled

with the evolution of (γ (k))06k6N so that the above is true. This step is proved by induction

on k, and relies solely on the independence of the star-triangle transformations and on the

estimates of Figure 3.5. Then, (3.8) is implied by the following bound on the maximal height

of HN
:

P

[
max{j : (i, j) ∈Hλn} > λn

]
< ρ

out
e−n (3.9)

for some λ > 0 and all n large enough. The existence of such a (�nite) constant λ is guar-

anteed by [GM13a, Lem. 3.11]. It depends on η, and precisely on the fact that η < 1 [GM14,

Lem. 6.7]. The choice of η < 1 that allows the domination of (γ (k))06k6N by (Hk)06k6N is

done as follows.

We proceed in the same way as in the proofs of Lemmas 6.6 and 6.7 of [GM14]. We shall

analyze the increase in height of portions of γ (k)
as given by Figure 3.5. Essentially, the only

cases in which γ (k)
increases signi�cantly in height are depicted in the third and the last line

of Figure 3.5.

2
This is not actually true, since there is a horizontal shift to be taken into account; let us ignore this technical

detail here.
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A

B
t

t′

γ(k)

Figure 3.12 – Star-triangle transformations between tracks t and t′ corresponding to the third

line of Figure 3.5. The tracks t and t′ have transverse anglesA and B respectively. We assume

that a portion of the path γ (k)
reaches between the tracks t and t′ as shown in the �gure.

Moreover, if the dashed edge is open on the left, with probability ηA,B = yπ−Ayπ−(B−A)/q, the

path γ (k)
drifts upwards by 1 after the track exchange.

Let us examine the situation which appears in the third line of Figure 3.5 and consider

the notations as in Figure 3.12. Using the notation of Figure 3.12 for the angles A and B, the

probability that the height of such a γ (k)
increases by 1 is given by

ηA,B =
yπ−Ayπ−(B−A)

q
=

sin(rA)sin(r(B−A))
sin(r(π −A))sin(r(π − (B−A)))

=
cos(r(2A−B))− cos(rB)

cos(r(2A−B))− cos(r(2π −B))
,

where we recall that r = cos−1(
√
q
2 ) 6 1

3 and that, due to the BAP (ε), A,B ∈ [ε,π − ε].
The same computation also applies to the last line of Figure 3.5. Then, η may be chosen

as

η := sup
A,B∈[ε,π−ε]

ηA,B < 1. (3.10)

The domination of the set of vertices of γ (k)
by Hk

is therefore valid for this value of η,

and (3.8) is proved for the resulting constant λ.

Remark 3.17. When we deal with the quantum model in Chapter 4, it will be important to

have a more precise estimate on η(ε). In particular, we will show that, in this special case,

1− η(ε) ∼ τ(q)ε as ε→ 0 for some constant τ := τ(q) depending only on q ∈ [1,4].

Proof of Proposition 3.16. We adapt Proposition 6.8 of [GM14] to our case. Fix n and N,M >
2n, and consider the graph G

mix
as described in the previous section. We recall the de�ni-

tion of Σ↑, the sequence of star-triangle transformations we consider here: above the base

level, we pull up tracks of G
(1)

above those of G
(2)

one by one, from the top-most to the

bottom-most; below the base level, we proceed symmetrically.

As in the previous proof, write P for the measure taking into account the choice of a

con�guration ω0 according to the random-cluster measure ϕG
mix

as well as the results of the

star-triangle transformations in Σ↑ applied to the con�guration ω0.

The events we are interested in only depend on the graph above the base level, hence we

are not concerned with what happens below. For 0 6 i 6 N , recall from Section 3.2.1 the
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notation

Σ
↑
i = Σti ,t2N+1

◦ · · · ◦Σti ,tN+1
,

for the sequence of star-triangle transformations moving the track ti ofG
(1)

aboveG
(2)

. Then

Σ↑ = Σ
↑
0 ◦ · · · ◦Σ

↑
N .

First, note that if ω ∈ Cv(n;n), we also have Σ
↑
n+1 ◦ · · · ◦Σ

↑
N (ω) ∈ Cv(n;n), since the two

con�gurations are identical between the base and tn. We will now write, for 0 6 k 6 n+1,

Gk = Σ
↑
n−k+1 ◦ · · · ◦Σ

↑
N (Gmix

),

ωk = Σ
↑
n−k+1 ◦ · · · ◦Σ

↑
N (ω),

Dk = {xu,v ∈ Gk : |u| 6 n+2k + v,0 6 v 6N +n},

hk = sup{h 6N : ∃u,v ∈Z with xu,0
Dk ,ωk←−−−→ xv,h}.

That is, hk is the highest level that may be reached by an ωk-open path lying in the trape-

zoid Dk . We note that Gn+1 = G̃
mix

and ωn+1 follows the law of ϕG̃
mix

.

With these notations, in order to prove Proposition 3.16, it su�ces to show the equivalent

of [GM14, (6.23)], that is

P

[
hn+1 > δn

]
> cnP

[
h0 > n

]
, (3.11)

for some δ ∈ (0, 12 ) to be speci�ed below and explicit constants cn with cn → 1 as n→∞.

Indeed,

P[h0 > n] > P[ω0 ∈ Cv(n;n)] = ϕG
mix

[Cv(n;n)].

Moreover, if hn+1 > δn, then ωn+1 ∈ Cv(4n;δn), and therefore we have ϕG̃
mix

[Cv(4n;δn)] >
P(hn+1 > δn).

We may now focus on proving (3.11). To do that, we adapt the corresponding step

of [GM14] (namely Lemma 6.9). It shows that (hk)06k6n can be bounded stochastically from

below by the Markov process (Hk)06k6n 3
given by

Hk =H0 +
k∑
i=1

∆i , (3.12)

where H0 = n and the ∆i are independent random variables with common distribution

P(∆ = 0) = 2δ, P(∆ = −1) = 1− 2δ, (3.13)

for some parameter δ to be speci�ed later. Once the above domination is proved, the inequal-

ity (3.11) follows by the law of large numbers.

The proof of (3.13) in [GM14] (see Equation (6.24) there) uses only the independence

between di�erent star-triangle transformations and the �nite-energy property of the model.

Both are valid in our setting. We sketch this below.

Fix 0 6 k 6 n and let us analyse the (N − (n − k) + 1)th step of Σ↑, that is Σ
↑
n−k . Write

Ψj := Σtn−k ,tN+j
◦· · ·◦Σtn−k ,tN+1

for 0 6 j 6N . In other words,Ψj is the sequence of star-triangle

transformations that applies to Gk and moves the track tn−k above j tracks of G
(2)

, namely

tN+1, . . . , tN+j . Moreover, ΨN = Σ
↑
n−k ; hence, ΨN (Gk) = Gk+1.

3
To be precise, it is shown that for any k, the law of hk dominates that of Hk . It is not true that the law of

the whole process (hk)06k6n dominates that of (Hk)06k6n. This step uses [GM13a, Lem. 3.7].
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N + n

0

n− k + j =: j̃

2(n+ 2k)

2(2(n+ k) +N)

Dk
j

Dk+1

Dk

Figure 3.13 – The evolution of Dk (red) to Dk+1 (blue) via intermediate steps Dkj (black).

Let Dkj be the subgraph of Ψj(Gk) induced by vertices xu,v with 0 6 v 6N +n and

|u| 6


n+2k + v +2 if v 6 j̃ ,
n+2k + v +1 if v = j̃ +1,
n+2k + v if v > j̃ +2.

,

where we let j̃ = n − k + j . Note that Dk ⊆ Dk0 ⊆ · · · ⊆ D
k
N ⊆ D

k+1
, see Figure 3.13 for an

illustration. Let ωkj = Ψj(ωk). If γ is a ωkj -open path living in Dkj , then Σtn−k ,tN+j+1
(γ) is a

ωkj+1-open path living in Dkj+1. This is a consequence after a careful inspection of Figure 3.5,

where blue points indicate possible horizontal drifts. De�ne also

hkj = sup{h 6N : ∃u,v ∈Z with xu,0
Dk
j ,ω

k
j

←−−−→ xv,h}.

Then, hk 6 hk0 and hkn 6 h
k+1

. As in [GM14], we need to prove that for 0 6 j 6N − 1,

hkj+1 = h
k
j if hkj , j̃ , j̃ +1, (3.14)

hkj+1 − h
k
j = 0 or 1 if hkj = j̃ , (3.15)

hkj+1 − h
k
j = −1 or 0 if hkj = j̃ +1, (3.16)

P(hkj+1 > h |h
k
j = h) > 2δ if h = j̃ +1. (3.17)

The four equations above imply the existence of a process Hk
as in (3.13).

As explained in [GM14], (3.14), (3.15) and (3.16) are clear because the upper endpoint of

a path is a�ected by Σ := Σtn−k ,tN+j+1
only if it is at height j̃ or j̃ +1. And the behavior of the

upper endpoint can be analyzed using Figure 3.6. More precisely,

• when it is at height j̃ + 1, the upper endpoint either stays at the same level or drifts

downwards by 1;

• when it is at height j̃ , it either stays at the same level or drifts upwards by 1.

Hence, the rest of the proof is dedicated to showing (3.17).

We start with a preliminary computation. Fix j and let Pj be the set of paths γ of Ψj(Gk),
contained inDkj , with one endpoint at height 0, the other at height h(γ), and all other vertices

with heights between 1 and h(γ)− 1.

Assume that in Σ, the additional rhombus is slid from left to right and de�ne Γ to be the

left-most path of Pj reaching height hkj
4
. (Such a path exists due to the de�nition of hkj .) This

4
Otherwise Γ should be taken right-most.
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choice is relevant since later on, we will need to use negative information in the region on

the left of the path γ . Moreover, for γ,γ ′ ∈ Pj , we write γ ′ < γ if γ ′ , γ , h(γ ′) = h(γ) and

γ ′ does not contain any edge strictly to the right of γ .

Denote by Γ = Γ (ωkj ) the ωkj -open path of Pj that is the minimal element of {γ ∈ Pj :
h(γ) = hkj ,γ is ωkj -open}. Given a path γ ∈ Pj , we can write {Γ = γ} = {γ is ωkj -open} ∩Nγ
where Nγ is the decreasing event that

(a) there is no γ ′ ∈ Pj with h(γ ′) > h(γ), all of whose edges not belonging to γ are

ωkj -open;

(b) there is no γ ′ < γ with h(γ ′) = h(γ), all of whose edges not belonging to γ are

ωkj -open.

Let F be a set of edges disjoint from γ , write CF for the event that all the edges in F are

closed. We �nd,

P[CF |Γ = γ] =
P[Nγ ∩CF |γ is open]

P[Nγ |γ is open]

> P[CF |γ is open]

> ϕ1
K [CF], (3.18)

where the second line is given by the FKG inequality due to the fact that P[· |γ is open] is

still a random-cluster measure and both Nγ and CF are decreasing events. And in the last

line, we compare the boundary conditions, where K is the subgraph consisting of rhombi

containing the edges of F.

z z z

e1e2

e3 e4 z′ z′ z′ z′

e5
1 1

ye1
ye4

q

Figure 3.14 – Three star-triangle transformations contributing to Σ slid the gray rhombus

from left to right. The dashed edges are closed, the bold edges are open and the state of

dotted edge e2 does not really matter. The �rst and last passages occur with probability 1,

and the second with probability ye1ye4/q.

Now, we are ready to show (3.17). Let γ ∈ Pj with h(γ) = j̃ + 1 and assume Γ (ωkj ) = γ .

Now, it is enough to show that

P

[
h(Σ(γ)) > j̃ +1

∣∣∣Γ = γ
]
> 2δ. (3.19)

Let z = xu,j̃+1 denote the upper endpoint of γ and let z′ denote the other endpoint of the

unique edge of γ leading to z. Either z′ = xu+1,j̃ or z′ = xu−1,j̃ . In the second case, it is always

the case that h(Σ(γ)) > j̃ +1.

Assume that z′ = xu+1,j̃ as in Figure 3.14 and consider edges ei for i = 1, . . . ,4 as follow,

e1 = 〈xu,j̃+1,xu−1,j̃+2〉, e2 = 〈xu−1,j̃+2,xu−2,j̃+1〉,

e3 = 〈xu−2,j̃+1,xu−1,j̃〉, e4 = 〈xu−1,j̃ ,xu,j̃+1〉.

Let us now analyse the star-triangle transformations that a�ect e1, . . . , e4; these are depicted

in Figure 3.14. We note that conditioning on the event CF ∩ {Γ = γ}, where F = {e3, e4}, we

have:
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(a) The edge e1 must be closed due to the conditioning {Γ = γ}.

(b) Whichever the state of e2 is, the edge e5 is always closed.

(c) The second passage occurs with probability ye1ye4/q.

(d) The third passage is deterministic.

Thus,

P

[
h(Σ) > j̃ +1

∣∣∣Γ = γ
]
>
ye1ye4
q
·P[CF |Γ = γ].

Moreover, the preliminary computation (3.18) gives that

P[CF |Γ = γ] > ϕ1
K [CF] = (1− pe3)(1− pe4),

where K consists only of the two rhombi containing e3 and e4 and we use the fact that in the

random-cluster measure ϕ1
K , these edges are independent (the number of clusters is always

equal to 1). Finally,

P

[
h(Σ) > j̃ +1

∣∣∣Γ = γ
]
>
ye1pe4(1− pe3)

q
>
yπ−εpπ−ε(1− pε)

q
> 2δ, (3.20)

where

δ =
1
2
min

{
yπ−εpπ−ε(1− pε)

q
,1

}
> 0. (3.21)

To conclude, we have

P[hn > δn]
P[h0 > n]

>
P[Hn > δn]
P[H0 > n]

> P[Hn > δn |H0 > n] =: cn(δ),

and since Hn/n→ 2δ as n→∞ due to the law of large numbers, we know that cn→ 1 as

n→∞.

3.3.3 Doubly-periodic isoradial graphs

Now that the RSW property is proved for isoradial square lattices, we transfer it to arbitrary

doubly-periodic isoradial graphs G. We do this by transforming a �nite part of G (as large

as we want) into a local isoradial square lattice using star-triangle transformations. The

approach is based on the combinatorial result Proposition 3.9.

Proposition 3.18. Any doubly-periodic isoradial graph G satis�es the RSW property.

Proof. Let G be a doubly-periodic isoradial graph with grid (sn)n∈Z and (tn)n∈Z. Fix a con-

stant d > 1 as given by Proposition 3.9 applied to G. In the below formula, Chp

h (n;n) denotes

the horizontal crossing event in the half-plane rectangular domain Rhp(n;n) := R(−n,n;0,n).
We will show that

ϕ0
Λ(6dn)

[
Chp

h (n;n)
]
= ϕ0

Λ(6dn)

[
Ch(−n,n;0,n)

]
> δ, (3.22)

for some constant δ > 0 which does not depend on n. Moreover, a careful inspection of the

forthcoming proof shows that δ only depends the bounded angles parameter ε > 0 and on
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the size of the fundamental domain of G. The same estimate is valid for the dual model, since

it is also a random-cluster model on an isoradial graph with β = 1.

The two families of tracks (sn)n∈Z and (tn)n∈Z play symmetric roles, therefore (3.22) may

also be written

ϕ0
Λ(6dn)

[
Cv(0,n;−n,n)

]
> δ. (3.23)

The two inequalities (3.22) and (3.23) together with their dual counterparts imply the RSW

property by Lemma 3.10
5
.

The rest of the proof is dedicated to (3.22). In proving (3.22), we will assume n to be larger

than some threshold depending on G only; this is not a restrictive hypothesis.

Let (σk)16k6K be a sequence of star-triangle transformations as in Proposition 3.9 such

that in G̃ := (σK ◦ · · · ◦ σ1)(G), the region enclosed by s−4n, s4n, t−2n and t2n has a square

lattice structure. Recall that all the transformations σk act horizontally between s−6dn and

s6dn and vertically between tn and t−n.

Consider the following events for G̃. Let C̃ be the event that there exists an open circuit

contained in the region between s−2n and s2n and between t−n/2 and tn/2 surrounding the

segment of the base between s−n and sn. Let C̃∗ be the event that there exists an open circuit

contained in the region between s−3n and s3n and between t−3n/2 and t3n/2 surrounding the

segment of the base between s−2n and s2n.

Let G̃ be the subgraph of G̃ contained between s−4n, s4n, t−2n and t2n. Then G̃ is a �nite

section of a square lattice with 4n + 1 horizontal tracks, but potentially more than 8n + 1
vertical ones. Indeed, any track of G that intersects the base between s−4n, s4n is transformed

into a vertical track of G̃.

Write (̃sn)n∈Z for the vertical tracks of G̃, with s̃0 coinciding with s0 (this is coherent with

the notation in the proof of Proposition 3.9). Then, the tracks (sn)n∈Z are a periodic subset

of (̃sn)n∈Z, with period bounded by the number of tracks intersecting a fundamental domain

of G. It follows that there exist constants a,b depending only on G, not on n, such that the

number of tracks (̃sn)n∈Z between any two tracks si and sj (with i 6 j) is between (j − i)a−b
and (j − i)a+ b.

By the above discussion, for some constant c > 1 and n large enough (larger than some

n0 depending only on a and b, therefore only on the size of the fundamental domain of G),

the events C̃ and C̃∗ may be created using crossing events as follow:

H̃1 ∩H̃2 ∩ Ṽ1 ∩ Ṽ2 ⊆ C̃ and H̃∗1 ∩H̃
∗
2 ∩ Ṽ

∗
1 ∩ Ṽ

∗
2 ⊆ C̃

∗,

where

H̃1 = Ch(−(c+1)n, (c+1)n;0, n2 ), H̃∗1 = C
∗
h(−(2c+1)n, (2c+1)n;n, 3n2 ),

H̃2 = Ch(−(c+1)n, (c+1)n;−n2 ,0), H̃∗2 = C
∗
h(−(2c+1)n, (2c+1)n;−3n2 ,−n),

Ṽ1 = Cv(−(c+1)n,−cn;−n2 ,
n
2 ), Ṽ ∗1 = C

∗
v(−(2c+1)n,−2cn;−3n2 ,

3n
2 ),

Ṽ2 = Cv(cn, (c+1)n;−n2 ,
n
2 ), Ṽ ∗2 = C

∗
v(2cn, (2c+1)n;−3n2 ,

3n
2 ),

are de�ned in terms of the tracks (̃sn)n∈Z and (tn)n∈Z. These horizontal and vertical crossing

events are shown in Figure 3.15.

5
The conditions of Lemma 3.10 di�er slightly from (3.22) and (3.23) in the position of the rectangle and the

domain where the measure is de�ned. Getting from one to the other is a standard application of the comparison

between boundary conditions.
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tn
2

tn

t−n
2

t−n

s−3n s−2n s−n sn s2n s3n

t0

t− 3n
2

t 3n
2

Figure 3.15 – The crossing events H̃1, H̃2, Ṽ1 and Ṽ2 are depicted in red; they induce a

circuit around the segment of the base between s−n and sn. The events H̃∗1, H̃∗2, Ṽ ∗1 and Ṽ ∗2
are represented in blue.

Notice that all events above depend only on the con�guration in G̃. Let ϕ
G̃

denote some

in�nite-volume measure on G̃. By the RSW property for the square lattice G̃ (that is, by

Corollary 3.12), the comparison between boundary conditions and the FKG inequality,

ϕ
G̃

[
C̃∗

]
> ϕ1

G̃

[
H̃∗1

]
ϕ1
G̃

[
H̃∗2

]
ϕ1
G̃

[
Ṽ ∗1

]
ϕ1
G̃

[
Ṽ ∗2

]
> δ1,

for some δ1 > 0 independent of n. Moreover, by the same reasoning,

ϕ
G̃

[
C̃
∣∣∣ C̃∗] > ϕ0

R̃

[
H̃1

]
ϕ0
R̃

[
H̃2

]
ϕ0
R̃

[
Ṽ1

]
ϕ0
R̃

[
Ṽ2

]
> δ2,

for some δ2 > 0 independent of n, where R̃ = R̃(2cn;n) is de�ned with respect to the tracks

(̃sn)n∈Z and (tn)n∈Z. We conclude that

ϕ
G̃

[
C̃ ∩ C̃∗

]
> δ1δ2 > 0.

LetP be the probability that consists of choosing a con�guration ω̃ on G̃ according toϕ
G̃

,

then applying the inverse transformations σ−1K , . . . ,σ−11 to it. Thus, ω := (σ−11 ◦ · · · ◦ σ
−1
K )(ω̃)

is a con�guration on G chosen according to some in�nite-volume measure ϕ
G

.

Let ω̃ ∈ C̃ ∩ C̃∗, and write γ̃ and γ̃∗ for two circuits as in the de�nitions of C̃ and C̃∗
respectively. The two circuits γ̃ and γ̃∗ are transformed by (σ−11 ◦ · · · ◦ σ

−1
K ) into circuits on

G; call γ = (σ−11 ◦ · · · ◦ σ
−1
K )(γ̃) and γ∗ = (σ−11 ◦ · · · ◦ σ

−1
K )(γ̃∗) their respective images. Then,

γ is ω-open and γ∗ is ω∗-open.

Since the transformations σ−11 , . . . ,σ−1K only a�ect the region between s−6dn, s6dn, t−2n
and t2n, both γ and γ∗ are contained in this region of G, that is in R(6dn;2n). Additionally,

since the transformations do not a�ect the base, γ∗ surrounds the segment of the base be-

tween s−2n and s2n while γ surrounds the segment of the base between s−n and sn but only

traverses the base between s−2n and s2n.

Write C for the event that a con�guration onG has an open circuit contained inR(6dn;2n),
surrounding the segment of the base between s−n and sn and traversing the base only between

s−2n and s2n. Also, set C∗ to be the event that a con�guration on G has a dually-open circuit

contained in R(6dn;2n), surrounding the segment of the base between s−2n and s2n.

70



3.3. Proofs for 1 6 q 6 4

Both C and C∗ are reminiscent of the events C̃ and C̃∗, in spite of small di�erences. Indeed,

the discussion above shows that if ω̃ ∈ C̃ ∩ C̃∗, then ω ∈ C ∩C∗. Thus,

ϕ
G

[
C ∩C∗

]
= P

[
ω ∈ C ∩C∗

]
> P

[
ω̃ ∈ C̃ ∩ C̃∗

]
= ϕ

G̃

[
C̃ ∩ C̃∗

]
> δ1δ2.

For a con�guration ω on G, write Γ ∗(ω) for the exterior-most dually-open circuit as in

the de�nition of C∗ (that is contained in R(6dn;2n) and surrounding the segment of the base

between s−2n and s2n), if such a circuit exists. Let Int(Γ ∗) be the region surrounded by Γ ∗,
seen as a subgraph of G.

It is standard that Γ ∗ may be explored from the outside and therefore that, conditionally

on Γ ∗, the random-cluster measure in Int(Γ ∗) is ϕ0
Int(Γ ∗).

Observe that for ω ∈ C ∩C∗, due to the restrictions over the intersections with the base,

any circuit in the de�nition of C is surrounded by any in the de�nition of C∗. Thus, if for

ω ∈ C∗, the occurence of C only depends on the con�guration inside Int(Γ ∗). Therefore,

ϕ
G

[
C ∩C∗

]
= ϕ

G

[
C
∣∣∣C∗]ϕ

G

[
C∗

]
=

∑
γ∗
ϕ
G

[
C
∣∣∣Γ ∗ = γ∗]ϕ

G

[
Γ ∗ = γ∗

]
=

∑
γ∗
ϕ0
Int(γ∗)

[
C
]
ϕ
G

[
Γ ∗ = γ∗

]
6

∑
γ∗
ϕ0
R(6dn;2n)

[
C
]
ϕ
G

[
Γ ∗ = γ∗

]
= ϕ0

R(6dn;2n)

[
C
]
ϕ
G

[
C∗

]
,

where the sum above is over all deterministic circuits γ∗ on G
∗
, as in the de�nition of C∗. In

the before last line, we used the fact that Int(γ∗) ⊆ R(6dn;2n), where R(6dn;2n) is de�ned

using tracks in G, and the comparison between boundary conditions to say that the free

boundary conditions on ∂ Int(γ∗) are less favorable to the increasing event C than those on

the more distant boundary ∂R(6dn;2n).
Due to the previous bound on ϕ

G

[
C ∩C∗

]
, we deduce that

ϕ0
R(6dn;2n)

[
C
]
> δ1δ2.

Finally, notice that any circuit as in the de�nition of C contains a horizontal crossing of

Rhp(n;n). We conclude from the above that

ϕ0
R(6dn;2n)

[
Rhp(n;n)

]
> δ1δ2.

This implies (3.22) by further pushing away the unfavorable boundary conditions.

3.3.4 Tying up loose ends

As mentioned already, Theorem 3.1 and Corollary 3.3 for 1 6 q 6 4 follow directly from the

RSW property (i.e., from Proposition 3.18). We mention here the necessary steps. They are all

standard for those familiar with the random-cluster model; detail are provided in Appendix C.

Fix G a doubly-periodic isoradial graph and q ∈ [1,4]. We start with the following lemma

which is the key to all the proofs.
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3. Universality of the random-cluster model

Lemma 3.19. For j > 1, de�ne the annuli Aj = [−2j+1,2j+1]2 \ [−2j ,2j ]2. Then, there exists
c > 0 such that for all j > 1 and ξ = 0,1, we have

ϕξAj

[
there exists an open circuit surrounding 0 in Aj

]
> c. (3.24)

By duality, the same also holds for a dually-open circuit.

Proof. This is proved by combining crossings of rectangles via the FKG inequality, as in Fig-

ure 3.15.

The estimates of the Lemma 3.19 for the dual model imply an upper bound on the one-arm

probability under ϕ1
G

, as that in the second point of Theorem 3.1. Indeed, if a dually-open

circuit occurs in Aj for some j 6 log2n − 2, then the event {0↔ ∂Bn} fails. The fact (3.24)

is uniform in the boundary conditions on Aj allows us to “decouple” the events of (3.24),

and proves that the probability of no circuit occurring in any of A1, . . . ,Alog2 n−2 is bounded

above by (1− c)log2 n−2.

The converse bound is obtained by a straightforward construction of a large cluster using

crossings of rectangles of the form [0,2j ]× [0,2j+1] and their rotation by
π
2 , combined using

the FKG inequality.

From the above, we deduce that ϕ1
G
(0↔∞) = 0. The uniqueness of the critical in�nite

volume measure (the �rst point of Theorem 3.1) follows using a standard coupling argument.

Finally, to prove Corollary 3.3, we use the di�erential inequality of [GG11], as done

in [DCM16].

3.3.5 Universality of arm exponents: Theorem 3.4

The proof of universality of arm exponents (Theorem 3.4) follows exactly the steps of [GM14,

Sec. 8]. Arm events will be transferred between isoradial graphs using the same transforma-

tions as in the previous sections. As already discussed in Section 2.6, these transformations

alter primal and dual paths, especially at their endpoints. When applied to arm events, this

could considerably reduce the length of the arms. To circumvent such problems and shield

the endpoints of the arms from the e�ect of the star-triangle transformations, we de�ne a

variation of the arm events. It roughly consists in “attaching” the endpoints of the arms to a

track which is not a�ected by the transformations. Some notation is necessary.

Fix ε > 0 and a doubly-periodic isoradial graph G ∈ G(ε) with grid (sn)n∈Z and (tn)n∈Z.

Recall that the vertices of G
�

that are below and adjacent to t0 form the base of G. Also,

recall the notation x↔ y and write x
∗←→ y for connections in the dual con�guration.

For n < N and k ∈ {1} ∪ 2N, de�ne the event Ãk(n,N ) as

1. for k = 1: there exist primal vertices x1 ∈ Λ(n) and y1 < Λ(N ), both on the base, such

that x1↔ y1;

2. for k = 2: there exist x1,x
∗
1 ∈ Λ(n) and y1, y

∗
1 < Λ(N ), all on the base, such that x1↔ y1

and x∗1
∗←→ y∗1;

3. for k = 2j > 4: Ãk(n,N ) is the event that there exist x1, . . . ,xj ∈ Λ(n) and y1, . . . , yj <
Λ(N ), all on the base, such that xi ↔ yi for all i and xi = xj for all i , j .

Notice the resemblance between Ãk(n,N ) and Ak(n,N ), where the latter is de�ned just

before the statement of Theorem 3.4. In particular, observe that in the third point, the ex-

istence of j disjoint clusters uniting ∂Λ(n) to ∂Λ(N ) indeed induces 2j arms of alternating

colours in counterclockwise order. Two di�erences between Ãk(n,N ) and Ak(n,N ) should
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be noted: the fact that in the former arms are forced to have extremities on the base and that

the former is de�ned in terms or graph distance while the latter in terms of Euclidean dis-

tance. As readers probably expect, this has only a limited impact on the probability of such

events.

For the rest of the section, �x q ∈ [1,4] and write ϕ
G

for the unique in�nite-volume

random-cluster measure on G with parameters β = 1 and q.

Lemma 3.20. Fix k ∈ {1} ∪ 2N. There exists c > 0 depending only on ε, q, k and the funda-
mental domain of G such that

cϕ
G
[Ak(n,N )] 6 ϕ

G
[Ãk(n,N )] 6 c−1ϕ

G
[Ak(n,N )] (3.25)

for all N > n large enough.

The above is a standard consequence of what is known in the �eld as the arm separation

lemma (Lemma D.1). The proofs of the separation lemma and Lemma 3.20 are both fairly

standard but lengthy applications of the RSW theory of Theorem 3.1; they are discussed in

Appendix D (see also [Man12, Prop. 5.4.2] for a version of these for Bernoulli percolation).

We obtain Theorem 3.4 in two steps, �rst for isoradial square lattices, then for doubly-pe-

riodic isoradial graphs. The key to the �rst step is the following proposition.

Proposition 3.21. Let G(1) = Gα,β(1) and G
(2) = Gα,β(2) be two isoradial square lattices in

G(ε). Fix k ∈ {1} ∪ 2N. Then

ϕξ
G

(1)[Ãk(n,N )] = ϕξ
G

(2)[Ãk(n,N )],

for all n < N .

Proof. Fix k ∈ {1}∪2N and take N > n > 0 and M >N (one should imagine M much larger

than N ). Let G
mix

be the symmetric mixed graph of Section 3.2.1 formed above the base

of a block of M rows and 2M + 1 columns of G
(2)

superposed on an equal block of G
(1)

,

then convexi�ed, and symmetrically in below the base. Construct G̃
mix

in the same way,

with the role of G
(1)

and G
(2)

inversed. Recall, from Section 3.2.1, the series of star-triangle

transformations Σ↓ that transforms G
mix

into G̃
mix

.

Write ϕG
mix

and ϕG̃
mix

for the random-cluster measures on G
mix

and G̃
mix

, respectively,

with β = 1 and free boundary conditions. The events Ãk(n,N ) are also de�ned on G
mix

and

G̃
mix

.

Let ω be a con�guration on G
mix

such that Ãk(n,N ) occurs. Then, under the con�g-

uration Σ↓(ω) on G̃
mix

, Ãk(n,N ) also occurs. Indeed, the vertices xi and yi (and x∗1 and

y∗1 when k = 2) are not a�ected by the star-triangle transformations in Σ↓ and connec-

tions between them are not broken nor created by any star-triangle transformation. Thus,

ϕG
mix

[Ãk(n,N )] 6 ϕG̃
mix

[Ãk(n,N )]. Since the roles of G
mix

and G̃
mix

are symmetric, we �nd

ϕG
mix

[Ãk(n,N )] = ϕG̃
mix

[Ãk(n,N )] (3.26)

Observe that the quantities in (3.26) depend implicitly on M . When taking M →∞, due to

the uniqueness of the in�nite-volume random-cluster measures in G
(1)

and G
(2)

, we obtain

ϕG
mix

[Ãk(n,N )] −−−−−−→
M→∞

ϕ
G

(1)[Ãk(n,N )] and

ϕG̃
mix

[Ãk(n,N )] −−−−−−→
M→∞

ϕ
G

(2)[Ãk(n,N )].

Thus, (3.26) implies the desired conclusion.
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Corollary 3.22. Let G = Gα,β be an isoradial square lattice in G(ε) and �x k ∈ {1} ∪ 2N.
Then, there exists c > 0 depending only on ε, q and k such that,

cϕ
G
[Ak(n,N )] 6 ϕ

Z
2[Ak(n,N )] 6 c−1ϕ

G
[Ak(n,N )],

for any n < N .

Proof. Fix Gα,β and k as in the statement. The constants ci below depend on ε, q and k only.

Let β̃k = α−k − β0 +π and write β̃ for the sequence (β̃k)k∈Z. Due to the choice of Gα,β ,

we have β̃ ∈ [ε,π − ε]Z. Proposition 3.21 and Lemma 3.20 applied to Z
2 = G0, π2

and G0,β̃
yield a constant c1 > 0 such that

c1ϕG0,β̃
[Ak(n,N )] 6 ϕ

Z
2[Ak(n,N )] 6 c−11 ϕG0,β̃

[Ak(n,N )]. (3.27)

As in the proof of Corollary 3.12, Gα,β0 is the rotation by β0 of the graph G0,β̃ . This

does not imply that the arm events have the same probability in both graphs (since they are

de�ned in terms of square annuli). However, Proposition D.2] about arms extension provides

a constant c2 > 0 such that

c2ϕGα,β0
[Ak(n,N )] 6 ϕ

G0,β̃
[Ak(n,N )] 6 c−12 ϕGα,β0

[Ak(n,N )]. (3.28)

Finally apply Proposition 3.21 and Lemma 3.20 to Gα,β0 and Gα,β to obtain a constant

c3 > 0 such that

c3ϕGα,β0
[Ak(n,N )] 6 ϕ

Gα,β
[Ak(n,N )] 6 c−13 ϕGα,β0

[Ak(n,N )]. (3.29)

Writing (3.27), (3.28) and (3.29) together yields the conclusion with c = c1c2c3.

Theorem 3.4 is now proved for isoradial square lattices. To conclude, we extend the result

to all doubly-periodic isoradial graphs.

Proof of Theorem 3.4. Consider a doubly-periodic graph G ∈ G(ε) for some ε > 0, with grid

(sn)n∈Z and (tn)n∈Z. Fix k ∈ {1}∪2N. The constants ci below depend on ε, q, k and the size

of the period of G.

Choose n < N and M > N (one should think of M as much larger than N ). Propo-

sition 3.9 (the symmetrized version) provides star-triangle transformations (σk)16k6K such

that, in G̃ = (σK ◦ · · ·◦σ1)(G), the region Λ(M) has a square lattice structure. Moreover, each

σk acts between s−dM and sdM (for some �xed d > 1) and between tM and t−M , none of them

a�ecting any rhombus of t0.

In a slight abuse of notation (since (sn)n∈Z, (tn)n∈Z is not formally a grid in G̃) we de�ne

Ãk(n,N ) for G̃ as for G.

Let ω be a con�guration on G such that Ãk(n,N ) occurs. Then, the image con�guration

(σK ◦· · ·◦σ1)(ω) on G̃ is such that Ãk(n,N ) occurs. Indeed, the transformations do not a�ect

the endpoints of any of the paths de�ning Ãk(n,N ). Thus,

ϕ
G
[Ãk(n,N )] 6 ϕ

G̃
[Ãk(n,N )].

The transformations may be applied in reverse order to obtain the converse inequality. In

conclusion,

ϕ
G
[Ãk(n,N )] = ϕ

G̃
[Ãk(n,N )]. (3.30)
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The right-hand side of the above depends implicitly on M . Write G
sq

for the isoradial

square lattice such that the region Λ(M) of G̃ is a centered rectangle of G
sq

. (It is easy to see

that there exists a lattice that satis�es this condition for all M simultaneously). The vertical

tracks sk of G̃ correspond to vertical tracks in G
sq

with an index between k and dk, where d
is the maximal number of track intersection on t0 between two consecutive tracks sj , sj+1 in

G.

In conclusion, taking M →∞ and using the uniqueness of the in�nite-volume measure

on G
sq

, we �nd

ϕ
G

sq[Ãk(n,dN )] 6 lim
M→∞

ϕ
G̃

[Ãk(n,N )] 6 ϕ
G

sq[Ãk(dn,N )]. (3.31)

Due to Lemma 3.20 and to the extension of arms (Proposition D.2),

c1ϕG
sq[Ak(n,N )] 6 ϕ

G
sq[Ãk(n,dN )] 6 ϕ

G
sq[Ãk(dn,N )] 6 c−11 ϕG

sq[Ak(n,N )],

for some constant c1 > 0. Using this, (3.31) and Lemma 3.20, we �nd

c2ϕG
sq[Ak(n,N )] 6 ϕ

G
[Ak(n,N )] 6 c−12 ϕG

sq[Ak(n,N )],

for some c2 > 0. Using Corollary (3.22), we obtain the desired result.

3.4 Proofs for q > 4

Fix q > 4 and G a doubly-periodic isoradial graph with grid (sn)n∈Z, (tn)n∈Z. Unless oth-

erwise stated, write ϕξ
G

for the isoradial random-cluster measure on G with parameters q,

β = 1 and free (ξ = 0) or wired (ξ = 1) boundary conditions. We will use the same notation

as in Sections 3.3.1 and 3.3.2.1.

The main goal of this section is to prove that there exist constants C,c > 0 such that

ϕ0
G

[
0↔ ∂Λ(n)

]
6 C exp(−cn), ∀n > 1. (3.32)

As we will see in Section 3.4.3, Theorem 3.2 and Corollary 3.3 follow from (3.32) through

standard arguments
6
.

The strategy used to transfer (3.32) from the regular square lattice to arbitrary isoradial

graphs is similar to that used in the previous section. However, note that the hallmark of

the regime q > 4 is that boundary conditions in�uence the model at in�nite distance. The

arguments in the previous section were based on local modi�cations of graphs; in the present

context, the random-cluster measure in the modi�ed regions is in�uenced by the structure of

the graph outside. This generates additional di�culties that require more careful construc-

tions.

We start with a technical result that will be useful throughout the proofs. For N,M > 1,

write Rhp(N ;M) = R(−N,N ;0,M) for the half-plane rectangle which is the subgraph of G

contained between t−N , tN , s0 and sM .

Proposition 3.23. Suppose that there exist constants C0, c0 > 0 such that for all N > n,

ϕ0
Rhp(N ;N )

[
0↔ ∂Λ(n)

]
6 C0 exp(−c0n). (3.33)

6
When the graph is not periodic, a condition similar to (3.32) should be shown for all vertices of G, not just

0. It will be apparent from the proof that the values of c and C only depend on the parameter in the bounded

angles property and on the distance between the tracks of the grid. It is then straightforward to adapt the proof

to graphs with the conditions of [GM14].
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Then, there exist constants C,c > 0 such that (3.32) is satis�ed. The constants C,c depend only
on C0, c0, on the parameter ε such that G ∈ G(ε) and on the size of the fundamental domain of
G.

Observe that (3.33) may seem weaker than (3.32). Indeed, whileϕ0
G

is the limit ofϕ0
Λ(N ) as

N →∞, the limit of the measures ϕ0
Rhp(N ;N ) is what would naturally be called the half-plane

in�nite-volume measure with free boundary conditions. Connections departing from 0 in

the latter measure are (potentially) considerably less likely than in ϕ0
G

due to their proximity

to a boundary with the free boundary conditions.

Xmin(ω)0

C(ω)

0

Figure 3.16 – Left: The event of (3.33). Right: If Xmin is the lowest point of the cluster of

0 in Λ(N ), then the environment around Xmin is less favourable to connections than that of

the left image.

Proof. FixN > 1. We will prove (3.32) for the measureϕ0
Λ(N ) instead ofϕ0

G
. It will be apparent

from the proof that the constants c,C do not depend on N . ThusN may be taken to in�nity,

and this will provide the desired conclusion.

For simplicity of notation, let us assume that the grid (sn), (tn) ofG is such thatR(0,1;0,1)
is a fundamental domain of G. Recall that xi,j denotes the vertex of G just to the left of si
and just below tj . Then, all vertices xi,j are translates of 0 by vectors that leave G invariant.

Write ‖xi,j‖ =max{|i|, |j |}, in accordance with the notation Λ(·).
For a random-cluster con�gurationω on Λ(N ), let C(0) denote the connected component

of the origin. Let Xmin = Xmin(ω) be a point xi,j of minimal index j such that C(0) intersects

xi,j +R(0,1;0,1). If several such points exist, choose one according to some rule (e.g., that of

minimal i). We will estimate the connection probability ϕ0
Λ(N )

[
0↔ ∂Λ(n)

]
by studying the

possible values of Xmin(ω):

ϕ0
Λ(N )

[
0↔ ∂Λ(n)

]
=

∑
−N6i6N
−N6j60

ϕ0
Λ(N )

[
0↔ ∂Λ(n) and Xmin = xi,j

]
. (3.34)

Fix i, j as in the sum and write C(xi,j ) for the connected component of xi,j . By the �nite

energy property, there exists η depending only on the bounded angles property and the size

of the fundamental domain of G such that

ϕ0
Λ(N )

[
0↔ ∂Λ(n) and Xmin = xi,j

]
6 ηϕ0

Λ(N )

[
0↔ xi,j ↔ ∂Λ(n) and Xmin = xi,j

]
.

Notice that if the event on the right-hand side above occurs, then xi,j is connected to “dis-

tance” r := max{‖xi,j‖, n2 }; that is xi,j ↔ xi,j +∂Λ(r). Moreover, the connected component of
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xi,j is contained above track tj . By the translation invariance and the comparison between

boundary conditions,

ϕ0
Λ(N )

[
xi,j ↔ xi,j +∂Λ(r) and C(xi,j ) contained above tj

]
6 ϕ0

Λ(2N )

[
0↔ ∂Λ(r) and C(0) contained above t0

]
Let Γ ∗ be the lowest dual left-right crossing of Λ(2N ) contained above t0 (actually we allow Γ ∗

to use the faces of G
�

below t0 but adjacent to it). If C(0) is contained above t0, then Γ ∗ passes

under C(0). By conditioning on the values γ∗ that Γ ∗ may take and using the comparison

between boundary conditions we �nd

ϕ0
Λ(2N )

[
0↔ ∂Λ(r) and C(0) contained above t0

]
6

∑
γ∗
ϕ0
Λ(2N )

[
0↔ ∂Λ(r) and C(0) contained above γ∗ |Γ ∗ = γ∗

]
ϕ0
Λ(2N )

[
Γ ∗ = γ∗

]
6

∑
γ∗
ϕ0
Rhp(2N ;2N )

[
0↔ ∂Λ(r)

]
ϕ0
Λ(2N )

[
Γ ∗ = γ∗

]
6 C exp(−cr).

The last inequality is due to (3.33). Inserting this into (3.34) (recall that r = max{‖xi,j‖, n2 })
we �nd

ϕ0
Λ(N )

(
0↔ ∂Λ(n)

)
=

∑
−N6i6N
−N6j60

ηC exp(−cmax{‖xi,j‖;n/2})

6 n2
2 ηC exp(− c2n) +

∑
k>n

2kηC exp(−ck)

6 C′ exp(−c′n),

for some adjusted constants c′ ,C′ > 0 that do not depend on n or N . Taking N → ∞, we

obtain the desired conclusion.

The following result will serve as the input to our procedure. It concerns only the regu-

larly embedded square lattice and is a consequence of [DCST17] and [DGH
+

16]. For coher-

ence with the notation above, we consider the square lattice as having edge-length

√
2 and

rotated by
π
4 with respect to its usual embedding. This is such that the diamond graph has

vertices {(a,b) : a,b ∈Z}, with those with a+ b even being primal vertices. In a slight abuse

of notation, write Z
2

for the lattice thus embedded.

Write ϕ1/0
Rhp(N ;N ) for the random-cluster measure on the domain Rhp(N ;N ) of Z

2
with

β = 1, free boundary conditions on [−N,N ]×{0} and wired boundary conditions for the rest

of the boundary. Also de�ne H = Z ×N to be the upper-half plane of Z
2
. Write ϕ1/0

H
for

the half-plane random-cluster measure which is the weak (decreasing) limit of ϕ1/0
Rhp(N ;N ) for

N →∞.

Proposition 3.24. For the regular square lattice and q > 4, there exist constants C0, c0 > 0
such that, for all n > 1,

ϕ1/0
H

[
0↔ ∂Λ(n)

]
6 C0 exp(−c0n). (3.35)
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Proof. Fix q > 4. It is shown in [DGH
+

16] that the phase transition of the random-cluster

measure on Z
2

is discontinuous and that the critical measure with free boundary conditions

exhibits exponential decay. That is, ϕ0
Z

2 satis�es (3.32) for some constants C,c > 0. To prove

(3.35), it su�ces to show that the weak limit ϕ1/0
H

of the measures ϕ1/0
Rhp(N ;N ) has no in�nite

cluster almost surely. Indeed, then ϕ1/0
H

is stochastically dominated by ϕ0
Z

2 .

The rest of the proof is dedicated to showing that ϕ1/0
H

[
0↔ ∞

]
= 0, and we do so by

contradiction. Assume the opposite. By ergodicity of ϕ1/0
H

, for any ε > 0, there exists N > 0
such that

ϕ1/0
H

[
Λ(N )↔∞

]
> 1− ε. (3.36)

Furthermore, ϕ1/0
H

is also the decreasing limit of the measures ϕ1/0
S`

, where S` = Z × [0, `]
and 1/0 refers to the boundary conditions which are wired on the top and free on the bottom

of the strip S` (boundary conditions at in�nity on the left and right are irrelevant since the

strip is essentially one dimensional). Therefore,

ϕ1/0
S4N

[
Λ(N )↔ top of S4N

]
> 1− ε. (3.37)

In [DCST17], Lemma 2
7

shows that

ϕ1/0
S4N

[
C∗h(−4N,4N ;N,3N )

]
> c1,

for some constant c1 > 0 not depending on N . If C∗h(−4N,4N ;N,3N ) occurs, denote by

Γ ∗ the top-most dual crossing in its de�nition. Moreover, let A be the event that Γ ∗ is con-

nected to the line Z × {0} by two dually-open paths contained in R(−4N,−N ;0,3N ) and

R(N,4N ;0,3N ), respectively (see Figure 3.17). Then, using the comparison between bound-

ary conditions and the self-duality of the model, we deduce the existence of c2 > 0 such

that

ϕ1/0
S4N

[
A
∣∣∣C∗h(−4N,4N ;N,3N )

]
> c2. (3.38)

0

2N

N

3N

Γ∗

Figure 3.17 – The strip S4N with wired boundary conditions on the top and free on

the bottom. If C∗h(−4N,4N ;N,3N ) ∩ A occurs, then Λ(N ) is disconnected from the top

of the strip. Due to the self-duality, both C∗h(−4N,4N ;N,3N ) and A conditionally on

C∗h(−4N,4N ;N,3N ) occur with positive probability.

7
Actually a slight adaptation of [DCST17, Lem. 2] is necessary to account for the rotation by

π
4 of the lattice.

78



3.4. Proofs for q > 4

Notice that, if C∗h(−4N,4N ;N,3N ) and A both occur, then Λ(N ) may not be connected

to the top of S4N by an open path. Thus

ϕ1/0
S4N

[
Λ(N )↔ top of S4N

]
6 1− c1c2.

This contradicts (3.37) for ε < c1c2, and the proof is complete.

The proof of (3.32) is done in two stages, �rst it is proved for isoradial square lattices,

then for arbitrary doubly-periodic isoradial graphs.

3.4.1 Isoradial square lattices

The proof of (3.33) for isoradial embeddings of square lattices follows the procedure of Sec-

tion 3.3.2. That is, two lattices with same transverse angles for the vertical tracks are glued

along a horizontal track. Track exchanges are performed, and estimates as those of (3.33) are

transported from one lattice to the other.

Transforming the regular lattice Z
2

into an arbitrary isoradial one is done in two steps:

�rst Z
2

is transformed into a lattice with constant transverse angles for vertical tracks; then

the latter (or rather its rotation) is transformed into a general isoradial square lattice. For

technical reasons, we will perform the two parts separately.

We should mention that some signi�cant di�culties arise in this step due to the long-range

e�ect of boundary conditions. Indeed, recall that in order to perform track exchanges, the

graph needs to be convexi�ed. This completion a�ects boundary conditions in an uncon-

trolled manner, which in this case is crucial. Two special arguments are used to circumvent

these di�culties; hence the two separate stages in the proof below.

Recall the notationGα,β for the isoradial square lattice with transverse anglesα = (αn)n∈Z
for the vertical train tracks (sn)n∈Z and β = (βn)n∈Z for the horizontal train tracks (tn)n∈Z.

Write 0 (also written x0,0) for the vertex of Gα,β just below track t0 and just to the left of s0.

We will always assume that Gα,β is indexed such that 0 is a primal vertex.

The result of the �rst part is the following.

Proposition 3.25. LetG0,β be an isoradial square lattice inG(ε) for some ε > 0, with transverse
angles 0 for all vertical tracks. Then, there exist constants C,c > 0 depending on ε only such
that

ϕ0
Rhp(N ;N )

[
0↔ ∂Λ(n)

]
6 C exp(−cn), ∀n < N. (3.39)

Proof. Fix a lattice G0,β as in the statement. For integers 2n < N , let G
mix

be the mixture of

G0,β and Z
2
, as described in Section 3.2. Notice that here the order of the regular block (that

of Z
2
) and the irregular one (that of G0,β) is opposite to that in the previous section.

In this proof, the mixed graph is only constructed above the base level; it has 2N + 1
vertical tracks (si)−N6i6N of transverse angle 0 and 2N + 2 horizontal tracks (tj )06j62N+1,

the �rst N +1 having transverse angles β0,β1, . . . ,βN , respectively and the following N +1
having transverse angles

π
2 . Finally, G

mix
is a convexi�cation of the piece of square lattice

described above.

Set G̃
mix

to be the result of the inversion of the regular and irregular blocks ofG
mix

using

the sequence of transformations Σ↑. Let ϕG
mix

and ϕG̃
mix

be the random-cluster measures

with the free boundary conditions on G
mix

and G̃
mix

respectively. The latter is then the

push-forward of the former by the sequence of transformations Σ↑.
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3. Universality of the random-cluster model

Let δ0 ∈ (0,1) be a constant that will be set below; it will be chosen only depending

on ε and q. Write ∂L, ∂R and ∂T for the left, right and top boundaries, respectively, of a

rectangular domain Rhp(.; .).
Consider a con�guration ω on G

mix
such that the event {0↔ ∂Λ(n)} occurs. Then, 0 is

connected in ω to either ∂LRhp(n;δ0n), ∂RRhp(n;δ0n) or ∂T Rhp(n;δ0n). Thus,

ϕG
mix

[
0↔ ∂Λ(n)

]
6ϕG

mix

[
0

Rhp(n;δ0n)←−−−−−−−→ ∂LR
hp(n;δ0n)

]
+ϕG

mix

[
0

Rhp(n;δ0n)←−−−−−−−→ ∂RR
hp(n;δ0n)

]
+ϕG

mix

[
0

Rhp(n;δ0n)←−−−−−−−→ ∂T R
hp(n;δ0n)

]
. (3.40)

Moreover, since the graph G
mix

and G0,β are identical in the ball of radius N around 0 for

the graph-distance,

ϕ0
Rhp(N ;N )

[
0↔ ∂Λ(n)

]
6 ϕG

mix

[
0↔ ∂Λ(n)

]
, (3.41)

where in the left-hand side Rhp(N ;N ) denotes the rectangular domain of G0,β . We used

above the comparison between boundary conditions.

In conclusion, in order to obtain (3.39), it su�ces to prove that the three probabilities of

the right-hand side of (3.40) are bounded by an expression of the form Ce−cn, uniformly in

N . We concentrate on this from now on.

Let us start with the last line of (3.40). Recall Proposition 3.16; a straightforward adapta-

tion reads:

Adaptation of Proposition 3.16. There exist δ > 0 and cn > 0 satisfying cn→ 1 as n→∞
such that, for all n and sizes N > 4n,

ϕG̃mix

[
0

Rhp(4n;δδ0n)←−−−−−−−−−→ ∂T R
hp(4n;δδ0n)

]
> cnϕGmix

[
0

Rhp(n;δ0n)←−−−−−−−→ ∂T R
hp(n;δ0n)

]
. (3.42)

The proof of the above is identical to that of Proposition 3.16. The constant δ and the

sequence (cn)n only depend on ε and q.

By the comparison between boundary conditions,

ϕG̃
mix

[
0

Rhp(4n;δδ0n)←−−−−−−−−−→ ∂T R
hp(4n;δδ0n)

]
6 ϕ1/0

Rhp(N ;N )

[
0←→ ∂Λ(δδ0n)

]
6 C0 exp(−c0δδ0n).

The second inequality is due to Proposition 3.24 and to the fact that the rectangle Rhp(N ;N )
of G̃

mix
is fully contained in the regular block. Thus, from (3.42) and the above, we obtain,

ϕG
mix

[
0

Rhp(4n;δ0n)←−−−−−−−−→ ∂T R
hp(4n;δ0n)

]
6
C0

cn
exp(−c0δδ0n). (3.43)

Forn large enough, we have cn > 1/2, and the left-hand side of (3.43) is smaller than 2C0 exp(−c0δδ0n).
Since the threshold for n and the constants c0,δ and δ0 only depend on ε and q, the bound

is of the required form.
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We now focus on bounding the probabilities of connection to the left and right boundaries

of Rhp(n;δ0n). Observe that, for a con�guration in the event

{
0

Rhp(n;δ0n)←−−−−−−−→ ∂RRhp(n;δ0n)
}
,

it su�ces to change the state of at most δ0n edges to connect 0 to the vertex x0,n (we will

assume here n to be even, otherwise x0,n should be replaced by x0,n+1). By the �nite-energy

property, there exists a constant η = η(ε,q) > 0 such that

ϕG
mix

[
0

Rhp(n;δ0n)←−−−−−−−→ ∂RR
hp(n;δ0n)

]
6 exp(ηδ0n)ϕG

mix

[
0↔ x0,n

]
.

The points 0 and x0,n are not a�ected by the transformations in Σ↑, therefore

ϕG
mix

[
0↔ x0,n

]
= ϕG̃

mix

[
0↔ x0,n

]
6 ϕG̃

mix

[
0↔ ∂Λ(n)

]
6 ϕ1/0

Rhp(N ;N )

[
0↔ ∂Λ(n)

]
6 C0 exp(−c0n),

where in the last line, Rhp(N ;N ) is a subgraph of G̃
mix

, or equivalently of Z
2

since these two

are identical. The last inequality is given by Proposition 3.24. We conclude that,

ϕG
mix

[
0

Rhp(n;δ0n)←−−−−−−−→ ∂RR
hp(n;δ0n)

]
6 C0 exp

[
− (c0 − δ0η)n

]
. (3.44)

The same procedure also applies to {0
Rhp(n;δ0n)←−−−−−−−→ ∂LRhp(n;δ0n)}.

Suppose now that δ0 =
c0

c0δ+η
is chosen such that

c := c0 − δ0η = c0δδ0 > 0.

Note that δ0 ∈ (0,1) since η > c0 and that c depends only on ε and q. Then, (3.40), (3.43)

and (3.44) imply that for n larger than some threshold depending only on ε,

ϕG
mix

[
0↔ ∂Λ(n)

]
6 4C0 exp(−cn).

Finally, by (3.41), we deduce (3.39) for allN > 2n and n large enough. The condition on nmay

be removed by adjusting the constant C; the bound on N is irrelevant, since the left-hand

side of (3.39) is increasing in N .

The same argument may not be applied again to obtain (3.39) for general isoradial square

lattices since it uses the bound (3.35), which we have not proved for lattices of the form G0,β .

Indeed, (3.35) is not implied by (3.39) when no rotational symmetry is available. A di�erent

argument is necessary for this step.

We draw the attention of the reader to the fact that the lattice of Proposition 3.25 was

not assumed to be doubly-periodic, neither will be the following one.

Proposition 3.26. Let Gα,β be an isoradial square lattice in G(ε) for some ε > 0. Then, there
exist constants C,c > 0 depending only on ε, such that

ϕ0
Rhp(N ;N )

[
0↔ ∂Λ(n)

]
6 C exp(−cn), ∀n < N. (3.45)

Proof. Fix a lattice Gα,β as in the statement. The proof follows the same lines as that of

Proposition 3.25, with certain small alterations.
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Set θ = 1
2 (inf{βn : n ∈Z}+sup{αn : n ∈Z}) and writeGα,θ for the lattice with transverse

angles α for vertical tracks and constant angle θ for all horizontal tracks. We will refer to

this lattice as regular.
For integers 2n 6 N < M , de�ne G

mix
to be the mixture of Gα,β and Gα,θ as in the

previous proof, with the exception that, while both blocks have width 2N+1 and the irregular

block (that is that of Gα,β) has heightN +1, the regular block (that of Gα,θ) has heightM+1.

Precisely, G
mix

is the convexi�cation of the lattice with 2N +1 vertical tracks (si)−N6i6N of

transverse angles (α−N , . . . ,αN ) and M +N + 2 horizontal tracks (tj )06j6M+N+1, the �rst

N +1 having transverse angles β0, . . . ,βN and the following M +1 having transverse angle

θ.

Recall that G̃
mix

, which is the result of the inversion of the regular and irregular blocks of

G
mix

byΣ↑, may be chosen to be an arbitrary convexi�cation of the latticeG(α−N ,...,αN ),(θ,...,θ,β0,...,βN ).

More precisely, once such a convexi�cation G̃
mix

is chosen, a series of star-triangle transfor-

mations Σ↑ may be exhibited. This fact will be useful later.

Write as before ϕG
mix

and ϕG̃
mix

for the random-cluster measures with free boundary

conditions on G
mix

and G̃
mix

, respectively. Then, by the comparison between boundary con-

ditions,

ϕ0
Rhp(N ;N )

[
0↔ ∂Λ(n)

]
6 ϕG

mix

[
0↔ ∂Λ(n)

]
,

where Rhp(N ;N ) refers to the domain in Gα,β , or equivalently in G
mix

since the two are

equal. Notice that the above inequality is valid for all M .

Let δ0 ∈ (0,1) be a constant that will be set below. Using the same notation and reasoning

as in the previous proof, we �nd

ϕG
mix

[
0↔ ∂Λ(n)

]
6 1
cn
ϕG̃

mix

[
0

Rhp(2n;δδ0n)←−−−−−−−−−→ ∂T R(2n;δδ0n)
]
+2exp(ηδ0n)ϕG̃

mix

[
0↔ x0,n

]
6 2ϕG̃

mix

[
0↔ ∂Λ(δδ0n)

]
+2exp(ηδ0n)ϕG̃

mix

[
0↔ ∂Λ(n)

]
, (3.46)

where δ > 0 and η > 0 are constants depending only on ε and q. The latter inequality is only

valid for n above a threshold also only depending on ε and q.

At this point, the previous proof used (3.35) to bound the right-hand side. Since this is

no longer available, we will proceed di�erently.

As previously stated, we may choose the convexi�cation for G̃
mix

. Let it be such that the

tracks with transverse angle θ are as low as possible. That is, G̃
mix

is such that, for any track t
with transverse angle θ, any intersection below t involves one track with transverse angle θ.

The existence of such a convexi�cation is easily proved; rather than writing a formal proof,

we prefer to direct the reader to the example of Figure 3.18.

Write t̃0, . . . , t̃M for the tracks of transverse angle θ of G̃
mix

, indexed in increasing order.

Call s̃−2N−1, . . . , s̃N the tracks intersecting t̃0, ordered by their intersection points from left

to right. Denote by α̃−2N−1, . . . , α̃N their transverse angles.

The family s̃−2N−1, . . . , s̃N contains all vertical tracks of the original graph Gα,β (that is

those denoted by s−N , . . . , sN ) but also the horizontal tracks of Gα,β with transverse angles

di�erent from θ. Since θ < βj for all 0 6 j 6 N , the latter intersect t0 left of the former.

Thus, s̃i = si for −N 6 i 6N , hence the indexing.

The region of G̃
mix

contained below t̃M is a (�nite part of a) square lattice. Precisely,

it is the square lattice G(α̃i )−2N−16i6N ,(θ)06j6M . Complete the sequence (α̃i)−2N−16i6N into a

bi-in�nite sequence α̃ = (α̃i)i∈Z by declaring all additional terms equal to α̃0. Write R̃(., .; ., .)
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2N + 1 tracks

N
+
1
track

s

M
+
1
tr
ac
ks

Gmix G̃mix

Figure 3.18 – Left: The diamond graph G�
mix

obtained by superposing a block of G
�
α,θ to

one of G
�
α,β . The convexi�cation is drawn in gray. Right: The diamond graph G̃�

mix
with

convexi�cation (gray) chosen such that the tracks t̃0, . . . , t̃M (blue) are as low as possible. This

ensures that the region below t̃M (delimited in bold) has a square lattice structure.

for the domains of Gα̃,θ de�ned in terms of the tracks (̃si)i∈Z and (̃tj )j∈Z. Also write R(., .; ., .)
for the domains of the original lattice Gα,β .

By the comparison between boundary conditions, for any increasing event A depending

only on the region of G̃
mix

below t̃M ,

ϕG̃
mix

[A] 6 ϕξ
R̃(−2N−1,N ;0,M)

[A],

where ξ are the boundary conditions which are wired on the top of R̃(−2N −1,N ;0,M) and

free on the rest of the boundary. Thus, (3.46) implies that

ϕ0
Rhp(N ;N )

[
0↔ ∂Λ(n)

]
6 2ϕξ

R̃(−2N−1,N ;0,M)

[
0↔ ∂Λ(δδ0n)

]
+2exp(ηδ0n)ϕ

ξ
R̃(−2N−1,N ;0,M)

[
0↔ ∂Λ(n)

]
.

Since the above is true for allM , we may takeM to in�nity. Then, the measuresϕξ
R̃(−2N−1,N ;0,M)

tend decreasingly to the measureϕ0
R̃(−2N−1,N ;0,∞)

with free boundary conditions in the half-in-

�nite strip.
8
. We conclude that

ϕ0
Rhp(N ;N )

[
0↔ ∂Λ(n)

]
6 2ϕ0

R̃(−2N−1,N ;0,∞)

[
0↔ ∂Λ(δδ0n)

]
+2exp(ηδ0n)ϕ

0
R̃(−2N−1,N ;0,∞)

[
0↔ ∂Λ(n)

]
6 2ϕ0

Gα̃,θ

[
0↔ ∂Λ(δδ0n)

]
+2exp(ηδ0n)ϕ

0
Gα̃,θ

[
0↔ ∂Λ(n)

]
. (3.47)

8
This step is standard. Let A be an increasing event depending only on the state of edges in R̃(−2N −

1,N ;0,M0) for some M0. Then, for any M >M0, denote by Γ ∗ the highest dually-open horizontal crossing of

R̃(−2N −1,N ;0,M) and set H to be the event that Γ ∗ does not intersect R̃(−2N −1,N ;0,M0). Then, Γ ∗ may be

explored from above, and standard arguments of comparison between boundary conditions imply that

ϕξ
R̃(−2N−1,N ;0,M)

[A] 6 ϕ0
R̃(−2N−1,N ;0,∞)

[A]ϕξ
R̃(−2N−1,N ;0,M)

[H] +ϕξ
R̃(−2N−1,N ;0,M)

[Hc].

By the �nite energy property and the fact that R̃(−2N−1,N ;0,∞) has constant width,ϕξ
R̃(−2N−1,N ;0,M)

[H]→ 1

as M→∞. This su�ces to conclude.
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3. Universality of the random-cluster model

Finally, the square lattice Gα̃,θ has constant transverse angle θ for all its horizontal tracks

and, by choice of θ, is in G(ε/2). Thus, Proposition 3.25 applies to it (or rather to its rotation

G0,(α̃−j−θ+π)j ). We conclude the existence of constants C0, c0 > 0 depending on ε only, such

that

ϕ0
Gα̃,θ

[
0↔ ∂Λ(k)

]
6 C0 exp(−c0k), ∀k > 1.

Set δ0 =
c0

c0δ+η
and

c = c0 − δ0η = c0δδ0 > 0.

Then c only depends on ε and q and the right hand side of (3.47) is bounded by 4C exp(−cn),
which provides the desired conclusion.

The second proposition (Proposition 3.26) appears to use a weaker input than the �rst.

One may therefore attempt to use the same argument for Proposition 3.25, so as to avoid

using the more involved bound (3.35). Unfortunately, this is not possible, as the sequence

of angles α̃ in the second proof may never be rendered constant, since it contains all the

horizontal and vertical tracks of Gα,β .

3.4.2 Doubly-periodic isoradial graphs

LetG be an arbitrary doubly-periodic isoradial graph in someG(ε), with grid (sn)n∈Z, (tn)n∈Z.

Denote by 0 the vertex just below and to the left of the intersection of t0 and s0. We will

assume that it is a primal vertex. The goal of this section is the following.

Proposition 3.27. There exist constants c,C > 0 depending only on ε and on the size of the
fundamental domain of G, such that

ϕ0
Rhp(N ;N )

[
0↔ ∂Λ(n)

]
6 C exp(−cn), ∀n < N. (3.48)

Again, some care is needed when handling boundary conditions. Rather than working

with G and modi�cations of it, we will construct a graph that locally resembles G, but that

allows us to control boundary conditions.

Proof. For ρ ∈ [0,π), write T (ρ)
G

for the set of tracks of G with asymptotic direction ρ (recall

the existence of an asymptotic direction from the proof of Lemma 3.8). By periodicity, there

exists a �nite family 0 6 ρ0 < · · · < ρT < π such that

T
G
=

T⊔
`=0

T (ρ`)
G

.

Assume that the lattice is rotated such that the horizontal tracks (tn)n∈Z have asymptotic

direction ρ0 = 0. Fix constants n < N .

Let τL be the right-most track in T (ρT )
G

that intersects t0 left of 0 and does not intersect

Rhp(N ;N ). Similarly, de�ne τR as the left-most track in T (ρ1)
G

that intersects t0 right of 0 and

does not intersect Rhp(N ;N ). Denote byD0 the domain of G bounded by t0 below, above by

tN , to the left by τL and to the right by τR. One may imagine D0 as a trapezoid with base t0
and top tN . By de�nition of τL and τR,

Rhp(N ;N ) ⊂ D0. (3.49)
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3.4. Proofs for q > 4

Complete D0 to form a bigger, �nite graph D as follows. Let s̃K− , . . . , s̃K+
be the tracks of

D0 that intersect t0, ordered from left to right, with s̃0 = s0. Orient these tracks upwards.

Orient the remaining tracks t0, . . . , tN from left to right.

In D, we will make sure that t1, . . . , tN intersect all tracks (̃si)K−6i6K+
, but that no addi-

tional intersections between tracks (̃si)K−6i6K+
are introduced. One should imagine that the

track t1, after exiting D0, “slides down” on the side of D0; t2 does the same: it slides down

along the side of D0 until reaching t1, then continues parallel to t1, etc. The same happens

on the left side. Finally, on top of the graph obtained above add a number of parallel tracks

tN+1, . . . , tM adjacent to each other, with constant transverse angle, for instance, that of tN ,

for some M > N . Call the resulting graph D. In D, each track tj with 0 6 j 6M intersects

all tracks (̃si)K−6i6K+
. We do not give a more formal description of the construction ofD; we

rather direct the readers attention to Figure 3.19 for an illustration.

0

τL τR

tN

Figure 3.19 – A graph D0 (the delimited region) and the completion D – only the diamond

graph is depicted. The vertical tracks (si) are red, horizontal tracks (tj ) blue, and the others

purple. The rectangle Rhp(N ;N ) (in reality it should be wider) is delimited by dotted lines.

The tracks delimiting D0 are τL, τR and tN ; they are marked in bold.

In light of (3.49),

ϕ0
Rhp(N ;N )

[
0↔ ∂Λ(n)

]
6 ϕ0

D
[
0↔ ∂Λ(n)

]
, (3.50)

where Rhp(N ;N ) refers to the region of the graph G.

Next, we transform D to create a square lattice. Call a black point of D any intersection

of two tracks s̃i and s̃j . Then, by a straightforward modi�cation of Proposition 3.9, there exist

star-triangle transformations σ1, . . . ,σK applied to D such that, in (σK ◦ · · · ◦ σ1)(D), there is

no black point between t0 and t1. Moreover, all transformations σ1, . . . ,σK act between t0
and t1.

The existence of σ1, . . . ,σK is proved by eliminating one by one the back points of D
between t0 and t1, starting with the top most. The main thing to observe is that, by the

construction of D, any black point between t0 and t1 is the intersection of two tracks s̃i and

s̃j , both of which intersect t1 above.

Set Σ1 = σK ◦ · · · ◦ σ1. Then, one may de�ne recurrently sequences of transformations

(Σj )16j6M such that

• each Σj acts on (Σj−1 ◦ · · · ◦Σ1)(G) between tj−1 and tj ;
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3. Universality of the random-cluster model

• in (Σj ◦ · · · ◦Σ1)(G), there are no black points below tj .

Let D = (ΣM ◦ · · · ◦Σ1)(G). Below tM , D is a rectangular part of a square lattice with

width K+ −K− +1 and height M .

Let α̃ = (α̃i)K−6i6K+
be the transverse angles of the tracks (̃si)K−6i6K+

. Also, denote by

β̃ = (β̃j )j>0 the sequence of angles constructed as follows: for 0 6 j 6N , β̃j = βj which is the

transverse angles of tj ; for j > N , set β̃j = βN . Then, the part of D below tM is a rectangular

domain of the vertical strip of square lattice Gα̃,β̃ . Moreover, also let us denote by Gα̃,β̃ any

completion of Gα̃,β̃ into a full plane square lattice. We note that the angles α̃ and β̃ also are

transverse angles of tracks in G, therefore Gα̃,β̃ ∈ G(ε) as does G.

By the same argument as for (3.47), for any �xed j 6N ,

limsup
M→∞

ϕ0
D

[
0↔ ∂Λ(j)

]
6 ϕ0

Gα̃,β̃

[
0↔ ∂Λ̃(j)

]
. (3.51)

In the above inequality, Λ denotes a square domain de�ned in terms of tracks (si) and (tj )
whereas Λ̃ is de�ned in terms of tracks (̃si) and (tj ). We also notice that the box de�ned in

terms of (si) is larger than that of (̃si). Proposition 3.26 applies to Gα̃,β̃ and we deduce the

existence of constants c,C > 0, depending only on ε, such that, for all j 6N ,

limsup
M→∞

ϕ0
D

[
0↔ ∂Λ(j)

]
6 ϕ0

Gα̃,β̃

[
0↔ ∂Λ(j)

]
6 C exp(−cj). (3.52)

Let us now come back to connections in D. These can be transformed into connections

in D via the sequence of star-triangle transformations (Σj )16j6M . We use the same decom-

position as in the proofs of Section 3.4.1 to transfer the exponential decay in D to that in

D.

Let ω be a con�guration on D such that 0↔ ∂Λ(n). Then, either 0 is connected to the

left or right sides of Rhp(n;δ0n) or it is connected to the top of Rhp(n;δ0n) inside Rhp(n;δ0n).
The constant δ0 used in this decomposition will be chosen below and will only depend on ε
and q. Thus, we �nd,

ϕ0
D
[
0↔ ∂Λ(n)

]
6ϕ0
D
[
0

Rhp(n;δ0n)←−−−−−−−→ ∂LR
hp(n;δ0n)

]
+ϕ0
D
[
0

Rhp(n;δ0n)←−−−−−−−→ ∂RR
hp(n;δ0n)

]
+ϕ0
D
[
0

Rhp(n;δ0n)←−−−−−−−→ ∂T R
hp(n;δ0n)

]
. (3.53)

Let us now bound the three terms above separately. We start with the �rst two. By the

�nite-energy property, there exist a constant η > 0 depending only on ε and the fundamental

domain of G and primal vertices x− and x+ just below t0 (thus on the boundary of D) left of

s−n and right of sn, respectively, such that

ϕ0
D
[
0

Rhp(n;δ0n)←−−−−−−−→ ∂LR
hp(n;δ0n)

]
6 exp(ηδ0n)ϕ

0
D(0←→ x−) and

ϕ0
D
[
0

Rhp(n;δ0n)←−−−−−−−→ ∂RR
hp(n;δ0n)

]
6 exp(ηδ0n)ϕ

0
D(0←→ x+). (3.54)

Since the transformations Σ1, . . . ,ΣM preserve connections between points on the boundary

of D,

ϕ0
D
[
0←→ x−

]
= ϕ0

D

[
0←→ x−

]
6 ϕ0

D

[
0↔ ∂Λ(n)

]
. (3.55)
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3.4. Proofs for q > 4

The same holds for ϕ0
D
[
0←→ x+

]
.

Since each sequence of transformations Σk only acts below tk , an open path connecting

0 to ∂T Rhp(n;δ0n) inD is transformed into an open path connecting 0 to tδ0n−1 (Figure 3.5).

ϕ0
D
[
0

Rhp(n;δ0n)←−−−−−−−→ ∂T R
hp(n;δ0n)

]
6 ϕ0

D

[
0←→ tδ0n−1

]
6 ϕ0

D

[
0←→ ∂Λ(δ0n− 1)

]
6 C exp(−c(δ0n− 1)). (3.56)

By injecting (3.54), (3.55) and (3.56) into (3.53), then further into (3.50), we �nd

ϕ0
Rhp(N ;N )

[
0↔ ∂Λ(n)

]
6 2exp(ηδ0n)ϕ

0
D

[
0↔ ∂Λ(n)

]
+ϕ0
D

[
0←→ ∂Λ(δ0n− 1)

]
.

The above is true for all M , and we may take M→∞. Using (3.52), we �nd

ϕ0
Rhp(N ;N )

[
0↔ ∂Λ(n)

]
6 2C exp

[
− (c − ηδ0)n

]
+C exp

[
− c(δ0n− 1)

]
.

Set δ0 =
c
c+η so that c′ := c − δ0η = cδ0 > 0. Then, we deduce that

ϕ0
Rhp(N ;N )

[
0↔ ∂Λ(n)

]
6 3C ec exp(−c′n).

Since c and η only depend on ε, q and the size of the fundamental domain of G, we obtain

the desired result.

3.4.3 Conclusion

Below, we show how the previous two parts imply Theorem 3.2 and Corollary 3.3 for q > 4.

Fix a doubly-periodic isoradial graph G and one of its grids.

Proof of Theorem 3.2. Due to (3.48) and Proposition 3.23, G satis�es (3.32). Since G satis�es

the bounded angles property for some ε > 0 and due to its periodicity, there exists a constant

α > 0 such that Λ(n) ⊆ Bαn for all n > 1. Then, (3.32) implies

ϕ0
G
[0↔ ∂Bn] 6 ϕ

0
G
[0↔ ∂Λ( nα )] 6 C exp

(
− c
αn

)
. (3.57)

This implies the second point of Theorem 3.2 with an adjusted value for c.
Let us now consider the model with wired boundary conditions. Recall that if ω is sam-

pled according to ϕ1
G

, then its dual con�guration follows ϕ0
G
∗ . Since G

∗
is also a doubly-pe-

riodic isoradial graph, (3.57) applies to it.

For a dual vertex y ∈ G
∗
, let C(y) be the event that there exists a dually-open circuit

going through y and surrounding the origin. The existence of such a circuit implies that the

dual-cluster of y has radius at least |y|. Thus,

ϕ1
G

[
C(y)

]
6 ϕ0

G
∗

[
y↔ y +∂B|y|

]
6 C exp(−c|y|),

for some c,C > 0 not depending on y 9
. Since the number of vertices in G

∗ ∩Bn is bounded

by a constant times n2, the Borel-Cantelli lemma applies and we obtain

ϕ1
G

[
C(y) for in�nitely many y ∈G∗

]
= 0.

The �nite-energy property of ϕ1
G

then implies ϕ1
G

[
0↔∞

]
> 0.

9
We implicitly used here that (3.57) applies toϕ0

G
∗ and to any translate of it. This is true due to the periodicity

of G
∗
. A multiplicative constant depending on the size of the fundamental domain is incorporated in C.

87



3. Universality of the random-cluster model

Proof of Corollary 3.3 for q > 4. It is a well known fact that ϕ0
G,β,q = ϕ

1
G,β,q for all but count-

ably many values of β (see for instance [Dum17, Thm 1.12] for a recent short proof that can

be adapted readily to isoradial graphs). Thus, by the monotonicity of the measures ϕ0
G,β,q,

for any β < 1, ϕ0
G,1,q dominates ϕ1

G,β,q. Theorem 3.2 then implies ϕ1
G,β,q(0↔ ∞) = 0 and

[Gri06, Thm. 5.33] yields ϕ1
G,β,q = ϕ

0
G,β,q. This proves the uniqueness of the in�nite volume

measure for all β < 1. The �rst point of the corollary follows directly from Theorem 3.2 by

the monotonicity mentioned above.

Since measures with β > 1 are dual to those with β < 1, the uniqueness of the in�nite

volume measure also applies when β > 1. The second point of the corollary follows from

Theorem 3.2 by monotonicity.

88



Chapter4

Behavior of the quantum

random-cluster model

4.1 Results

The random-cluster model admits a quantum version, as described in [Gri10, Sec. 9.3] for

q = 2. Consider the set Z×R as a system of vertical axis. Let C and B be two independent

Poisson point processes with parameters λ and µ respectively, the �rst on Z×R, the second

on (12 +Z) ×R. Call the points of the former cuts and those of the latter bridges. For any

realisation of the two processes, let ω be the subset of R
2

formed of:

• the set Z×R with the exception of the points in B;

• a horizontal segment of length 1 centered at every point of C.

For a rectangle R = [a,b] × [c,b] ⊂ R
2

with a,b ∈ Z, de�ne the quantum random-cluster

measure on R by weighing each con�guration ω with respect to the number of clusters

in ω. More precisely, we de�ne ϕQ,R,λ,µ to be the quantum random-cluster measure with

parameters λ,µ and q > 0 by

dϕ0
Q,R,λ,µ(ω) ∝ q

k(ω)
dPλ,µ(ω)

where Pλ,µ is the joint law of the Poisson point processes B and C, and k(ω) is the number

of connected components of ω∩R (notice that this number is a.s. �nite).

Similarly, one may de�ne measures with wired boundary conditions ϕ1
Q,R,λ,µ by altering

the de�nition of k. In�nite-volume measures may be de�ned by taking limits over increasing

rectangular regions R, as in the classical case.

As will be discussed in Chapter 4, the quantum model may be seen as a limit of isoradial

models on increasingly distorted embeddings of the square lattice. As a result, statements

similar to Theorems 3.1, 3.2 and Corollary 3.3 apply to the quantum setting. In particular,

we identify the critical parameters as those with
µ
λ = q. This critical value has already been

computed earlier in [Pfe70, BG09] for the case of the quantum Ising model (q = 2).

Theorem 4.1. If q ∈ [1,4] and µ/λ = q, then

• ϕ1
Q,λ,µ[0↔∞] = 0 and ϕ0

Q,λ,µ = ϕ
1
Q,λ,µ;

• there exist a,b > 0 such that for all n > 1,

n−a 6 ϕ0
Q,λ,µ

[
0↔ ∂Bn

]
6 n−b;
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4. Behavior of the qantum random-cluster model

• for any ρ > 0, there exists c = c(ρ) > 0 such that for all n > 1,

ϕ0
Q,R,λ,µ

[
Ch(ρn,n)

]
> c,

where R = [−(ρ+1)n, (ρ+1)n]× [−2n,2n] and Ch(ρn,n) is the event that there exists a
path in ω∩ [−ρn,ρn]× [−n,n] from {−ρn} × [−n,n] to {ρn} × [−n,n].

If q > 4 and µ/λ = q, then

• ϕ1
Q,λ,µ[0↔∞] > 0;

• there exists c > 0 such that for all n > 1, ϕ0
Q,λ,µ[0↔ ∂Bn] 6 exp(−cn).

Finally, if µ/λ , q, then ϕ0
Q,λ,µ = ϕ

1
Q,λ,µ and

• when µ/λ < q, there exists cµ/λ > 0 such that for any x,y ∈Z×R,

ϕ0
Q,λ,µ[x↔ y] 6 exp(−cµ/λ‖x − y‖).

• when µ/λ > q, ϕ0
Q,λ,µ[0↔∞] > 0.

Notice that multiplying both λ and µ by a factor α is tantamount to dilating the con�gu-

ration ω vertically by a factor of 1/α. Hence it is natural that only the ratio µ/λ plays a role

in determining criticality.

However, for q ∈ [1,4], there are reasons to believe that for the speci�c values

λ =
4r√

q(4− q)
and µ =

4r
√
q√

4− q
,

the model is rotationally invariant at large scale, as will be apparent from the link to isoradial

graphs.

4.2 Discretisation

Fix ε > 0 and consider the isoradial square lattice G
ε := Gα,β where αn = 0 for all n and

βn = ε if n is even and βn = π − ε if n is odd. This was also de�ned in Section 1.2.4. See

Figure 1.7 for an illustration.

Recall the notation xi,j with i+j even for the primal vertices ofG
ε

(while xi,j with i+j odd

are the dual vertices). Also, recall the notation R(i, j;k,`) for the domains of G
ε

contained

between the vertical tracks si and sj and the horizontal tracks tk and t` .
Remind that G

ε
contains two types of edges: those of length 2sin( ε2 ) and those of length

2cos( ε2 ). As we will take ε to 0, we call the �rst short edges and the latter long edges. And

the associated critical parameters used to de�ne ϕ
G
ε are given by (2.2) where we take θe = ε

if e is a short edge; θe = π − ε if e is a long edge.

When ε→ 0, we have the following asymptotic behaviors,

if 1 6 q < 4, 1− pε ∼
2rε√
q(4− q)

, pπ−ε ∼
2rε
√
q√

4− q
;

if q = 4, 1− pε ∼
ε
2π
, pπ−ε ∼

2
π
ε;

if q > 4, 1− pε ∼
2rε√
q(q − 4)

, pπ−ε ∼
2rε
√
q√

q − 4
.
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Moreover, the length of a long edge converges to 2, while that of short edges decreases

as ε + o(ε). Thus, in the limit ε→ 0, the measure converges to the quantum FK model on a

dilated lattice 2Z×R with parameters

if 1 6 q < 4, λ0 =
2r√

q(4− q)
, µ0 =

2r
√
q√

4− q
;

if q = 4, λ0 =
1
2π
, µ0 =

2
π
;

if q > 4, λ0 =
2r√

q(q − 4)
, µ0 =

2r
√
q√

q − 4
.

Note that λ0 and µ0 are continuous in q: when q goes to 4 either from above or from below,

the common limits of λ0 and µ0 are exactly the values given by q = 4. A precise statement

is given below in Proposition 4.2.

For the rest of the section, unless otherwise stated, we consider the quantum random--

cluster model ϕξQ on Z×R with parameters λ = 2λ0 and µ = 2µ0 and boundary conditions

ξ = 0,1. This is simply the limiting model discussed above rescaled by a factor 1/2. The

in�nite-volume measures with free and wired boundary conditions can be de�ned via weak

limits as in the classical case. The quantum model with these parameters enjoys a self-duality

property similar to that of the discrete model on G
ε

with β = 1.

To distinguish the subgraphs of G
ε

from those of Z×R, we shall always put a superscript

ε for those of G
ε

and those of Z×R are always written in calligraphic letters.

For any subgraph R of Z×R, we write ϕξQ,R for the quantum random-cluster measure

on R with boundary conditions ξ = 0,1.

For 1 6 q 6 4, we need to consider the counterparts of the horizontal and vertical crossing

events given in Lemma 3.10, which can be studied via the convergence given in the following

proposition.

Proposition 4.2. For a,b,c,d > 0, let Rε = R(2c, 2dε ) be a subgraph of Gε and R = [−c,c] ×
[−d,d] be a subgraph of Z×R. Consider ξ = 0,1, then

ϕξRε
[
Ch(2a; 2bε )

]
−−−−→
ε→0

ϕξQ,R
[
Ch(a;b)

]
, (4.1)

ϕξRε
[
Cv(2a; 2bε )

]
−−−−→
ε→0

ϕξQ,R
[
Cv(a;b)

]
. (4.2)

For q > 4, the event to consider is that given by (3.33), which is given as follows.

Proposition 4.3. For anyN,n > 0, let Rε = R(2N, 2Nε ) be a subgraph ofGε andR =Λ(N ) =
[−N,N ]2 be a subgraph of Z×R. Then,

ϕξRε
[
0↔ ∂R(2n;2nε )

]
−−−−→
ε→0

ϕξQ,R
[
0↔ ∂Λ(n)

]
(4.3)

Proof of Propositions 4.2 and 4.3. As we described above, short edges inG
ε

are of length 2sin( ε2 ),
each of whom is closed with probabilityλ0ε, whereλ0 =

2r√
q(4−q)

. Given L > 0 and consider a

collection ofN = L
ε such consecutive edges. Consider (Xi)16i6N a sequence of i.i.d. Bernoulli

random variables of parameter λ0ε: Xi = 1 if the i-th edge is closed and Xi = 0 otherwise.

Denote S =
∑N
i=1Xi , which counts the number of closed edges in this collection of edges.
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4. Behavior of the qantum random-cluster model

Then, for any �xed k > 0 and ε→ 0, we have that

P[S = k] =
(
N
k

)
(λ0ε)

k(1−λ0ε)N−k

∼ N
k

k!
(λ0ε)

ke−Nλ0ε

= e−Lλ0
(Lλ0)k

k!
,

where the quantity in the last line is the probability that a Poisson variable of parameter Lλ0
takes the value k. As a consequence, when ε→ 0, the N vertical short edges will converge

to a vertical segment of length L, among which closed edges will give us cut points that can

be described by a Poisson point process with parameter λ0.

The same reasoning applies to the long edges too. This shows that the measures ϕξRε
converge weakly to ϕξQ,R, up to a scaling factor of 1/2.

Let us discuss the case q 6 4 for illustration. In order to prove the RSW property for ϕQ,

one needs to bound uniformly the left hand sides of (4.1) and (4.2) for a = n and b = ρn for

any �xed quantity ρ. By duality, we may focus only on lower bounds.

Notice that for any �xed ε > 0, the RSW property obtained in Theorem 3.1 provides us

with bounds for ϕξRε
[
Ch(2n;2ρ nε )

]
and ϕξRε

[
Cv(2n; 2nε )

]
which are uniform in n. However,

these are not necessarily uniform in ε. Indeed, all estimates of Section 3.3 crucially depend

on angles being bounded uniformly away from 0.

Removing this restriction in general is an interesting but di�cult problem. However, in

the simple case of the lattices G
ε
, this is possible, and is done below.

4.3 The case 1 6 q 6 4

To show Theorem 4.1 for 1 6 q 6 4, it is enough to show the RSW property for the quantum

model, the rest of the proof follows as in Section 3.3.4. To this end, we proceed in the sim-

ilar way as for isoradial graphs. More precisely, the following proposition provides us with

uniform bounds in ε ∈ (0,π) for crossing probabilities in G
ε
. Then Proposition 4.2 transfers

these results to the quantum model and the same argument as in Lemma 3.13 yields the RSW

property for the quantum model.

Proposition 4.4. There exist δ > 0, constants a > 3 and b > 3a and n0 such that, for all
ε ∈ (0,π) and n > n0, there exist boundary conditions ξ on the region Rε = R(bn; bnε ) of G

ε

such that

ϕξRε
[
Ch(3an,bn; bnε )

]
> 1− δ/2 and ϕξRε

[
C∗h(3an,bn;

bn
ε )

]
> 1− δ/2,

ϕξRε
[
Cv(an; 2nε )

]
> δ and ϕξRε

[
C∗v(an; 2nε )

]
> δ,

ϕξRε
[
Ch(an,3an; nε )

]
> δ and ϕξRε

[
C∗h(an,3an;

n
ε )
]
> δ. (4.4)

For the rest of the section, we focus on proving Proposition 4.4; the rest of the arguments

used to obtain the RSW property for ϕQ are standard.

By symmetry, we may focus on ε 6 π/2; thus, di�culties only appear as ε→ 0. Fix ε > 0.

We shall follow the same ideas as in Section 3.3.2. Recall the construction of the mixed lattice

G
mix

: for M,N1,N2 > 0, consider the graph obtained by superimposing a horizontal strip of
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4.3. The case 1 6 q 6 4

G
ε

of height N2 + 1 and width 2M + 1 over a horizontal strip of regular square graph G0, π2
of height N1 +1 and same width. Let the lower vertices of this graph be on the line R× {0},
with x0,0 at 0. Convexify this graph. The graph thus obtained, together with its re�ection

with respect to R× {0}, form G
mix

.

Write G̃
mix

for the graph with the regular and irregular blocks reversed. See Sections 3.2.1

and 3.3.2 for details on this construction and the track exchanging procedure that allows us

to transform G
mix

into G̃
mix

. Figure 4.1 contains an illustration of G
mix

and G̃
mix

.
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Figure 4.1 – Left: The graph G
mix

. Right: The transformed graph G̃
mix

.

Write ϕG
mix

and ϕG̃
mix

for the random-cluster measures with β = 1 on G
mix

and G̃
mix

,

respectively, with free boundary conditions. The following adaptations of Propositions 3.15

and 3.16 imply Proposition 4.4 as in Section 3.3.2.2.

Proposition 4.5. There exist λ0 := λ0(q) > 0 and n0 > 1 such that for all λ > λ0, ε ∈ (0,π/2],
ρout > ρin > 0, n > n0 and sizesM > (ρout +

λ
ε )n, N1 > n and N2 >

λ
ε n,

ϕG̃mix

[
Ch(ρinn, (ρout + λ

ε )n;λ
n
ε )
]
> (1− ρoute−n)ϕGmix

[
Ch(ρinn,ρoutn;n)

]
. (4.5)

The quantities λ0 and λ above have no relation to the intensity of the Poisson point

process used in the de�nition of ϕQ.

Proposition 4.6. There exists η > 0 and a sequence (cn)n ∈ (0,1]N with cn→ 1 such that, for
all ε ∈ (0,π/2], n > 1 and sizesM > 3n, N1 >N and N2 >

n
ε ,

ϕG̃mix

[
Cv(3n;η nε )

]
> cnϕGmix

[
Cv(n;n)

]
. (4.6)

Proposition 4.5 controls the upward drift of a crossing: it claims that with high probability

(independently of ε), this drift (in the graph distance) is bounded by a constant times
1
ε . As

a result, due to the particular structure of G
ε
, the upward drift in terms of the Euclidean

distance is bounded by a constant independent of ε. The proof follows the same idea as

that of Proposition 3.15 with the di�erence that it requires a better control of (3.9), which is

obtained by a coarse-graining argument.

Proposition 4.6 controls the downward drift of a vertical crossing. The proof follows the

same lines as that of Proposition 3.16, with a substantial di�erence in the de�nition (3.12) of
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4. Behavior of the qantum random-cluster model

the processH which bounds the decrease in height of a vertical crossing when performing a

series of track exchanges. In the proof of Proposition 3.16,H was a sum of Bernoulli random

variables; here the Bernoulli variables are replaced by geometric ones. This di�erence may

seem subtle, but is essential in obtaining a bound on the Euclidean downward drift which is

uniform in ε.

Proof of Proposition 4.5. We keep the same notations as in the proof of Proposition 3.15. We

remind that the process (Hk)06k6n is coupled with the evolution of (γ (k))06k6n in such a way

that all vertices xi,j visited by γ (k)
have (i, j) ∈Hk

. Moreover, (Hk) can be seen as a growing

pile of sand which grows laterally by 1 at each time step and vertically by 1 independently at

each column with probability η. The goal here is to estimate η in the special case of G
mix

as

illustrated in Figure 4.1. More precisely, we want to improve the bound given in (3.10). Let

λ > 0 denote a (large) value, we will see at the end of the proof how it needs to be chosen.

t

t′

B

A

γ(k)

Figure 4.2 – Figure 3.12 adapted to the case of G
mix

de�ned above. When we perform star--

triangle transformations, we exchange two tracks, one of transverse angle
π
2 and the other

π − ε or ε. We assume that we are in the case A = π
2 and B = π − ε.

In the special case of G
mix

described above, a track exchange is always between tracks

with transverse angles A = π
2 and B = π − ε or ε. This is illustrated in Figure 4.2. The

parameter ηA,B is the probability that the path γ (k)
, as shown in the �gure, drifts upwards

by 1 when the dashed edge on the left of the �gure is open. This can be estimated as follows

for 1 6 q < 4,

ηA,B =
yπ−Ayπ−(B−A)

q
=


sin(r(π2 −ε))
sin(r(π2 +ε))

if 1 6 q < 4,
π
2 −ε
π
2 +ε

if q = 4.

A quick computation then shows that we have

η := sup
A,B∈[ε,π−ε]

ηA,B = 1− ζ(q)ε, where ζ(q) =
2
√
2+
√
q

π2 .

Thus, this value η may be used in the process (Hk) bounding the evolution of (γ (k)). Hence,

we obtain, for 0 6 k 6 λ
ε ,

P

[
h(γ (k)) < λ

ε n
]
> P

[
max{j : (i, j) ∈Hk} < λ

ε n
]
.

A straightforward application of (3.9) is not su�cient to conclude, as it would provide a

value of λ of order log(1ε ) rather than of constant order. We will improve (3.9) slightly by

revisiting its proof (given in [GM13a, Lem. 3.11]).

We are interested in the time needed to add a neighboring block from those which are

already included by Hk
. To be more precise, with each edge e of Z×N, we associate a time
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4.3. The case 1 6 q 6 4

te: if e is horizontal, set te = 1; if e is vertical, set te to be a geometric random variable with

parameter ζ(q)ε. Moreover, we require that the random variables (te) are independent.

For x,y ∈ Z ×N, de�ne P (x,y) to be the set of paths going from x to y, containing no

downwards edge. For a path γ ∈ P (x,y), write τ(γ) =
∑
e∈γ te, which is the total time needed

to go through all the edges of γ . Also write τ(x,y) = inf{τ(γ) : γ ∈ P (x,y)}. As such, the

sets (Hk)k>0 can be described by

Hk = {y ∈Z×N : ∃x ∈H0, τ(x,y) 6 k}, (4.7)

where we recall the de�nition of H0
:

H0 = {(i, j) ∈Z×N : −(ρ
out

+1)n 6 i − j and i + j 6 (ρ
out

+1)n and j 6 n}.

Thus, our goal is to prove that the time needed to reach any point at level
λ
ε n is greater than

λ
ε n with high probability.

Let Pn be set of all paths of P (x,y) with x ∈H0
, y = (i, j) with j = λ

ε n and which contain

at most n horizontal edges. Then, (4.7) implies

P

[
max{j : (i, j) ∈H

λ
ε n} > λ

ε n
]
= P

[
∃γ ∈ Pn : τ(γ) 6 λ

ε n
]
. (4.8)

Next comes the key ingredient of the proof. We de�ne the notion of boxes as follows. For

(k,`) ∈Z×N, set

B(k,`) = {(k, j) ∈Z×N : `−1ε 6 j <
`
ε }.

We note that di�erent boxes are disjoint and each of them contains
1
ε vertical edges. A

sequence of adjacent boxes is called a box path. Note that such a path is not necessarily

self-avoiding. Set P̃n to be the set of box paths from some B(k,n) to some B(`,λn), where

k and ` are such that −(ρ
out

+ 1)n 6 k 6 (ρ
out

+ 1)n and |k − `| 6 n, and in which at most n
pairs of consecutive boxes are adjacent horizontally.

With any path γ ∈ Pn, we associate the box path γ̃ ∈ P̃n of boxes visited by γ (above

level n/ε). Notice that, since γ has at most n horizontal edges, so does γ̃ .

Given a box path γ̃ = (γ̃i) ∈ Pn, call γ̃i a vertical box if γ̃i−1, γ̃i and γ̃i+1 have the same

horizontal coordinate. Since any path γ̃ ∈ P̃n can only have at most n pairs of consecu-

tives boxes that are adjacent horizontally, there are at least (λ− 3)n vertical boxes in γ̃ . See

Figure 4.3 for an illustration of the above notions.

A box is called bad if it contains a vertical edge e such that te > 2. We can estimate the

probability that a box is bad:

P[a given box is bad] = 1− (1− ζε)1/ε→ 1− e−ζ as ε→ 0.

Notice that for a path γ ∈ Pn such that τ(γ) 6 λ
ε n, there are at most n vertical bad boxes in

γ̃ . Indeed, due to the de�nition, in any bad vertical box of γ̃ , γ crosses an edge e with te > 2.

Therefore,

P

[
∃γ ∈ Pn : τ(γ) 6 λ

ε n
]
6 P

[
∃γ̃ ∈ P̃n : there are at most n vertical bad boxes in γ̃

]
6

∑
γ̃∈P̃n

P

[
there are at most n vertical bad boxes in γ̃

]
(4.9)

Let us now bound the above. First, note that any path γ̃ ∈ P̃n has length at most λn and

can have at most n horizontal displacements, which gives

|P̃n| 6 2(ρ
out

+1)n2n
(
λn
n

)
6 ρ

out
(cλ)n, (4.10)
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4. Behavior of the qantum random-cluster model

Figure 4.3 – A path γ ∈ Pn and its associated box path γ̃ ∈ P̃n. Note that the box path γ̃
might not be self-avoiding. The blue box in the �gure is a vertical box for γ̃ .

for a constant c > 0 independent of all the other parameters. Secondly, recall that any γ̃ ∈ P̃n
has at least (λ − 3)n vertical boxes. Let X1, . . . ,X(λ−3)n be i.i.d. Bernoulli random variables

with parameter δ = 1− (1− ζε)1/ε that indicate whether the (λ− 3)n �rst vertical boxes of

γ̃ are bad (Xi = 1 if the ith vertical box of γ̃ is bad and Xi = 0 otherwise). Then,

P

[
there are at most n vertical bad boxes in γ̃

]
6 P

[
X1 + · · ·+X(λ−3)n 6 n

]
6

[( (λ− 3)δ
λ− 4

)λ−4
(λ− 3)(1− δ)

]n
. (4.11)

The last inequality is obtained by large deviation theory.

Finally, put (4.8)–(4.11) together, as in [GM13a, Lem. 3.11]. It follows that if λ is chosen

larger than some threshold λ0 >
4−3δ
1−δ that only depends on δ, then

P

[
max{j : (i, j) ∈H

λ
ε n} > λ

ε n
]
6 ρ

out
e−n.

Recall that δ −−−−→
ε→0

1 − e−ζ is uniformly bounded in ε > 0, hence λ0 may also be chosen

uniform in ε.

Remark 4.7. We point out that the coarse-graining argument above is essential to the

proof due to the reduced combinatorial factor (4.10). In e�ect, the computation in [GM13a,

Lem. 3.11] would have given us a combinatorial factor (cλ/ε)n, and due to the additional ε
in the denominator, one can only show that λ should grow as log(1ε ). This improvement

is made possible because when, ε goes to 0, paths in the directed percolation take
1
ε more

vertical edges than horizontal ones, and bad edges (those with passage-time greater than 2)

are of density proportional to ε. We can therefore “coarse grain” a good number of paths to

a unique one, which improves the bound.

Proof of Proposition 4.6. We will adapt the proof of Proposition 3.16 to our special setting.

The goal is to have a better control of the downward drift of paths when track exchanges are

performed. There are two signi�cant di�erences: (i) a better description of the regions Dk in

which vertical paths are contained; (ii) a (stochastic) lower bound on hk by a sum of geometric

random variables rather than a sum of Bernoulli variables as in the aforementioned proof.
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4.3. The case 1 6 q 6 4

In this proof we are only interested in events depending on the graph above the base

level, and we will only refer to the upper half-plane henceforth.

Fix ε > 0 and n ∈N. Let M > 4n, N1 > n and N2 >
n
ε where, as illustrated in Figure 4.1,

2M + 1 is the width of the blocks of G
(1) = Z

2
and G

(2) = G
ε
, N1 + 1 is the height of the

block of Z
2

and N2 that of G
ε
. Recall that the sequence of star-triangle transformations we

consider here is Σ↑, which consists of pulling up tracks of G
(1)

one by one above those of

G
(2)

, from the top-most to the bottom-most. We write P for the measure taking into account

the choice of a con�gurationω according to the random-cluster measure ϕG
mix

as well as the

results of the star-triangle transformations in Σ↑ applied to the con�guration ω.

For 0 6 i 6N1, recall from Section 3.2.1 the notation

Σ
↑
i = Σti ,tN1+N2+1

◦ · · · ◦Σti ,tN1+1 ,

for the sequence of star-triangle transformations moving the track ti of G
(1)

above G
(2)

.

Then, Σ↑ = Σ
↑
0 ◦ · · · ◦Σ

↑
N1

.

We note that ω ∈ Cv(n;n) if and only if Σ
↑
n+1 ◦ · · · ◦Σ

↑
N1
(ω) ∈ Cv(n;n), since the two con-

�gurations are identical between the base t0 and tn. Thus, we can assume that Σ
↑
N1
, · · · ,Σ↑n+1

are performed and look only at the e�ect of Σ
↑
n, · · · ,Σ↑0 on such a con�guration. Let us de�ne

for 0 6 k 6 n+1,

Gk = Σ
↑
n−k+1 ◦ · · · ◦Σ

↑
N1
(G

mix
),

ωk = Σ
↑
n−k+1 ◦ · · · ◦Σ

↑
N1
(ω),

Dk = {xu,v ∈ Gk : |u| 6 n+2k, 0 6 v 6N2 +n},

hk = sup{h 6N2 +n− k : ∃u,v ∈Z with xu,0
Dk ,ωk←−−−→ xv,h}.

That is, hk is the highest level that may be reached by an ωk-open path lying in the rectan-

gle Dk . These notions are illustrated in Figure 4.4

Due to the above de�nitions, if ω0 ∈ Cv(n;n), then h0 > n. Hence,

P[h0 > n] > P[ω0 ∈ Cv(n;n)] = ϕG
mix

[Cv(n;n)].

Moreover, using the fact that ωn+1 follows the law of ϕG̃
mix

and the de�nitions of Dn+1 and

hn+1 above, we obtain

ϕG̃
mix

[Cv(3n;η nε )] > P(hn+1 > η nε ).

Therefore, it is enough to show

P

[
hn+1 > η nε

]
> cnP

[
h0 > n

]
, (4.12)

for some η ∈ (0, 12 ) to be speci�ed below and constants cn with cn→ 1 as n→∞, all inde-

pendent of ε.

Fix 0 6 k 6 n and let us examine the (N1 − (n− k) + 1)th step of Σ↑, that is Σ
↑
n−k . Write

Ψj := Σtn−k ,tN1+j
◦ · · · ◦Σtn−k ,tN1+1 for 0 6 j 6 N2 + 1. In other words, Ψj is the sequence of

star-triangle transformations that applies to Gk and moves the track tn−k above j tracks of

G
(2)

, namely tN1+1, . . . , tN1+j . Moreover, ΨN2
= Σ

↑
n−k ; hence, ΨN2

(Gk) = Gk+1 and ΨN2
(ωk) =

ωk+1.
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4. Behavior of the qantum random-cluster model
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.
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Figure 4.4 – Several stages in the transformation of G
mix

(only the outlines of the diamond

graphs are depicted). Pulling up the topN1−n tracks of the regular lattice does not a�ect the

event Cv(n;n). The red vertical crossing is then a�ected by the track exchanges. However, it

remains in the hashed domains (Dk)06k6n+1, and (Dkj )06j6N2
. Its height evolves according

to (3.14)–(3.16), (4.13) and (4.14). Notice the asymmetric shape of Dkj in the fourth diagram,

where j is even.

For 0 6 j 6 N2 write j̃ := n− k + j and de�ne Dkj as the subgraph of Ψj(Gk) induced by

vertices xu,v with 0 6 v 6N2 +n and
|u| 6 n+2k +2 if v 6 j̃ ,

−(n+2k) 6 u 6 n+2k +1 if v = j̃ +1 and j odd,
−(n+2k +1) 6 u 6 n+2k if v = j̃ +1 and j even,

|u| 6 n+2k if v > j̃ +1.

We note that Dk ⊆Dk0 ⊆ · · · ⊆D
k
N2
⊆Dk+1. Let ωkj = Ψj(ωk) and

hkj = sup{h 6N2 +n− k : ∃u,v ∈Z with xu,0
Dk
j ,ω

k
j

←−−−→ xv,h}.

Due to inclusions between the domains, we have hk 6 hk0 and hkN2
6 hk+1. Next, we aim to

obtain similar equations to (3.14)–(3.17).

Fix 0 6 j 6 N2 and let Σ := Σtn−k ,tN1+j+1
be the track exchange to be applied to Ψj(Gk).

Moreover, let Pj be the set of paths γ of Ψj(Gk), contained inDkj , with one endpoint at height

0, the other at height h(γ), and all other vertices with heights between 1 and h(γ)− 1.

First we claim that, if γ is an ωkj -open path of Pj , then Σ(γ) is ωkj+1-open and contained

in Dkj+1 (hence contains a subpath of Pj+1 reaching the same height as Σ(γ)). Due to the

speci�c structure of G
ε
, we prove this according to the parity of j . For j even, the transverse

angle of the track tN1+j+1 is π−ε. Thus, as shown by the blue points in Figure 3.5, Σ induces

a possible horizontal drift of γ of +2 at level j̃ and +1 at level j̃ + 1. By its de�nition, Dkj+1
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4.3. The case 1 6 q 6 4

indeed contains Σ(γ). For j odd, the �gure is symmetric, thus we get horizontal drifts of −2
and −1 at levels j̃ and j̃ +1, respectively.

Let us brie�y comment on the di�erences between the above and the general case ap-

pearing in Proposition 3.16. In Proposition 3.16, since the directions of the track exchanges

are not necessarily alternating, we may repeatedly obtain horizontal drifts of the same sign.

This is why the domains Dkj in Proposition 3.16 grow with slope 1 (see Figure 3.13), and

eventually induce a di�erent de�nition of Dk than the one above. In the present case, due to

alternating transverse angles which create alternating positive and negative drifts, Dk may

be chosen with vertical sides and Dk+1 is obtained by adding two columns on the left and

right of Dk . While this may seem an insigni�cant technicality, it allows to bound the hori-

zontal displacement of the vertical crossing by 2n rather than a quantity of order
n
ε , and this

is essential for the proof.

As a consequence of the discussion above, equations (3.14)–(3.16) hold as in the classical

case. For this proof, we will improve (3.15) and (3.17) to

P[hkj+1 > h+1 |hkj = h] > 1−Cε if h = j̃ , (4.13)

P[hkj+1 > h |h
k
j = h] > 1−Cε if h = j̃ +1, (4.14)

for some constant C > 0 that does not depend on ε, only on q.

Before going any further, let us explain the meaning of (3.14)–(3.16), (4.13) and (4.14)

through a non-rigorous illustration. In applying Σ
↑
n−k , the track tn−k (of transverse angle

π/2) is moved upwards progressively. Let us follow the evolution of a path γ reaching height

hk throughout this process. As long as the track tn−k does not reach height hk , the height

reached by γ is not a�ected. When tn−k reaches height hk (as in Figure 4.5; left diagram),

the height of γ may shrink by 1 or remain the same; (4.14) indicates that the former arrises

with probability bounded above by Cε. If γ shrinks, the following track exchanges do not

in�uence γ any more, and we may suppose hk+1 = hk − 1. Otherwise, the top endpoint of

γ at the following step is just below tn−k (as in Figure 4.5; centre diagram). In the following

track exchange, γ may increase by 1 in height. By (4.13), this occurs with probability 1−Cε.

If the height of γ does increase, then it is again just below tn−k , and it may increase again.

In this fashion, γ is “dragged” upwards by tn−k . This continues until γ fails once to increase.

After this moment, γ is not a�ected by any other track exchange of Σ
↑
n−k .

The reasoning above would lead us to believe that hk+1 > hk−2+Y stochastically, where

Y is a geometric random variable with parameter Cε. This is not entirely true since the

conditioning in (4.13) and (4.14) is not onωkj , but only on hkj . However, this di�culty may be

avoided as in the proof of Proposition 3.16. Let us render this step rigorous and obtain the

desired conclusion (4.12), before proving (4.13) and (4.14).

Let (Yk)06k6n be i.i.d. geometric random variables of parameter Cε. De�ne the Markov

process (Hk)06k6n+1 by H0 = h0 and Hk+1 = min{Hk + Yk − 2,n− k +N2}. Then, the com-

parison argument of [GM13a, Lem. 3.7] proves that hk dominates Hk
stochastically for any

k. Precisely, for any k, the processes (H j )06j6n+1 and (hj )06j6n+1 may be coupled such that

Hk 6 hk a.s.. We insist that we do not claim that there exists a coupling that satis�es the above

inequality simultaneously for all k. We do not provide details on how to deduce this inequal-

ity from (3.14)–(3.16), (4.13) and (4.14), since this step is very similar to the corresponding

argument in [GM14, Lem. 6.9]. Let us simply mention that the cap of n− k +N2 imposed on

Hk
comes from the fact that a path may not be dragged upwards above the highest track of

the irregular block.
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4. Behavior of the qantum random-cluster model

By comparing hn+1 and Hn+1
, we �nd

cn :=
P

[
hn+1 > η nε

][
h0 > n

] > P

[
Hn+1 > η nε

∣∣∣H0 > n
]
> P

[
Y0 + · · ·+Yn − (n+2) > η nε

]
.

The last inequality is due to that, if Hk +Yk −2 = n−k+N2 at any point during the process,

then hn+1 > η nε is sure to arrises. Finally notice that E[Yk − 1] = 1−Cε
Cε > η/ε for η < 1/C

and ε small enough. The same large deviation argument as in the �nal step of the proof of

Proposition 3.16 allows us to conclude that cn → 1, uniformly in ε. Thus, we are only left

with proving (4.13) and (4.14), which we do next.

First we prove (4.14). This is similar to the argument proving (3.17), with a slight improve-

ment on the estimate of the parameter δ. Fix 0 6 j 6 N2 and use the notation introduced

above. Without loss of generality, assume also that j is even so that the track exchange

Σ = Σtn−k ,tN1+j+1
is performed from left to right. Denote by Γ = Γ (ωkj ) the ωkj -open path of Pj

that is the minimal element of {γ ∈ Pj : h(γ) = hkj ,γ is ωkj -open} as in Proposition 3.16.

z′ z′ z′

e1

e2

e1

e2
e3

e4

Figure 4.5 – Three star-triangle transformations contributing to Σ slide the gray rhombus

from left to right. If the three edges in the middle diagram are all closed, then e4 is open with

probability

ye1ye3
q .

Fix some γ ∈ Pj of height j̃ + 1. Let z = xu,j̃+1 denote the upper endpoint of γ and let

z′ denote the other endpoint of the unique edge of γ leading to z. Then either z′ = xu+1,j̃ or

z′ = xu−1,j̃ .

Conditioning on Γ = γ . If z′ = xu−1,j̃ , then it is always the case that h(Σ(Γ )) > j̃ + 1.

Assume that z′ = xu+1,j̃ as in Figure 4.5 and consider the edges e1, . . . , e4 depicted in the

image. If e1 is open in ωkj then it is easy to see that hkj+1 = j̃ + 1, for any outcome of the

star-triangle transformations. The same is valid for the edge e3 appearing in the second

diagram of Figure 4.5. Assume that both e1 and e3 are closed in the second diagram. Then, if

in addition e2 is also closed, by the randomness appearing in the star-triangle transformation

leading to the fourth diagram,

P[e4 is open |e1, e2, e3 are closed] >
ye1ye3
q

.

This is due to the transition probabilities of Figure 2.8. Finally, if e4 is open in the last diagram,

then the height of Γ remains at least j̃ +1 for the rest of Σ. In conclusion,

P[hkj+1 > j̃ +1 |Γ = γ] >
ye1ye3
q

P[e2 is closed |Γ = γ and e1, e3 closed]

Notice that the edge e2 is above level j̃ , hence the conditioning Γ = γ and e1, e3 closed a�ects

it negatively. Thus, P[e2 is closed |Γ = γ and e1, e3 closed] > 1 − pe2 . Using the fact that

ye1 =
√
q, ye3 →

√
q and pe2 ∼ C

′ε as ε→ 0, with C′ > 0 depending only on q, and summing

over all possibilities on γ , we obtain

P[hkj+1 > j̃ +1 |hkj = j̃ +1] > 1−Cε,
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4.3. The case 1 6 q 6 4

for some constant C depending only on q.

Now let us prove (4.13). The argument is very similar to the above. Assume again that

the track exchange Σ = Σtn−k ,tN1+j+1
is performed from left to right. Let Γ be de�ned as

above and call z its top endpoint. Condition on hkj = j̃ . Then, as the vertical rhombus is

slid through tn−k , tN1+j+1, it arrives above z as in the second diagram of Figure 4.5. Let

e1, e2, e3 and e4 be de�ned as in Figure 4.5. If e1 or e3 are open in the second diagram,

then hkj+1 = j̃ + 1 for any outcome of the star-triangle transformations
1
. Assume that e1

and e3 are both closed at this stage. Moreover, since the conditioning only depends on

edges below level j̃ + 1, it in�uences the state of e2 only via boundary conditions. Hence,

P[e2 is closed |Γ and e1, e3 closed] > 1 − pe2 . As discussed above, when e1, e2 and e3 are all

closed, the �nal star-triangle transformation of Figure 4.5 produces an open edge e4 with

probability bounded below by 1−Cε. We conclude as above.

4.3.1 The case q > 4

We will adapt the proof of the exponential decay of Section 3.4 to the quantum case. More

precisely, we only need to do so for the case of isoradial square lattices, that is Section 3.4.1.

The argument is very similar to that of Section 3.4.1, with the exception that Propositions 4.5

and 4.6 are used instead of Propositions 3.15 and 3.16.

We recall the notation Rhp
for half-plane rectangles and the additional subscript ε for

domains de�ned in G
ε
. The key result is the following.

Proposition 4.8. There exist constants C,c > 0 depending only on q such that, for any ε > 0
small enough,

ϕ0
Rhp,ε(N ;Nε )

[
0↔ ∂Rhp,ε(n; nε )

]
6 C exp(−cn), ∀n < N. (4.15)

The above has the following direct consequences.

Corollary 4.9. There exist constantsC,c > 0 depending only on q such that for ε small enough,

ϕ0
Rε(N ;Nε )

[
0↔ ∂Rε(n; nε )

]
6 C exp(−cn), ∀n < N. (4.16)

Corollary 4.10. There exist constants C,c > 0 depending only on q such that,

ϕ0
Q,Λ(N )

[
0↔ ∂Λ(n)

]
6 C exp(−cn). (4.17)

Corollary 4.9 is an straightforward adaptation of Proposition 3.23. Corollary 4.10 is a

consequence of the fact that the constants in (4.16) are uniform, thus we can take ε→ 0 and

apply Proposition 4.3.

To conclude, as in Section 3.4.3, Corollary 4.10 implies Theorem 4.1 for q > 4.

We will not give more details on the proofs of Corollaries 4.9 and 4.10 and Theorem 4.1.

For the rest of the section, we focus on showing Proposition 4.8.

Proof of Proposition 4.8. We follow the idea of the proof of Proposition 3.25.

Fix ε > 0 as in the statement. For N > n, let G
mix

be the mixture of G
(1) =G

ε
and G

(2) =
Z

2
, as described in Section 3.2. In this proof, the mixed lattice is only constructed above

1
Due to the conditioning, e1 or e3 may only be open if their top endpoint lies outside Dkj .
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4. Behavior of the qantum random-cluster model

the base level; it has 2N +1 vertical tracks (si)−N6i6N of transverse angle 0 and
N
ε +N +2

horizontal tracks (tj )06j6Nε +N+1, the �rst
N
ε +1 having alternate angles ε and π − ε (we call

this the irregular block) and the following N +1 having transverse angle
π
2 (we call this the

regular block). Finally,G
mix

is a convexi�cation of the piece of square lattice described above.

Set G̃
mix

to be the result of the inversion of the regular and irregular blocks ofG
mix

using

the sequence of transformationsΣ↑. LetϕG
mix

andϕG̃
mix

be the random-cluster measures with

free boundary conditions onG
mix

and G̃
mix

, respectively. The latter is then the push-forward

of the former by the sequence of transformations Σ↑.
Let δ0 ∈ (0,1) be a constant that will be set below; it will be chosen only depending on

q. Write ∂L, ∂R and ∂T for the left, right and top boundaries, respectively, of a rectangular

domain Rhp,ε(.; .).
Consider a con�guration ω on G

mix
such that 0←→ ∂Rhp,ε(n; nε ). Then, as in (3.40), we

have

ϕG
mix

[
0↔ ∂Rhp,ε(n; nε )

]
6ϕG

mix

[
0

Rhp,ε(n;δ0
n
ε )←−−−−−−−−→ ∂LR

hp,ε(n;δ0
n
ε )
]

+ϕG
mix

[
0

Rhp,ε(n;δ0
n
ε )←−−−−−−−−→ ∂RR

hp,ε(n;δ0
n
ε )
]

+ϕG
mix

[
0

Rhp,ε(n;δ0
n
ε )←−−−−−−−−→ ∂T R

hp,ε(n;δ0
n
ε )
]
. (4.18)

Moreover, since the graphs G
mix

and G
ε

are identical in Rhp,ε(N ; Nε ), we obtain,

ϕ0
Rhp,ε(N ;Nε )

[
0↔ ∂Rhp,ε(n; nε )

]
6 ϕG

mix

[
0↔ ∂Rhp,ε(n; nε )

]
, (4.19)

where we use the comparison between boundary conditions.

In conclusion, in order to obtain (4.15) it su�ces to prove that the three probabilities of

the right-hand side of (4.18) are bounded by an expression of the form Ce−cn, where the

constants C and c depend only on q. We concentrate on this from now on.

Let us start with the last line of (4.18). Recall Proposition 4.6; a straightforward adaptation

reads:

Adaptation of Proposition 4.6. There exist τ > 0 and cn > 0 satisfying cn → 1 as n→∞
such that, for all n and sizes N > 4n,

ϕG̃mix

[
0

Rhp,ε(4n;δ0τn)←−−−−−−−−−−→ ∂T R
hp,ε(4n;δ0τn)

]
> cnϕGmix

[
0

Rhp,ε(n;δ0
n
ε )←−−−−−−−−→ ∂T R

hp,ε(n;δ0
n
ε )
]
. (4.20)

Indeed, the proof of the above is identical to that of Proposition 4.6 with the only di�er-

ence that the position of the two graphs are switched, thus the factor ε−1 becomes ε. The

constant τ and the sequence (cn)n only depend on q.

Observe that, in G̃
mix

, the domain Rhp(N ;N ) is fully contained in the regular block and

contains Rhp(4n;δ0τn) if δ0τ 6 1. Thus, by comparison between boundary conditions,

ϕG̃
mix

[
0

Rhp(4n;δ0τn)←−−−−−−−−−→ ∂T R
hp(4n;δ0τn)

]
6 ϕ1/0

Rhp(N ;N )

[
0

Rhp(4n;δ0τn)←−−−−−−−−−→ ∂T R
hp(4n;δ0τn)

]
6 ϕ1/0

Rhp(N ;N )

[
0←→ ∂Λ(δ0τn)

]
6 C0 exp(−c0δ0τn).
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4.3. The case 1 6 q 6 4

where Rhp(N ;N ) is the subgraph of Z
2

and the last inequality is given by Proposition 3.24.

Note that c0 and τ depend only on q. Thus, from (4.20) and the above we obtain,

ϕG
mix

[
0

Rhp(4n;δ0τn)←−−−−−−−−−→ ∂T R
hp(4n;δ0τn)

]
6

1
cn
C0 exp(−c0δ0τn). (4.21)

Forn large enough, we have cn > 1/2, and the left-hand side of (4.21) is smaller than 2C0 exp(−c0δ0τn).
Since the threshold for n and the constants c0, τ and δ0 only depend on q, the bound is of

the required form.

We now focus on bounding the probabilities of connection to the left and right boundaries

of Rhp,ε(n;δ0
n
ε ).

Observe that, for a con�guration such that the event {0
Rhp,ε(n;δ0

n
ε )←−−−−−−−−→ ∂RRhp,ε(n;δ0

n
ε )} oc-

curs, it su�ces to change the state of at most δ0
n
ε edges to connect 0 to the vertex x0,n (we will

assume here n to be even, otherwise x0,n should be replaced by x0,n+1). Moreover, these edges

can be chosen to be vertical ones in the irregular block, thus they are all “short” edges with

subtended angle ε. By the �nite-energy property, there exists a constant τ = τ(ε,q) ∈ (0,1)
such that

ϕG
mix

[
0

Rhp,ε(n;δ0
n
ε )←−−−−−−−−→ ∂RR

hp,ε(n;δ0
n
ε )
]
6 τ−δ0

n
εϕG

mix

[
0↔ x0,n

]
,

where τ can be estimated as follows,

τ =
pε

pε + (1− pε)q
=

yε
q+ yε

> 1− c1ε,

where c1 > 0 is a constant depending only on q.

The points 0 and x0,n are not a�ected by the transformations in Σ↑, therefore

ϕG
mix

[
0↔ x0,n

]
= ϕG̃

mix

[
0↔ x0,n

]
6 ϕG̃

mix

[
0↔ ∂Λ(n)

]
6 ϕ1/0

Rhp(N ;N )

[
0↔ ∂Λ(n)

]
6 C0 exp(−c0n),

where in the last line, Rhp(N ;N ) is the subgraph of G̃
mix

, or equivalently of Z
2

since these

two are identical. The last inequality is given by Proposition 3.24. We conclude that,

ϕG
mix

[
0

Rhp,ε(n;δ0
n
ε )←−−−−−−−−→ ∂RR

hp,ε(n;δ0
n
ε )
]
6 C0 exp

[
− (c0 +

δ0
ε logτ)n

]
6 C0 exp

[
− (c0 +

δ0
ε log(1− c1ε))n

]
. (4.22)

The same procedure also applies to the event

{
0

Rhp,ε(n;δ0
n
ε )←−−−−−−−−→ ∂LRhp,ε(n;δ0

n
ε )
}
.

Now let δ1 = c0ε
c0τε−log(1−c1ε)

and δ0 = min{δ1, 12 }. Notice that δ1 →
c0

c0τ+c1
> 0 when

ε→ 0, which gives the following relation,

c0 +
δ0
ε
log(1− c1ε) > c0 +

δ1
ε
log(1− c1ε) = c0δ1τ −→

c20τ

c0τ + c1
> 0,
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4. Behavior of the qantum random-cluster model

as ε→ 0. Thus, for ε small enough, we can pick a uniform constant δ0 such that

c0 +
δ0
ε
log(1− c1ε) >

1
2
c0δ1τ =: c.

Then, Equations (4.18), (4.21) and (4.22) imply that for n larger than some threshold depend-

ing only on q,

ϕG
mix

[
0↔ ∂Λ(n)

]
6 4C0 exp(−cn).

Finally, by (4.19), we deduce (4.15) for all N > 4n and n large enough. The condition on n
may be removed by adjusting the constant C.
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Chapter5

Semi-discrete complex analysis

In this chapter, we construct the main tool of our study: the semi-discrete complex analysis.

There is a number of papers dealing with this, see for example [Kur63, Kur64, Kur67]. How-

ever, they do not go far enough for our needs. Thereforem, we will investigate deeper and

construct the theory needed to study the quantum Ising model.

Pretty often, the notions de�ned on the square lattice or isoradial graphs [Duf68, Duf56,

BMS05, Ken02, CS11, BG15] can be generalized easily, such as derivatives, holomorphicity

and harmonicity (Section 5.1.1), Brownian motion (Section 5.2), Dirichlet boundary problem

(Section 5.3) and other related objects.

The integration on the primal or dual lattice of a semi-discrete function can also be de-

�ned similarly (Section 5.1.2). A minor di�culty could arise when it comes to integrating the

product of two semi-discrete functions. We will explain in Section 5.1.3 how to de�ne this so

as to have expected properties as in the continuous setting.

Another di�culty appears in the construction of the semi-discrete Green’s function (Sec-

tion 5.4). This can be done by modifying the approach from [Ken02], which makes use of

discrete exponential functions. In the discrete case, the Green’s function can also be seen as

an isomonodromic discrete logarithm [BMS05].

The notion of s-holomorphicity was de�ned in (2.9) and will allow us to show the con-

vergence stated in Theorem 6.1, using the fact that the observable de�ned in Section 6.2 is

s-holomorphic.

5.1 Basic de�nitions

5.1.1 Derivatives

Let Ωδ be a primal semi-discrete domain. A function f de�ned on Ωδ is said to be contin-
uous if y 7→ f (x,y) is continuous for all x ∈ {x, (x,y) ∈ Ωδ}. The same de�nition applies to

functions de�ned on a dual domain Ω?
δ , a medial domain Ω�δ or a mid-edge domain Ω[

δ. We

then de�ne in the same way a di�erentiable function on these domains, or even Ck functions,

by demanding the property on all the vertical intervals.

Given a vertex p ∈ L�δ, we denote by p± the right and left neighboring vertices in L
�
δ, i.e.,

p± := p± δ2 . Similarly, we may write e± := e± δ2 for neighboring mid-edge vertices of e ∈ L[δ.

If p ∈ L�δ, we denote by e±p the right and the left neighboring mid-edges, or e±p := p± δ4 . In

the same way, given a mid-edge e ∈ L[δ, we denote by p±e the right and the left neighboring

medial vertices, or p±e := e ± δ4 .
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e−p e+p

p e

p+ep−e
p+p−

e− e+

Figure 5.1 – Illustration of the de�nitions above. Left: neighboring mid-edges and vertices of

a vertex. Right: neighboring vertices and mid-edges of a mid-edge.

For e ∈ L[δ, we may also write ue (resp. we) the neighboring primal (resp. dual) vertex. In

other words,

{ue} = {p+e ,p−e } ∩Lδ,
{we} = {p+e ,p−e } ∩L?δ .

See Figure 5.2 for an illustration.

e e

ue we we ue

Figure 5.2 – Illustration of the neighboring primal and dual vertices.

The derivatives D(δ)
and D

(δ)
of a di�erentiable function on L

�
δ or L

[
δ can be de�ned by

taking the “semi-discrete counterpart”. Thus, the notion of holomorphicity and harmonicity

will be de�ned in the same way.

De�nition 5.1. Let f : L�δ → C be a complex function de�ned on the medial lattice. Let

p ∈ L�δ. The x-derivative at p is given by

D
(δ)
x f (p) :=

f (p+)− f (p−)
δ

.

If p ∈ L�δ, we de�ne the second x-derivative at p by

D
(δ)
xx f (p) :=D

(δ)
x ◦D

(δ)
x f (p) =

f (p++) + f (p−−)− 2f (p)
δ2

where p++ = (p+)+ and p−− = (p−)−.

De�nition 5.2. Let f : L�δ → C be a di�erentiable complex function de�ned on a medial

lattice L
�
δ. Its derivatives at p ∈ L� are given by

D(δ)f (p) =
1
2

[
D

(δ)
x f (p) +

∂yf (p)

i

]
=
1
2

[
f (p+)− f (p−)

δ
+
∂yf (p)

i

]
, (5.1)

D
(δ)
f (p) =

1
2

[
D

(δ)
x f (p)−

∂yf (p)

i

]
=
1
2

[
f (p+)− f (p−)

δ
−
∂yf (p)

i

]
. (5.2)

A semi-discrete function f is said to be (semi-discrete) holomorphic at p ∈ L�δ ifD
(δ)
f (p) =

0, and is said to be holomorphic in Ω�δ, where Ω�δ is a medial domain, if D
(δ)
f (p) = 0 for all

p ∈ IntΩ�δ.
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The same de�nitions (5.1) and (5.2) could also be used for functions de�ned on mid-edge

domains. Let f : L[δ → C be a di�erentiable complex function de�ned on the mid-edge

lattice, then

D(δ)f (e) =
1
2

[
f (e+)− f (e−)

δ
+
∂yf (e)

i

]
, (5.3)

D
(δ)
f (e) =

1
2

[
f (e+)− f (e−)

δ
−
∂yf (e)

i

]
. (5.4)

Consider a twice di�erentiable function f de�ned on a primal (or dual) lattice. We can

de�ne its Laplacian by

∆(δ)f := 4D(δ)D
(δ)
f = 4D

(δ)
D(δ)f =D(δ)

xx f +∂yyf . (5.5)

A twice di�erentiable function f de�ned on the primal domain Ωδ is said to be

• harmonic if ∆(δ)f (p) = 0, for all p ∈ Int2Ωδ;

• subharmonic if ∆(δ)f (p) > 0, for all p ∈ Int2Ωδ;

• superharmonic if ∆(δ)f (p) 6 0, for all p ∈ Int2Ωδ.

Here, we take twice interior because in the de�nition of the Laplacian, the second x-derivative

is involved. We extend these de�nitions to a twice di�erentiable function de�ned on a dual

domain in the same way.

5.1.2 Integration on primal and dual lattices

Now, we de�ne the notion of (semi-discrete) complex line integral for a semi-discrete function

f living on L
�
δ. Let P = [kδ + ia,kδ + ib] be a vertical primal (resp. dual) segment, meaning

that k ∈Z (resp. k ∈Z+ 1
2 ) and a < b. If the segment P is oriented upwards, we write∫
P
f (z)dz := i

∫ b

a
f (δk + iy)dy = i

∫ b

a
fk(y)dy (5.6)

to be the complex line integral along the vertical segment P , where we de�ne fk(·) = f (δk+
i ·). Both primal and dual vertical segments are called medial vertical segments.

Let P = {δk + i t,m 6 k 6 n,k ∈ Z} be a horizontal primal segment for m,n ∈ Z. We

de�ne ∫
P
f (z)dz := δ

n−1∑
k=m

f
(
δ
(
k +

1
2

)
+ i t

)
= δ

n−1∑
k=m

fk+ 1
2
(t) (5.7)

to be the complex line integral along the horizontal primal segment P oriented to the right.

If we have a horizontal dual segment P = {δ(k + 1
2 ) + i t,m 6 k 6 n,k ∈ Z}, we de�ne in a

similar way ∫
P
f (z)dz := δ

n∑
k=m+1

f (δk + i t) = δ
n∑

k=m+1

fk(t) (5.8)

the complex line integral along the horizontal dual segment. Both primal and dual horizontal

segments are called medial horizontal segments.
In both vertical and horizontal cases, we de�ne the semi-discrete complex line integral of

a reversed path to be the opposite of the semi-discrete complex line integral of the original

path.
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The integrals above are called “semi-discrete complex line integrals” is for the following

reason: we take into account the direction in which the segment goes, giving factors ±1
(horizontal segments) or ± i (vertical segments). We may also de�ne the integration against

|dz|, removing thus these factors. Moreover, our integrals shall be de�ned additively.

Given a semi-discrete primal domain Ωδ and a semi-discrete function f on it, we may

write its integral on the domain by∫
Ωδ

f (y)dy := δ
∑
IntΩδ

∫ βk

αk

fk(y)dy,

where the sum is taken over all the dual vertical lines in IntΩδ. This can be seen as a double

integral, in which one involves horizontal segments and the other one vertical segments. And

the complex line integral along horizontal segments gives the factor δ. We may also deduce

the same formula for a dual domain Ω?
δ . Here, we note that the integration against dy should

be seen as classical real integration.

An elementary primal (resp. dual) domain is given by

Bk(α,β) = {x+ iy,δk 6 x 6 δ(k +1),α 6 y 6 β}

for α < β integers and k ∈ Z (resp. k ∈ Z + 1
2 ). Its boundary consists of four primal (resp.

dual) segments, two vertical ones and two horizontal ones. By convention, we will always

orient the boundary counterclockwise. An elementary medial domain is either a primal or a

dual elementary domain which shall be denoted by B�k(α,β) for k ∈ 1
2Z in the rest of this

article.

From the complex line integrals along horizontal and vertical segments given by Equa-

tions (5.6), (5.7) and (5.8), we can also de�ne the complex line integral along the boundary of

any primal or dual domain by linearity. Let us consider an elementary primal or dual domain

Bk(α,β) as an example. Denote by C its boundary which is oriented counterclockwise. If f
is a semi-discrete function which is piecewise continuous, then its integral along the contour

C is given by ∮
C
f (z)dz := δ

[
fk+ 1

2
(α)− fk+ 1

2
(β)

]
+ i

∫ β

α
[fk+1(y)− fk(y)]dy, (5.9)

consisting of the four integrals coming from the four sides of the elementary domain. More-

over, if f is piecewise di�erentiable, this can be rewritten as∮
C
f (z)dz = δ

[
fk+ 1

2

]α
β
+ iδ

∫ β

α
D

(δ)
x fk+ 1

2
(y)dy (5.10)

= 2iδ
∫ β

α
D

(δ)
fk+ 1

2
(y)dy. (5.11)

where in D
(δ)
f , the term ∂yf is given in the sense of distributions.

Given a primal semi-discrete domain Ωδ, we de�ne the integral of a semi-discrete func-

tion f along its counterclockwise-oriented contour by decomposing its boundary into verti-

cal and horizontal segments and adding them up.

The integral along the contour of a dual domain is de�ned in a similar way and the

corresponding properties can be obtained as well. We note that here we do not de�ne the

integral along the contour of a medial domain.
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Proposition 5.3 (Green’s formula). Consider a primal domainΩδ. Denote by C its boundary
which is oriented counterclockwise. Take a semi-discrete function f which is piecewise di�eren-
tiable, then its integral along the contour C satis�es the following relation∮

C
f (z)dz = 2i

∫
Ωδ

D
(δ)
f (y)dy.

Proof. We decompose the primal or dual domain into elementary ones and sum up Equa-

tion (5.10) corresponding to each of them. On the right hand side, some integrals along the

boundary of elementary domains appear twice with opposite sign and cancel out, therefore,

the only remaining terms sum up to the complex line integral along the contour C.

De�ne a vector operator∇ = (D(δ)
x ,∂y) called nabla. The following statement is similar to

Green’s formula in the continuous setting. This allows us to reduce a 2-dimensional integral

into a contour integral on a more general (primal) domain.

Proposition 5.4 (Divergence theorem). Let Ωδ be a primal domain with contour C which is
oriented counterclockwise. Let

−→
F = (Fx,Fy) be a semi-discrete function which is continuous and

takes values in R
2. We have the following equality,∫

Ωδ

∇ · −→F (y)dy =
∮
C

−→
F (z) · −→n (z)|dz|, (5.12)

where −→n (z) is the vector obtained after a rotation of −π2 from the tangent vector (oriented coun-
terclockwise) to C at z with norm 1.

Proof. As usual, it su�ces to show this for an elementary domain, and then sum up over

a decomposition of Ωδ into elementary domains. Let Bk(α,β) be an elementary domain.

Write Fk,x(·) = Fx(δk + i ·) and Fk,y = Fy(δk + i ·). The left-hand side of Equation (5.12) can

be rewritten as

δ

∫ β

α
(D(δ)

x Fk,x +∂yFk,y)(y)dy

=
∫ β

α
(Fk+ 1

2 ,x
−Fk− 1

2 ,x
)(y)dy + δ[Fk,y(β)−Fk,y(α)]

which is exactly the right-hand side of Equation (5.12).

We note again that this proposition is still valid even if

−→
F is only piecewise di�erentiable,

as long as we interpret derivatives in the sense of distributions.

5.1.3 Integration of a product of functions

Here, we de�ne the integration of a product of functions and establish the equivalent of

Green’s theorem in the semi-discrete case.

Let us start again with integration along elementary segments. Consider two functions

de�ned on the semi-discrete lattice f and g , a vertical primal (resp. dual) segment P = [kδ+
ia,kδ+ib] with k ∈Z (resp. k ∈Z+ 1

2 ) and a < b. Recall that fk(·) = f (kδ+i ·). If the segment

P is oriented upwards, we write∫
P
[f ;g]dz :=

∫ b

a
[fk− 1

2
(y)gk+ 1

2
(y)− fk+ 1

2
(y)gk− 1

2
(y)]dy (5.13)
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5. Semi-discrete complex analysis

to be the integral along P . If the segment is oriented downwards, we take the opposite of the

above quantity.

For m,n ∈ Z, let P = {kδ + i t,m 6 k 6 n,k ∈ Z} be a horizontal primal segment. We

de�ne ∫
P
[f ;g]dz := δ2

n−1∑
k=m

(gk+ 1
2
∂yfk+ 1

2
− fk+ 1

2
∂ygk+ 1

2
)(t) (5.14)

the integral along the horizontal primal segment P , oriented towards the right.

In the same way as integration of a semi-discrete function along the (counterclockwise-ori-

ented) contour of a semi-discrete domain, we de�ne the counterpart of a product of functions

by decomposing the contour into vertical and horizontal segments and adding them up.

Proposition 5.5 (Green’s theorem). Consider a primal (or dual) domainΩδ and denote by C
its counterclockwise-oriented boundary. Given two semi-discrete functions f and g which are
piecewise di�erentiable in Ω′δ such thatΩδ ⊂ IntΩ′δ, we have∮

C
[f ;g]dz = δ

∫
Ωδ

[fk∆
(δ)gk − gk∆(δ)fk](y)dy.

Proof. As usual, we start by showing this for an elementary domain since we can super-

impose these domains to obtain more general domains and the integration terms simplify.

Consider Bk− 1
2
(α,β) a dual elementary domain and denote C its contour with counterclock-

wise orientation. By de�nition, we have∮
C
[f ;g]dz =

∫ β

α
[fkgk+1 − fk+1gk](y)dy −

∫ β

α
[fk−1gk − fkgk−1](y)dy

+ δ2
[
(gk∂yfk − fk∂ygk)(t)

]α
β

=
∫ β

α
[fk(δ

2D
(δ)
xx gk +2gk)− gk(δ2D

(δ)
xx fk +2fk)](y)dy

+ δ2
∫ β

α
∂y(fk∂ygk − gk∂yfk)(t)dt

= δ2
∫ β

α
[fkD

(δ)
xx gk − gkD

(δ)
xx fk](y)dy + δ

2
∫ β

α
(fk∂yygk − gk∂yyfk)(t)dt

= δ2
∫ β

α
(fk∆

(δ)gk − gk∆(δ)fk)(y)dy.

5.2 Brownian motion, harmonic measure and Laplacian

Let δ > 0. The standard Brownian motion on the semi-discrete lattice Lδ = δZ ×R can be

seen as a continuous-time random walk in the horizontal direction; and a standard Brownian

motion on R in the vertical direction. We give a more precise description below.

De�nition 5.6. Let (Ti)i∈N be a family of i.i.d. exponential random variables of rate 1 and

(Di)i∈N be a family of i.i.d. uniform random variables taking value in {+1,−1}. We de�ne

St =
N (t)∑
i=1

Di
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5.2. Brownian motion, harmonic measure and Laplacian

where

N (t) = sup{n ∈N,T1 + · · ·+ Tn 6 t}.
The continuous-time process (St)t∈R is the standard continuous-time simple random walk on

Z.

Remark 5.7. We can easily compute the expectation and variance of St which are respec-

tively 0 and t. It also has good scaling properties and one can show that (δSt/δ2) converges

to (Bt) in law when δ goes to 0, where (Bt) is a standard one-dimensional Brownian motion.

Here, the process (δSt/δ2) can be seen as the continuous-time random walk with symmetric

jumps ±δ at exponential rate
1
δ2 .

We can now de�ne the semi-discrete standard Brownian motion on Lδ.

De�nition 5.8. A semi-discrete standard Brownian motion on Lδ is given by

B
(δ)
t = (Xt ,Yt) = (δSt/δ2 ,Bt), ∀t > 0

where (St) is a standard one-dimensional continuous-time simple random walk and (Bt) is a

standard one-dimensional Brownian motion, both of them being independent of each other.

The starting point B
(δ)
0 is arbitrary, which is given by the starting points of (St) and (Bt).

As in the discrete and continuous cases, we can de�ne the notion of harmonic measure
via the standard Brownian motion.

De�nition 5.9. Given a primal domain Ωδ and (B(δ)t ) a Brownian motion on Ωδ starting at

some point (x,y) ∈Ωδ, we de�ne

TΩδ
= inf{t > 0,B(δ)t < IntΩδ} (5.15)

The harmonic measure of Ωδ with respect to (x,y), denoted by dωΩδ
((x,y), ·), is the law of

B
(δ)
TΩδ

.

Here, we are interested in the harmonic measure on centered elementary rectangular

domains Rε = {−δ,0,δ}× [−ε,ε]. On such domains, the harmonic measure with respect to 0,

denoted by ρε, is the sum of two Dirac masses at ±iε and two density measures which are

symmetric in both discrete and continuous directions on {±δ} × [−ε,ε].
We will write gδ(ε) for the probability that the Brownian motion B

(δ)
t leaves Rε (the �rst

time) from its left or right sides. This can be expressed by using the harmonic measure on

Rε as follows,

gδ(ε) =
∫ ε

−ε
ρε(−δ,y)dy +

∫ ε

−ε
ρε(δ,y)dy. (5.16)

Thus, we can write the Dirac masses at ±iε in this way:

ρε(±iε) = ρε(0,±ε) =
1− gδ(ε)

2
· δ±ε.

De�nition 5.10. Given a primal domain Ωδ, a function f : Ωδ → R is said to satisfy the

mean-value property on elementary rectangles if for all (x,y) ∈Ωδ and ε > 0 such that R′ε =
(x,y) +Rε ⊂Ωδ, we have

f (x,y) = E(x,y)

[
f
(
B
(δ)
TR′ε

)]
. (5.17)

Here,B
(δ)
t is the standard Brownian motion starting at (x,y) and TR′ε the stopping time de�ned

in Equation (5.15).
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5. Semi-discrete complex analysis

Remark 5.11. In terms of harmonic measure, Equation (5.17) can be reformulated as (with-

out loss of generality, we take (x,y) = (0,0))

f (0,0) =
∫
∂Rε

f (z)ρε(z)|dz|

=
∫ ε

−ε
f (−δ,y)ρε(−δ,y)dy +

∫ ε

−ε
f (δ,y)ρε(δ,y)dy

+
1− gδ(ε)

2
· (f (−iε) + f (iε)).

The following proposition computes the existing probability from the left or right bound-

ary of Rε. This will be useful later in Proposition 5.13 to show that the mean-value property

implies that the Laplcian of a harmonic function is zero.

Proposition 5.12. The probability that the Brownian motion B(δ)t leaves Rε (the �rst time) by
the left or right boundary is

gδ(ε) = 1− 1

cosh(
√
2ε/δ)

=
(ε
δ

)2
+Oδ

(
ε4

)
,

where the asymptotic behavior is given for ε→ 0.

Proof. Fix (B(δ)t = (δSt/δ,Bt))t>0 as in De�nition 5.8. This probability is exactly P[δ2T1 < τ]
where T1 is an exponential law with parameter 1, which is independent of the stopping time

τ = τε ∧ τ−ε for the standard 1D Brownian motion. Here

τx :=
{

inf{t,Bt > x} if x > 0,
inf{t,Bt 6 x} if x < 0.

By Fubini, we have

1− gδ(ε) = P[δ2T1 > τ] = E[P[T1 > τ/δ
2 | τ]] = E[exp(−τ/δ2)],

which is the Laplace transform of τ .

To calculate this, we note that the continuous-time process

Mt = exp
(√

2Bt/δ − t/δ2
)

is a martingale with respect to the canonical �ltration. Moreover, by the de�nition of the

stopping time τ , the process (Mt∧τ )t is a martingale bounded by e
√
2ε/δ

. The stopping time

being �nite almost surely, we can apply Doob’s optional stopping theorem, giving us:

1 = E [M0] = E [Mτ ]

=
1
2
E [Mτ |τ = τε] +

1
2
E [Mτ |τ = τ−ε]

=
1
2
exp

(√
2ε/δ

)
E

[
exp(−τ/δ2)|τ = τε

]
+
1
2
exp

(
−
√
2ε/δ

)
E

[
exp(−τ/δ2)|τ = τ−ε

]
.

(5.18)

Since (Bt)t and (−Bt)t are equal in law, we have

E

[
exp(−τ/δ2)|τ = τε

]
= E

[
exp(−τ/δ2)|τ = τ−ε

]
.
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5.2. Brownian motion, harmonic measure and Laplacian

Moreover,

E

[
exp(−τ/δ2)

]
=
1
2
E

[
exp(−τ/δ2)|τ = τε

]
+
1
2
E

[
exp(−τ/δ2)|τ = τ−ε

]
,

giving

E

[
exp(−τ/δ2)

]
= E

[
exp(−τ/δ2)|τ = τε

]
= E

[
exp(−τ/δ2)|τ = τ−ε

]
.

Thus, Equation (5.18) becomes

1 = cosh
(√

2ε/δ
)
·E

[
exp(−τ/δ2)

]
,

which implies

E

[
exp(−τ/δ2)

]
=

1

cosh
(√

2ε/δ
)

and

gδ(ε) = 1−E
[
exp(−τ/δ2)

]
=
cosh

(√
2ε/δ

)
− 1

cosh
(√

2ε/δ
) .

The following proposition gives two equivalent characteristics for semi-discrete har-

monic functions: one using the mean-value property and the other using the Laplacian.

Proposition 5.13. LetΩδ be a primal domain and h :Ωδ→R be a C2 function de�ned on it.
Then, the following two statements are equivalent :

1. h satis�es the mean-value property (De�nition 5.10) on elementary rectangles;

2. ∆(δ)h ≡ 0 on Ωδ.

Proof. Here, we will show that the property 1 implies the property 2. The converse will be

discussed later in Section 5.3.

Consider a function f as in the statement. We will apply the mean-value property at a

point of Ωδ and consider elementary rectangles with smaller and smaller height to prove the

desired property. Let ε > 0 and consider an elementary rectangleRε. Let us �rst approximate

the contribution of E0

[
f
(
B
(δ)
T

)]
on the left boundary by h(−δ,0):∫ ε

−ε
h(−δ,y)ρε(−δ,y)dy −

gδ(ε)
2
· h(−δ,0)

=
∫ ε

−ε
[h(−δ,y)− h(−δ,0)]ρε(−δ,y)dy

=
∫ ε

−ε
[y∂yh(−δ,0) +Eε(−δ,y)]ρε(−δ,y)dy.

The harmonic measure ρε is symmetric in y, thus the integral of y∂yh gives zero. The error

term can be expressed as follows

Eε(−δ,y) =
∫ y

0
∂yyh(−δ, t)(y − t)dt

giving the upper bound

|Eε(−δ,y)| 6 C ·
y2

2
, ∀y ∈ [−ε,ε],
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5. Semi-discrete complex analysis

where C = sup{∂yyh(−δ,y), y ∈ [−ε,ε]}. In consequence, we have∣∣∣∣∣∫ ε

−ε
h(−δ,y)ρε(−δ,y)dy −

gδ(ε)
2
· h(−δ,0)

∣∣∣∣∣
6 C

∫ ε

−ε

ε2

2
ρε(−δ,y)dy =

Cε2

2
·
gδ(ε)
2

,

allowing us to write∫ ε

−ε
h(−δ,y)ρε(−δ,y)dy =

gδ(ε)
2
·
[
h(−δ,0) +O

(
ε2

)]
. (5.19)

Similarly, we also have∫ ε

−ε
h(δ,y)ρε(δ,y)dy =

gδ(ε)
2
·
[
h(δ,0) +O

(
ε2

)]
. (5.20)

Combining Equations (5.19) and (5.20) and inserting in (5.17), we get

0 =
gδ(ε)
2
·
[
h(−δ,0) + h(δ,0)− 2h(0,0) +O

(
ε2

)]
+
1− gδ(ε)

2
· [h(0, ε) + h(0,−ε)− 2h(0,0)]

=
gδ(ε)
2
·
[
δ2D

(δ)
xx h(0,0) +O

(
ε2

)]
+
1− gδ(ε)

2
·
[
ε2hyy(0,0) +O

(
ε2

)]
.

We divide everything by ε2 to get

0 =
gδ(ε)
2ε2

·
[
δ2D

(δ)
xx h(0,0) +O

(
ε2

)]
+
1− gδ(ε)

2
·
[
hyy(0,0) +O(1)

]
.

When ε goes to 0, using Proposition 5.12 we obtain

1
2
∆(δ)h(0,0) =

1
2
D

(δ)
xx h(0,0) +

1
2
∂yyh(0,0) = 0.

The semi-discrete Laplacian can also be interpreted by means of a generator. The gener-
ator of a continuous-time Markov process (Xt ,Yt) is the linear operator P such that

P f (x,y) = lim
t→0

E(x,y)[f (Xt ,Yt)]− f (x,y)
t

for C2 functions f :R2→R.

Proposition 5.14. The generator of B(δ) is 1
2D

(δ)
xx + 1

2∂yy .

Proof. We omit the proof here as it is straightforward and we do not need this proposition

below.

In R
2
, the generator of the standard 2D Brownian motion is one half of the planar Lapla-

cian, so we may also expect the same connection between the semi-discrete Brownian motion

and Laplacian, which actually follows from the above proposition and Equation (5.5).
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5.3. Dirichlet boundary problem

5.3 Dirichlet boundary problem

Dirichlet boundary problems are of great importance in analysis and can be solved by the

Brownian motion. It is one of the simplest boundary value problems one can imagine: given

an open domain Ω and a function f de�ned on its boundary ∂Ω, we look for functions which

are harmonic in the Ω which coincides with f on the boundary.

To study the convergence of the observable that we de�ne in Section 6.2, we actually

deal with some particular boundary-value problems. Therefore, a good understanding of

the Dirichlet boundary problem is necessary. The existence of the solution is given by the

Brownian motion (Proposition 5.16) and the uniqueness is based on the maximum principle

(Proposition 5.15).

Proposition 5.15 (Maximum principle). Consider a primal semi-discrete domain Ωδ. Let u
be a subharmonic function de�ned onΩδ, i.e., ∆(δ)u(p) > 0 for all p ∈ Int2Ωδ. Then, we have

sup
z∈Ωδ

u(z) = sup
z∈∂Ωδ

u(z).

In other words, the maximum of u is reached on the boundary.

Proof. First of all, let us assume that u is subharmonic but not harmonic, meaning that

∆(δ)u > 0 on Int2Ωδ. Take z ∈ IntΩδ a point at which u reaches its maximum. Since it is a

maximum on vertical axes, we have ∂yyu(z) 6 0. And we also haveD
(δ)
xx u(z) = u(z+δ)+u(z−

δ)−2u(z) 6 0. Thus, the semi-discrete Laplacian satis�es ∆(δ)u(z) =D(δ)
xx u(z)+∂yyu(z) 6 0,

leading to a contradiction.

In a more general case with ∆(δ)u > 0 in IntΩδ, let us consider the family of functions

(uε)ε>0 de�ned by

uε(z) = u(z) + εy
2,

where y is the second coordinate of z. We have ∆(δ)uε = ∆(δ)u + 2ε, meaning that uε is

strictly subharmonic. From the �rst part of the proof, we deduce that

sup
z∈Ωδ

uε(z) = sup
z∈∂Ωδ

uε(z).

Since both terms are �nite and decreasing while ε decreases to 0, taking the limit implies the

desired result.

Given a primal semi-discrete domain Ωδ and a function g : ∂Ωδ → R, the associated

Dirichlet problem consists in determining a function h :Ωδ→R such that

1. it coincides with g on the boundary, i.e., g = h|∂Ωδ
;

2. it is harmonic on IntΩδ, i.e., (∆(δ)h)|IntΩδ
≡ 0.

In such case, we say that h is a solution to the Dirichlet boundary problem.

Given a semi-discrete Dirichlet boundary problem, one can establish a solution by con-

sidering a semi-discrete Brownian motion, stopped when it touches the boundary. The state-

ment is as follows.

Proposition 5.16 (Existence of solution). A solution to the Dirichlet boundary problem is
given by

h(z) = E

[
g(B(δ)T )

]
, ∀z ∈Ωδ, (5.21)

where
T = inf{t > 0,B(δ)t <Ωδ}.
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Proof. We note that Equation (5.21) is well de�ned because the trajectory of B
(δ)
T is almost

surely continuous (in the semi-discrete sense), thus B
(δ)
T ∈ ∂Ωδ.

If h is given by Equation (5.21), then it satis�es the mean-value property on elementary

rectangles as well. Indeed, take z ∈ Ωδ and ε > 0 small enough such that z + Rε ⊂ Ωδ.

Consider the stopping time

T ′ = inf{t > 0,B(δ)t < z+Rε}

and write

h(z) = Ez

[
g
(
B
(δ)
T

)]
= Ez

[
EBT ′

[
g
(
B
(δ)
T

)∣∣∣∣∣T ′]] = Ez

[
h
(
B
(δ)
T ′

)]
which is exactly the mean-value property. Moreover, one can also show that h is C2 using

classical arguments (convolution for example), and the already proved �rst implication of

Proposition 5.13 gives ∆(δ)h ≡ 0 on Ωδ.

Moreover, using the maximum principle (Proposition 5.15), one can show that such a

solution is unique.

Proposition 5.17 (Uniqueness). The solution to the Dirichlet problem is unique.

Proof. By linearity, it is enough to show uniqueness when the boundary condition is 0. Con-

sider a semi-discrete domain Ωδ and h : Ωδ → R which is zero on the boundary ∂Ωδ and

harmonic on Ωδ. Applying the maximum principle to h and −h, the function h should reach

its maximum and minimum on the boundary. Therefore, it is zero everywhere.

Proof of Proposition 5.13. Here, we �nish the proof of the proposition by using the uniqueness

of the solution to the Dirichlet problem. Consider a semi-discrete domain Ωδ and a function

f :Ωδ→R satisfying ∆(δ)f ≡ 0. We want to show that it satis�es the mean-value property

on rectangles.

Take z ∈Ωδ and ε > 0 such that z+Rε ⊂Ωδ. Consider g : ∂(z+Rε)→R which coincides

with f . There exists a unique function h : z +Rε → R such that hz+∂Rε ≡ g and ∆(δ)h ≡ 0
over z+Rε. Since f satis�es exactly the same conditions, we have f ≡ h on z+Rε.

By the construction of the solution to the Dirichlet problem (Proposition 5.16), f satis�es

the mean-value property on rectangles.

5.4 Green’s function

A Green’s function is a function which is harmonic everywhere except at one point, where

it has a singularity described by the Dirac mass. It is closely related to the average number

of visits of a random walk in the discrete setting and the average time spent by a Brownian

motion in the continuous setting. We will explain its construction in the semi-discrete set-

ting, show that it is unique up to an additive constant and derive some of its properties and

asymptotic behavior.

Moreover, the Riesz representation (Proposition 5.26) allows us to “decompose” a func-

tion into sum of Green’s functions. This will be important for the convergence theorem

(Theorem 6.20) of semi-discrete s-holomorphic functions.

We note that this construction is the least trivial generalization among all the other no-

tions from the isoradial case. The idea is based on the use of discrete exponential functions

introduced in [Ken02] but the computation turns out to be more technical in our case.
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5.4.1 Construction and properties

A Green’s function is a function Gδ(z,ζ) de�ned on the semi-discrete (primal) lattice satisfy-

ing the following three properties.

1. It is translational invariant, i.e., there exists a function Gδ such that for any z,ζ ∈ L,

we have Gδ(ζ − z) = Gδ(z,ζ).

2. The function ζ 7→ Gδ(ζ) is C2 and semi-discrete harmonic except at ζ = 0, where it is

only continuous.

3. Behavior around the origin: when ε > 0 is small, the quantities Gδ(iε) and Gδ(− iε)
coincide at order O (1) and order O

(
ε2

)
,

lim
ε→0+

Gδ(iε) = lim
ε→0+

Gδ(− iε),

lim
ε→0+

∂yyGδ(iε) = lim
ε→0+

∂yyGδ(− iε),

whereas at order O (ε), we have a jump,

∂yGδ(i0
+)−∂yGδ(i0−) = lim

ε→0
[∂yGδ(iε)−∂yGδ(− iε)] =

1
δ
.

This is called the normalization of a Green’s function.

If Gδ is a Green’s function, we can apply Green’s formula (Proposition 5.3) or the Diver-

gence Theorem (Proposition 5.4) to get the usual property that, for a dual domain Ω?
δ such

that 0 ∈ IntΩ?
δ , ∫

Ω?
δ

∆(δ)Gδ(y)dy = 1

and ∫
Ω?
δ

f (y)∆(δ)Gδ(y)dy = f (0)

where f is a semi-discrete function on Ω?
δ .

We will show that there exists a unique function (up to an additive constant) having

these properties. To achieve this, we generalize the method of discrete exponential functions

from [Ken02]. First of all, let us de�ne Gδ for δ = 1 (Proposition 5.18) then for general δ
(Proposition 5.21).

Consider a family of meromorphic functions on C indexed by vertices in L1 in the fol-

lowing way:

• at the origin: f0(z) =
1
z ;

• if t ∈R, then fi t(z) = f0(z) · exp
[
2i t

(
1
z+1 +

1
z−1

)]
;

• if p ∈ L�1, then fp+(z) = fp(z) · z+1z−1 .

In other words, if ζ =m+ it with m ∈ 1
2Z and t ∈R, we can write

fζ(z) =
1
z
· exp

[
2i t

( 1
z+1

+
1

z − 1

)]
·
(z+1
z − 1

)2m
. (5.22)

Proposition 5.18 (Green’s function). The following function is the Green’s function on L1

G(ζ) :=
1

8π2 i

∫
C
fζ(z) ln(z)dz (5.23)
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5. Semi-discrete complex analysis

where C is a path in C depending on ζ, surrounding {eiθ ,0 6 θ 6 π} and leaving the origin
outside the contour. For the complex logarithm, we de�ne it in (θ − π,θ + π) where θ is an
argument of ζ.

Remark 5.19. We can compute the Green’s function of Proposition 5.18 with the help of the

residue theorem. The possible poles of the function ft(z) ln(z) are 1 and −1 and the choice

of the branch creates a possible discontinuity only when t = Imζ = 0, since elsewhere, we

have ln(−1) − ln(1) = ± iπ with a + sign in the upper half-plane and a − sign in the lower

half-plane.

Proof. We start by checking that G given by (5.23) is well-de�ned. If we change the lift of

the logarithm, (equivalent to adding 2kπ to log for an integer k), we need to show that this

does not change the value of G, that is to say∫
C
fζ(z)dz = 0

for all ζ ∈ L1. This is shown in Appendix, see Proposition A.5.

In each of the half-planes, the function G is C∞ because we integrate a smooth function

along a path and the branch of the logarithm does not cross 1 or −1 where a discontinuity

might be created.

On Z\{0}, we can expand the exponential function and see that the residues at 1 and at

−1 coincide up to the second order. It is explained in Proposition A.6, telling us that G is C2
on L1 except at 0.

Now, let us check that G is semi-discrete harmonic everywhere apart from the origin.

Actually, it is su�cient to check that fζ is harmonic (with respect to ζ) except at the origin.

Writing ζ = x+ iy with x ∈Z and y ∈R, we �nd

∆
(δ)
xx fζ =D

(δ)
xx fζ +∂yyfζ

=
[
(2i)2

( 1
z+1

+
1

z − 1

)2
+
(z+1
z − 1

)2
+
(z − 1
z+1

)2
− 2

]
fζ

= 0.

Here, it is allowed to add all the terms together since we always consider the same branch of

the logarithm.

To conclude the proof, we still need to check the behavior of G around 0. This follows

from a direct computation:

lim
ε→0+

∂yG(iε) =
1

4π2

∫
C

( 1
z+1

+
1

z − 1

) ln(z)
z

dz

=
i
2π

[ln(1)− ln(−1)] = 1
2

where we use the residue theorem in the second equality. Similarly, we have

lim
ε→0−

∂yG(iε) = −
1
2
.

Lastly, to check that G(iε) and G(− iε) coincide at order O (1) and order O
(
ε2

)
, we use

Lemma A.4.

As a consequence, we get all the properties we were looking for andG is indeed a Green’s

function on L1.
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5.4. Green’s function

Proposition 5.20 (Asymptotics of Green’s function). Let ζ ∈ L1. When |ζ| goes to in�nity,
we have the following asymptotic behavior,

G(ζ) =
1
2π

ln(4|ζ|) +
γEuler
2π

+O
(
1
|ζ|2

)
. (5.24)

Proof. The proof is similar to the one given in [Ken02] for the discrete Green’s function on

isoradial graphs. We need to be careful when dealing with the exponential term in fζ . To get

the improved error term O
(
1/ |ζ|2

)
, we use the method from [Büc08].

Consider ζ = m + i t ∈ L1 and write d = |ζ| and argζ = θ0. Take r = O
(
1/d4

)
and

R = 1
r = O

(
d4

)
. We will consider the path C going as follows:

1. counterclockwise around the ball of radius R around the origin from the angles θ0−π
to θ0 +π;

2. along the direction eiθ0 from −R to −r;
3. around the ball of radius r around the origin from angle θ0 +π back to θ0 −π;

4. along the direction eiθ0 from −r to −R, back to the starting point.

This path is illustrated in Figure 5.3.

r

R

Figure 5.3 – The path along which we integrate in the proof of Proposition 5.20.

We estimate these integrals separately, combining the two integrals along the direction

eiθ0 . First of all, to study the integral around the ball of radius r , we start by expanding fζ
for z = reiθ when r is small:

1
1+ z

− 1
1− z

= O (r) and

1+ z
1− z

= exp(O (r)).

Due to the invariance of these formulae (up to sign) by r↔ R = 1
r , the same expansions hold

for z = Reiθ as well. Thus,

fζ(z) =
1
z
exp(O (dr)) = 1

z
(1 +O (dr)).

If we sum up the integrals around the ball of radius r and around the ball of radius R, we

obtain

1
8π2 i

∫ θ0+π

θ0−π
(1 +O (dr))[(lnR+ iθ)− (lnr + iθ)] idθ

=
lnR− lnr

4π
+O

( 1
d2

)
.

On the direction eiθ0 from −R to −r , we also add up the two integrals. Since the logarithm

di�ers by 2π i on the both sides, by combining we get

eiθ0

4π

∫ −r
−R
fζ(se

iθ0)ds.
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We should split this integral into 3 parts, I1 for the integral from −R to −
√
d, I2 from −

√
d to

−1/
√
d and I3 from −1/

√
d to −r . For |z| small, we expand fζ to order O

(
z3

)
:

fζ(z) =
e4ζz+O(dz

3)

z
.

Thus, I3 can be rewritten (let α = 4ζeiθ0 = 4|ζ| = 4d)

I3 =
1
4π

∫ −r
−1/
√
d

eαs+O(ds
3)

s
ds =

1
4π

(∫ −αr
−α/
√
d

es

s
ds+

∫ −r
−1/
√
d
O

(
ds3

) eαs
s

ds

)
=

1
4π

(∫ −1
−α/
√
d

es

s
ds+

∫ −αr
−1

es − 1
s

ds+
∫ −αr
−1

ds
s

)
+O

( 1
d2

)
=

1
4π

(ln(αr) +γ
Euler ) +O

( 1
d2

)
,

where in the �rst line, we expand the exponential; in the second line, the integral withO
(
ds3

)
givesO

(
1/d2

)
; and in the last line, ln(αr) comes from the third integral and Euler’s constant

comes from the �rst two integrals by taking αr→ 0 and α/
√
d→∞.

In a similar way (or by making the change of variable s→ 1/s), we get

I1 =
1
4π

(− ln(R/α) +γ
Euler ) +O

( 1
d2

)
.

To conclude the proof, we need to show that the intermediate term behaves as O
(
1
d2

)
.

Let z = seiθ0 for s ∈ [−
√
d,−1/

√
d]. For the exponential term in fζ , we have

exp
[
2i t

( 1
z+1

+
1

z − 1

)]
= exp

[
−2t Im

( 1
z+1

+
1

z − 1

)]
= exp

[
2ts sinθ0

(
1

|z+1|2
+

1
|z − 1|2

)]
6 exp

(
−O

(
t2

d3/2

))
.

Then, for the other one, assume m > 0 (so cosθ0 > 0),∣∣∣∣∣z+1
z − 1

∣∣∣∣∣2m =
(
s2 +1+2scosθ0
s2 +1− 2scosθ0

)m
6

(
1+

4scosθ0
(s − 1)2

)m
6 exp

(
4mscosθ0
(s − 1)2

)
6 exp

(
−O

(
m2

d3/2

))
and we have the same bound for m 6 0. After all, the intermediate term can be bounded by

I2 6
√
de−O

(√
d
)
6 O

( 1
d2

)
.

Finally, we sum up all the terms and take the limit r→ 0 (thus R→∞) to have

G(ζ) =
1
2π

[ln(4|ζ|) +γ
Euler ] +O

( 1
d2

)
.
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5.4. Green’s function

Proposition 5.21. On Lδ, there exists a unique Green’s function with the following normal-
ization at 0

Gδ(0) =
1
2π

(lnδ − ln4−γEuler ).

Moreover, its asymptotic behavior when |ζ|δ goes to∞ is

Gδ(ζ) =
1
2π

ln |ζ|+O
(
δ2

|ζ|2

)
.

We call Gδ the free Green’s function on Lδ.

Proof. To construct a Green’s function with such normalization, we can consider

Gδ(ζ) = G
(ζ
δ

)
+

1
2π

(lnδ − ln4−γ
Euler ) .

To show the uniqueness, assume that Gδ and G̃δ are two such functions. Let Gδ = Gδ −
G̃δ. The �rst order singularities at zero cancel out due to the same normalization, so the

function Gδ is C1 around 0. Since the second order terms of Gδ(iε) and Gδ(− iε) coincide

(same for G̃δ), Gδ is C2 around 0. Finally, Gδ is harmonic in Lδ and is bounded (due to

the asymptotic behavior), it should be zero everywhere by Harnack principle (see below,

Proposition 5.25).

Given a primal semi-discrete domain Ωδ, we can de�ne the Green’s function on Ωδ by

GΩδ
= Gδ −HΩδ

where Gδ is the free Green’s function on Lδ and HΩδ
the unique solution to the Dirich-

let problem on the primal semi-discrete domain Ωδ whose boundary condition is given by

Gδ |∂Ωδ
Here, we note that GΩδ

is non-positive.

5.4.2 Link with Brownian motion

In the discrete setting, the Green’s function gives the average number of visits at each site

of a simple random walk; and in the continuous setting, it tells the average time spent by

a standard Brownian motion in an in�nitesimal region. In the semi-discrete setting, we can

also establish a similar result.

Proposition 5.22. LetQδ be a semi-discrete primal domain. Consider B(δ) a Brownian motion
started at x ∈Qδ as de�ned in Section 5.2, stopped at τ , the �rst exiting time of the domainQδ.
Then, we have the following asymptotic behavior which is independent of δ,

E[τ] �
∫
Qδ

|GΩδ
(x,y)|dy,

where the left-hand side is the average time spent by the semi-discrete Brownian motion B(δ) in
Qδ; and the right-hand side is the integral of the Green’s function on the same domain.

On a discrete graph, the expectation of the number of visits of a random walk (stopped

after an exponential time if it is recurrent) is given by the negative of its associated Green’s

function. Similarly, the average time spent by a Brownian motion in a continuous space (R
d

for example) is also given by the opposite of its associated Green’s function (again stopped
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5. Semi-discrete complex analysis

after an exponential time if it is recurrent). Here in the semi-discrete setting, we should

interpret the Green’s function in the continuous direction as the average time spent by the

Brownian motion; whereas in the discrete direction, the expectation of the number of “visits”,

which justi�es the factor δ in the de�nition of

∫
Qδ

.

Proof. The semi-discrete Brownian motion B(δ) converges in law to its continuous 2D coun-

terpart, so does the semi-discrete Green’s function, which converges uniformly on every

compact not containing 0 to the 2D Green’s function. As such, the integral of semi-discrete

Green’s function converges to the integral of 2D Green’s function on every compact not con-

taining 0. Moreover, lny is integrable on [0, ε], so the integral of the semi-discrete Green’s

function on a small rectangular domain around 0 can be well controlled, and this quantity

goes to 0 when ε→ 0.

If the Green’s funcion is tightly linked to the Brownian motion, it is also the case for the

harmonic measure. Actually, the following proposition allows us to write down equations

associating the harmonic measure to the Green’s function.

Proposition 5.23 (Link with harmonic measure). Consider a semi-discrete primal domainΩδ

with u0 ∈ IntΩδ. Let a ∈ ∂Ωδ := Ch ∪Cv be a point on the boundary, where Ch and Cv denote
respectively the horizontal and vertical parts. WriteωΩδ

(u0, {a}) for the harmonic measure with
respect to u0. We note that it should be seen as a density when a ∈ Cv and a Dirac mass when
a ∈ Ch. Then,

• if a ∈ Cv , we have ω(u0, {a}) = −1δGΩδ
(u0, aint);

• if a ∈ Ch, we have ω(u0, {a}) = ±∂yGΩδ
(u0, a),

where aint is the unique vertex in {a± δ} ∩ IntΩδ, ∂y is the vertical derivative with respect to
the second coordinate and we take the + sign if the boundary is oriented to the left at a and the
− sign otherwise.

Proof. It is immediate from Green’s Theorem (Proposition 5.5) by taking f =ωΩδ
(·, {a}) and

g = GΩδ
(u0, ·) and the fact that

∫
Ωδ
f ∆(δ)g = 1.

Lemma 5.24. We keep the same notation as above and take Ωδ = Bδ(u0,R). There exist two
positive constants c1 and c2, independent of δ, such that

• if a ∈ Cv , we have c1 6ω(u0, {a}) 6 c2 ;

• if a ∈ Ch, we have c1δ 6ω(u0, {a}) 6 c2δ.

Proof. We link the harmonic measure to Green’s function via Proposition 5.23, which can be

estimated more easily by its asymptotic behavior given in Proposition 5.21. We can write

GΩδ
(u0,u)−

1
2π

ln
|u −u0|
R

=
[
Gδ(u0,u)−

1
2π

ln |u −u0|
]
−
[
HΩδ

(u,u0)−
1
2π

lnR
]
.

The �rst term isO
(

δ2

|u−u0|2
)
. The second term is harmonic in Bδ(u0,R), thus by the maximum

principle, we get ∣∣∣∣∣HΩδ
(u,u0)−

1
2π

lnR
∣∣∣∣∣ 6 sup

v∈∂Bδ(u0,R)

∣∣∣∣∣Gδ(v,u0)− 1
2π

lnR
∣∣∣∣∣

6
δ
πR

+O
(
δ2

R2

)
,
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5.5. Harnack Principle and convergence theorems

where we use the fact that R − 2δ 6 |v − u0| 6 R since v ∈ ∂Bδ(u0,R). In summary, for all

u ∈ Bδ(u0,R), ∣∣∣∣∣GΩδ
(u0,u)−

1
2π

ln
|u −u0|
R

∣∣∣∣∣ = δ
πR

+O
(

δ2

|u −u0|2
+
δ2

R2

)
.

By takingu = aint with a ∈ Cv , we get the �rst part of the proposition. By takingu ∈ Bδ(u0,R)
closer and closer to a ∈ Ch, we get the second part.

5.5 Harnack Principle and convergence theorems

This part deals mostly with analysis of semi-discrete harmonic functions. We give the semi-dis-

crete version of Harnack Lemma (Proposition 5.25) which is useful to show a convergence

theorem for harmonic functions (Theorem 5.27). We also discuss the Riesz representation for

semi-discrete functions (Proposition 5.26). In Section 6.5, we will apply these propositions to

Theorem 6.1.

Proposition 5.25 (Semi-discrete Harnack Lemma). Let u0 ∈ Ωδ and 0 < r < R such that
Bδ(u0,R) ⊂Ωδ. Consider a non-negative semi-discrete harmonic function H : Bδ(u0,R)→ R.
LetM =maxH on Ωδ. If u,u+ ∈ Bδ(u0, r), then

|H(u+)−H(u)| 6 const · δM
R− r

,

∂yH(u) 6 const · M
R− r

.

Proof. We adapt the proof from the classical setting, which is based on the mean-value prop-

erty (5.17) and coupling between semi-discrete Brownian motions.

For the �rst part, we consider a semi-discrete Brownian motion (Xt) issued from u and

de�ne T to be the exiting time of (Xt) from the ball Bδ(u0,R). Write τ1 for the �rst moment

(before T ) at which Xt and u+ are on the same vertical primal line:

τ1 = inf{T > t > 0,ReXt = Reu+}.

If τ1 <∞, de�ne v = Xτ1 and l to be the (horizontal) perpendicular bisector of the segment

[u+,v]. Write σ for the re�ection with respect to l and de�ne Yt = σ (Xτ1+t) up to τ2, the

time at which Xt touches l, and then Yt = Xτ1+t afterwards. If τ1 = ∞, de�ne (Yt) to be a

semi-discrete Brownian motion issued from u+. Finally, de�ne T ′ to be the exiting time of

(Yt) from the ball Bδ(u0,R). As such, we have

|H(u+)−H(u)| = |H(YT ′ )−H(XT )| 6 2MP(XT , YT ′ ).

Using the coupling described above, one can compute the probability on the right-hand side.

We �nd

P(XT , YT ′ ) 6 P(τ1 =∞) +P(τ2 =∞ | τ1 <∞),

where both terms on the right-hand side are of order
δ
R−r from gumbler’s ruin theorem.

For the second inequality concerning the derivative in y, we use the same method by

taking two points u and v = u + iε on the same primal line which are at distance ε going

to 0. The di�erence between H(u) and H(v) can be bounded by const · εMR−r and by dividing

everything by ε and taking the limit, we obtain what we look for.
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Proposition 5.26 (Riesz representation). Let f be a function onΩδ vanishing on the boundary
∂Ωδ. Then, for all y ∈Ωδ,

f (y) =
∫
Ωδ

∆(δ)f (x)GΩδ
(x,y)dx.

Moreover, if f is not di�erentiable, we can de�ne the integral in the sense of distributions.

Proof. The function f −
∫
Ωδ

∆(δ)f (x)GΩδ
(x, ·)dx is harmonic and zero on the boundary, thus

zero everywhere.

Theorem 5.27 (Convergence theorem for harmonic functions). Let (hδ)δ>0 be a family of
semi-discrete harmonic functions onΩδ. It forms a precompact family for the uniform topology
on compact subsets of Ω if one of the following conditions is satis�ed.

1. The family (hδ) is uniformly bounded on any compact subset ofΩ.
2. For any compact K ⊂Ω, there existsM =M(K) > 0 such that for all δ > 0, we have∫

Kδ

|hδ(x)|2dx 6M.

Proof. The �rst point comes from Arzelà-Ascola since (hδ) is uniformly Lipschitz (Proposi-

tion 5.25).

It remains to show that the second point implies the �rst one. Start by choosing a compact

subset K ⊂Ω. Denote by d = d(D,∂Ω) the distance between K and the boundary of Ω. Let

K ′ be the d/2-neighborhood of K .

Let 0 < δ < d/2 and x ∈ IntKδ. Choose Q to be a rectangular domain in K ′ which is

centered at x. WriteQδ = (x+[−rδ, rδ]×[−s, s])∩Lδ, r ∈N, for its semi-discrete counterpart.

It is possible to have rδ > d/4 and s > d/4 due to the assumption on the distance, and we

assume so in the following.

If we write Hk = {kδ} × [−s, s], the hypothesis implies

r∑
k= r

2

δ

(∫
H−k

+
∫
Hk

)
|hδ(y)|2dy 6M(K ′) =:M

for a certain constant M which is uniform in δ. Take k ∈ ~r/2, r� such that the summand is

minimum, and denoting this value of k by p, we get∫
H−p

+
∫
Hp

 |hδ(y)|2dy 6
1
δ
M
r/2
6 c1,

where c1 is a uniform constant in δ.

For t ∈ [0, s], denoteH t
p = {pδ}× [−t, t]. We can write, by linearity, hδ as linear combina-

tion of harmonic measures,

hδ(x) =

∫
H t
−p

+
∫
H t
p

hδ(y)ωt(x,y)dy + p−1∑
k=−p+1
y=kδ±i t

hδ(y)ωt(x,y), (5.25)

where ωt is the harmonic measure in [−pδ,pδ]× [−t, t].
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We integrate Equation (5.25) from t = s/2 to t = s and get

hδ(x) =
2
s

∫ s

s/2

∫
H t
−p

+
∫
H t
p

hδ(y)ωt(x,y)dydt

+
2
s

∫ 2

s/2

p−1∑
k=−p+1
y=kδ±i t

hδ(y)ωt(x,y)dt.

We want to show that hδ(x) is uniformly bounded in x and in δ. We will take its square and

apply Cauchy-Schwarz.

Below, denote respectively the �rst and second integrals A and B. First of all, note that

hδ(x)2 6 2(A2 +B2), so we just need to show that A and B are bounded. We have,

A2 6
(2
s

)2∫ s

s/2

∫
H t
−p

+
∫
H t
p

hδ(y)2dydt

∫ s

s/2

∫
H t
−p

+
∫
H t
p

ωt(x,y)2dydt

6

∫
H s
−p

+
∫
H s
p

hδ(y)2dy

∫
H t
−p

+
∫
H t
p

ωs(x,y)2dy

where (2/s)2 is distributed once in the �rst term and once in the second, normalizing the

integrals. (The length of the segment along which we integrate is s/2.) Then, for x and y
�xed, ωt(x,y) 6 ωs(x,y) for t 6 s. Here, the �rst term is bounded by c1 by hypothesis, and

the second by another constant c2 from Lemma 5.24.

For the second term, Cauchy-Schwarz gives

B2 6
(2
s

)2∫ s

s/2

p−1∑
k=−p+1
y=kδ+i t

δhδ(y)
2
dt

∫ s

s/2

p−1∑
k=−p+1
y=kδ+i t

ωt(x,y)2

δ
dt.

On the right-hand side, the �rst term is bounded by M by assumption and the second term

bounded by a uniform constant c3 because ωt(x,y) can be bounded by c4δ uniformly (in a

similar manner as before) in δ and in y − x, and there are O (1/δ) terms in the sum.

Proposition 5.28 (Estimate of the derivative of the Green’s function). LetQ ⊂Ωδ such that
9Q ⊂Ωδ. There exists C > 0 such that for all δ > 0 and y ∈ 9Qδ, we have∫

Qδ

|D(δ)
x G9Qδ(x,y)|dx 6 C

∫
Qδ

|G9Qδ(x,y)|dx.

Proof. For y ∈ 9Qδ\3Qδ, we estimate the Green’s function in terms of the Brownian motion,

or more precisely, the harmonic measure. We recall thatG9Qδ(·, y) is non positive, so that we

can write for x ∈ 2Qδ,

|G9Qδ (x,y)| =
∫
Cv
|G9Qδ(z,y)|ω2Qδ(z,y)|dz|+

1
δ

∫
Ch
|G9Qδ(z,y)|ω2Qδ (z,y)|dz|

where we denote the vertical and horizontal parts of the boundary ∂(2Qδ) by Cv and Ch. We

can assume that

H :=
∫
Ch
|G9Qδ(z,y)||dz| > V :=

∫
Cv
|G9Qδ(z,y)||dz|.
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The estimations of ω9Qδ in Lemma 5.24 gives us the lower and upper bounds easily

|G9Qδ(x,y)| 6 c2
∮
∂(2Qδ)

|G9Qδ(z,y)||dz| = c2(H +V ) 6 2c2H

and

|G9Qδ(x,y)| > c1
∮
∂(2Qδ)

|G9Qδ(z,y)||dz|

> c1

∫
Ch
|G9Qδ(z,y)||dz| = c1H.

Thus, for x,x′ ∈ 2Qδ,

1
c3
|G9Qδ (x,y)| 6 |G9Qδ (x

′ , y)| 6 c3|G9Qδ(x,y)|

with c3 = 2c2/c1. Knowing that G9Qδ(·, y) is harmonic in Qδ, we apply Proposition 5.25 and

the above inequality to get

|D(δ)
x G9Qδ(x,y)| 6 c4max

x′∈Qδ
|G9Qδ(x

′ , y)| 6 c3c4|G9Qδ(x,y)|.

For y ∈ 3Qδ, from Proposition 5.22, the average time spent by the Brownian motion,

stopped when touching ∂9Qδ, in Qδ is proportional to∫
Qδ

|G9Qδ(x,y)|dx.

This quantity can be bounded from below by a constant c5 because the semi-discrete Brow-

nian motion converges to its continuous counterpart in R
2
.

Now it remains to show that the left-hand side can be bounded from above by a constant.

We write

G9Qδ(x,y) = [G9Qδ(x,y)−Gδ(x,y)] +Gδ(x,y),
whereGδ is the Green’s function on Lδ de�ned in Proposition 5.21. The �rst partG9Qδ(·, y)−
Gδ(·, y) is harmonic in 9Qδ (the singularities cancel out); moreover, on the boundary ∂9Qδ,

G9Qδ is zero and Gδ is bounded by a constant depending only on the domainQ by using the

asymptotic behavior of the free Green’s function in Proposition 5.21. The Harnack principle

(Proposition 5.25) gives

|D(δ)
x [G9Qδ(x,y)−Gδ(x,y)]| 6 c6.

Thus, ∫
Qδ

|D(δ)
x [G9Qδ(x,y)−Gδ(x,y)]|dx 6 δ ·

c7
δ
· c6 = c6c7.

Concerning |D(δ)
x Gδ(x,y)|, we can look at its asymptotic behavior and show that, for ζ =

m+ i t ∈Qδ with |ζ| � δ,

D
(δ)
x Gδ(ζ,y) =

1
δ

[
Gδ(ζ +

δ
2
, y)−Gδ(ζ −

δ
2
, y)

]
=

1
2πδ

ln (m+ δ
2 )

2 + t2

m2 + t2

− ln (m− δ2 )2 + t2m2 + t2


=

1
2πδ

[ 2δm
m2 + t2

+O
(
δ2

)]
=

1
π

m

m2 + t2
+O (δ) .
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Thus, by integrating along vertical axes in Ωδ, we get some quantity with the same asymp-

totic behavior (independent of δ but on Qδ),∫
Qδ

|D(δ)
x Gδ(x,y)|dx 6 c8.

The proof follows readily.

5.6 Convergence to continuous Dirichlet problem

In this section, we study the convergence of semi-discrete harmonic functions when the mesh

size of the lattice goes to 0.

Lemma 5.29. Let Ω be a domain and (Ωδ) its semi-discretized approximations converging to
Ω in the Carathéodory sense. For each δ > 0, consider a semi-discrete harmonic function hδ on
Ωδ. Assume that hδ converges uniformly on any compact subset ofΩ to a function h, then h is
also harmonic.

Proof. From Proposition 5.25 and Theorem 5.27, we know that the family (D(δ)
x hδ) is precom-

pact thus we can extract from it a converging subsequence. Since ∂xh is the only possible

sub-sequential limit, (D(δ)
x hδ) converges. Similarly, one can also prove that ∆(δ)hδ = 0 con-

verges to ∆h, which is also zero.

Proposition 5.30. Let Ω be a domain with two marked points on the boundary a,b ∈ ∂Ω.
Consider f a bounded continuous function on ∂Ω\{a,b} and h the solution associated to the
Dirichlet boundary value problemwith boundary condition f . For each δ > 0, letΩδ be the semi-
discretized counterpart of the domain Ω, aδ and bδ approximating a and b. Let fδ : ∂Ωδ→ R

be a sequence of uniformly bounded functions converging uniformly away from a and b to f
and hδ be the solution of the semi-discrete Dirichlet boundary problem with fδ as boundary
condition. Then,

hδ→ h

uniformly on compact subsets of Ω.

Proof. We �rst note that the semi-discretized domains converge in the Carathéodory sense

to (Ω, a,b). Since (fδ) is uniformly bounded, it is the same for the family (hδ). Theorem 5.27

says that (hδ) is a precompact family. Let h̃ be a subsequential limit, which should also be

harmonic inside Ω by Lemma 5.29. To show that h = h̃, we need to prove that h̃ can be

extended to the boundary by f in a continuous way.

Let x ∈ ∂Ω\{a,b} and ε > 0. By uniform convergence of (fδ)δ>0, there exists R > 0 such

that for δ > 0 small enough,

|fδ(x′)− fδ(x)| < ε

for all x′ ∈ ∂Ωδ ∩Bδ(x,R). Let r < R whose value is to be chosen later. For all y ∈ Bδ(x,r),
we have

|hδ(y)− fδ(x)| = E[fδ(Xτ )− fδ(x)]
6 ε+2MP[Xτ < Bδ(x,R)],

where X is a semi-discrete Brownian motion started at y and τ its hitting time of the bound-

ary ∂Ωδ. In the last line, we decompose according to Bτ , the position of the Brownian mo-

tion at the hitting time: whether it is inside Bδ(x,R) or not. Lemma 5.31 gives the upper
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5. Semi-discrete complex analysis

bound P[Xτ < Bδ(x,R)] 6 (r/R)α for some independent constant α > 0. We may choose

r = R(ε/2M)1/α and let δ go to 0 to obtain |̃h(y)− f (x)| 6 2ε for all y ∈ Bδ(x,r).

Lemma 5.31 (Weak Beurling’s estimate). For a > 0, writeD(a) = [−a,a]2. There exists α > 0
such that for any r ∈ (0, 12 ) and any curve inside D(1) from ∂D(1) to ∂D(r), the probability
that a semi-discrete random walk on Dδ(1) starting at 0 exits Dδ(1) without crossing γ is
smaller than rα uniformly in δ > 0.

Proof. This proof is classical, so we do not give all the details here. The idea is to decompose

the annulus D(1)\D(r) into disjoint annuliAx =D(2x)\D(x) and use the fact that the prob-

ability that a semi-discrete Brownian motion closes the loop in each annulus is of constant

probability (which is a consequence of the RSW property, see Section 6.4.1).

5.7 S-holomorphicity

The notion of s-holomorphicity will turn out to be important for the convergence theorem

(Theorem 6.20). Actually, the semi-discrete holomorphicity provides us only with half of

Cauchy-Riemann equations and fortunately, the rest of the information can be “recovered”

by s-holomorphicity.

Roughly speaking, in Section 6.2.3, we will de�ne a primitive of Imf 2 where f is s-holo-

morphic and the convergence of this primitive provides us with additional information for

the convergence of f . We will discuss this in more details in Sections 6.2 and 6.5.

We de�ne the notion of s-holomorphicity on the mid-edge lattice (De�nition 5.32) and

on the medial lattice (De�nition 5.33). And they can be proved to be equivalent in Proposi-

tion 5.34.

De�nition 5.32. Let f :Ω[
δ→C be a function de�ned on the mid-edge semi-discrete lattice.

It is said to be s-holomorphic if it satis�es the two following properties.

1. Parallelism: for e ∈ Ω[
δ, we have f (e) // τ(e) where τ(e) = [i(we − ue)]−1/2, ue and we

denote respectively the primal and the dual extremities of the mid-edge e. In other

words,

• f (e) ∈ νR if p+e is a dual vertex, and

• f (e) ∈ iνR if p+e is a primal vertex,

where ν = exp(− iπ/4).

2. Holomorphicity: for all vertex e on the mid-edge lattice Ω[
δ, we have D

(δ)
f (e) = 0.

De�nition 5.33. Let g :Ω�δ→C be a function de�ned on the medial semi-discrete domain.

It is said to be s-holomorphic if it satis�es the two following properties.

1. Projection: for every e = [p−e p
+
e ] ∈Ω[

δ, we have

Proj[g(p−e ), τ(e)] = Proj[g(p+e ), τ(e)] (5.26)

where Proj(X,τ) denotes the projection of X in the direction of τ :

Proj[X,τ] =
1
2

[
X +

τ
τ
·X

]
.

2. Holomorphicity: for all vertex e on medial lattice Ω�δ, we have D
(δ)
f (e) = 0.
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These de�nitions may be linked to their counterparts in the setting of isoradial graphs.

To be more precise, one can use the de�nitions provided in [CS11] on the lattice G
ε
, which

is illustrated in Figure 1.7, and recover the above de�nitions by taking ε→ 0.

We have a correspondence between s-holomorphic functions on Ω�δ and those on Ω[
δ.

Proposition 5.34. Given an s-holomorphic function f :Ω[
δ→ C, one can de�ne g :Ω�δ→ C

by:
g(p) = f (e−p ) + f (e

+
p ), p ∈Ω�δ.

Then, the new function g is still s-holomorphic.
Conversely, given an s-holomorphic function g :Ω�δ→C, one can de�ne f :Ω[

δ→C by:

f (e) = Proj[g(p−e ), τ(e)] = Proj[g(p+e ), τ(e)], e ∈Ω[
δ.

Then, the new function f is still s-holomorphic.

Proof. Assume that f : Ω[
δ → C is s-holomorphic. Let us show that g as de�ned above is

s-holomorphic on Ω�δ. The projection property is satis�ed from the parallelism of f and so

is the holomorphicity.

Assume that g : Ω�δ → C is s-holomorphic. Let us show that f as de�ned above is

s-holomorphic on Ω[
δ. The parallelism is clearly satis�ed by the de�nition. We just need to

check the holomorphicity of f . Let e ∈ Ω[
δ. We can assume that p+e is primal and p−e dual

such that τ(e) // eiπ/4. We want to calculate ∂yf (e).

∂yf (e) = ∂y Proj[g(p), τ(e)]

=
1
2
∂y[g(p) + ig(p)]

=
1
2

[ i
δ
(g(p+)− g(p−)) + i

(
− i
δ

)
(g(p+)− g(p−))

]
=

i
δ
[f (e+)− f (e−)]

where we use τ(e)/τ(e) = i and τ(e+)/τ(e+) = τ(e−)/τ(e−) = − i.
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Chapter6

Scaling limit of the quantum Ising

model

6.1 The quantum random-cluster model

We remind that the semi-discrete lattice and semi-discrete domains were de�ned in Sec-

tion 1.2.1. Here, we talk about the semi-discretization of domains in R
2
, on which we de�ne

the quantum Ising model.

6.1.1 Semi-discretization of a continuous domain

A set inR
2
, orC

2
, is called a domain if it is open, bounded and simply connected. ADobrushin

domain is a domain with two distinct marked points a,b on the boundary. It is often denoted

by a triplet (Ω, a,b) where Ω is a domain and a,b ∈ ∂Ω.

Here, we explain how to semi-discretize such a domain to get its semi-discrete counter-

part, on which the FK-representation of the quantum Ising model will be de�ned. Consider

a Dobrushin domain (Ω, a,b) in C or R
2

and δ > 0. Let us denote by [awδ a
b
δ] and [bbδb

w
δ ] two

mid-edges with abδ,b
b
δ ∈ Lδ, awδ ,b

w
δ ∈ L

?
δ and mid-points a[δ and b[δ given by minimizing the

distances between a and a[δ and between b and b[δ over all possible such mid-edge segments

contained in Ω. Once we get these two distinguished edges [awδ a
b
δ] and [bbδb

w
δ ], we complete

the semi-discrete domain by making approximation with primal horizontal and vertical seg-

ment of the arc (aδbδ) then with dual horizontal and vertical segments of the arc (bδaδ).
Moreover, we ask that these segments to be inside Ω. This semi-discrete domain lies in Ω

and is denoted by (Ω�δ, aδ,bδ). See Figure 6.1 for an example.

We write ∂Ω�δ for the boundary of this Dobrushin domain. This consists of four compo-

nents:

[awδ a
b
δ] an horizontal edge

(aδbδ) := (abδb
b
δ) the arc going from abδ to bbδ

[bbδa
w
δ ] an horizontal edge

(bδaδ) := (bwδ a
w
δ ) the arc going from bwδ to awδ .

They are ordered counterclockwise in Figure 6.1. Then, the quantum Ising model can be

de�ned on such discretized domains and we also obtain the loop representation of the model
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a

b

bδ

aδ

Figure 6.1 – An example of approximation of a continuous Dobrushin domain by a semi-dis-

crete one with mesh size δ.

at the criticality as mentioned in Section 1.2.5, adapted to the case q = 2,

dP
QI
λ,µ(D,B) ∝

√
2
l(D,B)

dPρ,ρ(D,B) (6.1)

where l(D,B) denotes the number of loops in a given con�guration (D,B) and ρ =
√
λµ.

Note that semi-discrete domains (Ω�δ, aδ,bδ) de�ned above converge to the continuous

domain (Ω, a,b) in the Carathéodory topology.

6.1.2 Main result

The result that we will show in this artical concerns the conformal invariance of the interface

of the loop representation of the quantum Ising model. Since the conformal invariance also

implies the rotational invariance, the parameters λ and µ should be chosen such that the

model is isotropic. The good choice of such parameters are given by λ = 1
2δ and µ = 1

δ (thus,

ρ = 1√
2ρ

). In Section 6.2, or more precisely, Equation (6.4), we will see that it is actually a

necessary and su�cient condition to get an observable with nice properties.

We are ready to give a formal statement of the main theorem.

Theorem 6.1. Let (Ω, a,b) a Dobrushin domain. For δ > 0, semi-discretize the domain to get
a semi-discrete Dobrushin domain (Ω�δ, aδ,bδ) and consider the FK-representation of the critical
quantum Ising model with parameters λ = 1

2δ and µ = 1
δ on it. Denote by γδ the interface going

from aδ to bδ in (Ω�δ, aδ,bδ), which separates the primal cluster connected to the wired boundary
(aδbδ) and the dual cluster connected to the free boundary (bδaδ). Then, the law of γδ converges
weakly to the chordal Schramm-Löwner Evolution SLE16/3 running from a to b inΩ.

6.2 Observable and properties

6.2.1 De�nition and illustration

Let us take a Dobrushin domain (Ω, a,b) in R
2
. Consider δ > 0 and the semi-discretized

domain (Ω�δ, aδ,bδ) with mesh size δ, on which we put the loop representation of the critical

quantum Ising model given by (6.1) with parameter ρ, which is the intensity of the Poisson

point processes on both primal and dual vertical lines.
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The intensity ρ should be chosen to be proportional to
1
δ , which is the factor that appears

in the intensity of a Poisson point process when we scale it by δ in space. Moreover, we should

consider ρ = 1√
2δ

, the constant
1√
2

being chosen to make the model isotropic. A heuristic of

such a choice is as follows.

A special case of the conformal invariance is the rotational invariance, so in particular,

the invariance by rotation of
π
2 . The relation that we obtain later in (6.4) shows that only for

the choice of ρ = 1√
2δ

, the observable de�ned in (6.2) is (semi-discrete) holomorphic. And the

holomorphicity should be interpreted as follows: the observable varies in the same way in

the horizontal (discrete) direction and the vertical (continuous) direction. This justi�es why

the choice of ρ is important, and that there is only one possible value satisfying this property.

The loop representation of the quantum Ising model gives an interface going from aδ to

bδ. If e ∈ Ω[
δ is a mid-edge vertex of the Dobrushin domain (Ω�δ, aδ,bδ), we can de�ne our

observable at this point by

Fδ(e) := F(Ω�δ ,aδ ,bδ)(e) =
ν
√
δ
·E

[
exp

( i
2
W (e,bδ)

)
1e∈γδ

]
(6.2)

where γδ denotes the (random) interface going from aδ to bδ and W (e,bδ) its winding from

e to bδ and ν = exp(− iπ/4).

Remark 6.2. For the readers who might have read [CS12], since here the graph is oriented

di�erently, the multiplicative factor ν is chosen so that we can keep the same notations for

properties that follow later.

Remark 6.3. Since the domain we consider here is simply connected, the winding W (e,eδb)
for a mid-edge vertex e on the boundary does not depend on the random con�guration.

Following the interface, we always have the primal vertical line on the right and the dual

vertical line on the left. As a consequence, we have two cases:

• If p−e ∈ Ωδ and p+e ∈ Ω?
δ , then the winding W (e,bδ) is a multiple of 2π and Fδ(e) is

parallel to ν.

• If p−e ∈ Ω?
δ and p+e ∈ Ωδ, then the winding W (e,bδ) is a multiple of 2π plus π and

Fδ(e) is parallel to iν.

This says that Fδ satis�es the �rst property in De�nition 5.32.

ν iν

Figure 6.2 – Local relative position of primal / dual vertices with the direction of Fδ in blue.

We can notice that the winding at eb is W (eb, eb) = 0, thus Fδ(eb) =
ν√
δ

, which is called

the normalizing constant.

Then, we de�ne the observable Fδ on Ω�δ for all p ∈Ω�δ by

Fδ(p) = Fδ(e+p ) +Fδ(e−p ). (6.3)

If p ∈ ∂Ω�δ, one of the e+p and e−p is not de�ned. We then take the unde�ned term to be 0. As

such, the function Fδ is de�ned everywhere on Ω�δ. We notice that Fδ satis�es the projection

property (5.26).

Let p be a point on ∂ab or on ∂?ba. We denote by τ(p) the tangent vector to ∂Ωδ oriented

from bbδ to abδ in the former case, and oriented from bwδ to awδ in the latter case.
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Proposition 6.4. For p ∈ ∂ab ∪∂?ba, we have Fδ(p) // τ(p)
−1/2.

Proof. We can assume that p ∈ ∂ab since the proof is similar in the other case. In this case,

we get two types of tangent vector: τ(p) is horizontal when p is a dual vertex and vertical

when p is a primal vertex.

1. Assume that the tangent vector τ(p) is horizontal. We may assume that τ(p) is oriented

from left to right, then the paths counted in Fδ(e+p ) are exactly those counted in Fδ(e−p ),
because the interface going through e+p is forced to turn left and go through e−p . Thus,

the observable Fδ(p) at p can be written as

Fδ(p) = (1− i)Fδ(e+p ).

The quantity Fδ(e+p ) being parallel to iν, we have Fδ(p) ∈ R. Also, we know that

τ(p)−1/2 is parallel to 1. The case where τ(p) is oriented from right to left can be

treated in the same way.

2. Assume that the tangent vector τ(p) is vertical which can be oriented either upwards

or downwards. If τ(p) is oriented downwards, Fδ(p) takes the same value as Fδ(e−p ),
which belongs to iνR due to Remark 6.3. Moreover, τ(p)−1/2 is parallel to iν. It is

similar if τ(p) is oriented upwards.

a

b

bδ

aδ

Figure 6.3 – The Dobrushin domain shown in Figure 6.1 with tangent vectors τ drawn in

blue with arrows on the boundary.

6.2.2 Relations and holomorphicity

To study the observables Fδ and Fδ, we start by establishing local bijections between con�g-

urations which will give us local relations for Fδ and Fδ. Our goal is to get relations between

the observable Fδ and its derivative ∂yFδ.

To achieve this, we �x a local window with height equal to ε and width covering three

columns, as shown in Figure 6.4. We notice that, in the loop representation, if we reverse the

role of primal and dual lines, the loops and interfaces are kept the same but with opposite

orientations. Thus, it is enough to �x an arbitrary choice of primal and dual lines.
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By studying the di�erence between di�erent contributions of exp( i2W (e,bδ)) in the ex-

pectation of (6.2) at di�erent vertical positions (at the top and the bottom of the local win-

dow), and by making ε go to 0, we will get the derivative. Since the number of points given

by point Poisson processes is proportional to the length of the interval, thus to ε in our case.

And actually, in our computation, we will take into account terms up to the order ε since

higher-order terms will disappear in the limit. In consequence, only con�gurations contain-

ing a single Poisson point in the local window will count.

Some abbreviations are introduced below to lighten our notations. We denote the north-/south-

west/middle/east mid-edge vertices by taking their initials: nw, nm, ne, sw, sm and se. We

denote by bn the primal extremity shared between nw and nm and by bs the one shared

between sw and sm. Similarly for wn and ws. See again Figure 6.4.

nw

sw

nm

sm

ne

se

ǫ

bn

bs

wn

ws

Figure 6.4 – A local window with height ε. The same notations are used in the following

�gures and tables of this section.

To understand the bijections between con�gurations, the reader is invited to have a look

at Figure 6.5 while reading the following explanation. The bijections are obtained by starting

with an interface going through the middle column, which is not a loss of generality. In our

case, it goes down due to the choice of the local window. We assume that there is not any

Poisson points in this local window.

We will then analyze di�erent possibilities. Once the interface goes out of the local win-

dow, it may never come back to the neighboring columns (i.e., west and east), which is the

case of (1a). Otherwise, the interface may come back to one of the neighboring mid-edge

columns. In (2a), it comes back through the East column and in (3a), through the West col-

umn.

Now we can consider Poisson points in our con�gurations. As we mentioned earlier, we

are only interested in con�gurations with at most one such point. In (1b), (2b) and (3b), we

add one Poisson point between bs and bn whereas in (1c), (2c) and (3c), we add one between

ws and wn. The con�gurations (1a), (1b) and (1c) are in bijection, same for (2a), (2b) and (2c)

or (3a), (3b) and (3c). Notice that these con�gurations do not have the same weight, but we

know the ratio between their weights, which will allow us to get linear relations between the

contribution of exp( i2W (e,bδ))1e∈γδ to f at nw, sw, nm, sm, ne and se.
First of all, we write down di�erent contributions in Table 6.1. Its last column contains

the weight of each con�guration up to a multiplicative constant depending on the original

con�guration in (1a), (2a) and (3a). However, the fact that this multiplicative constant is

unknown does not raise any di�culty since we only need linear relations between values of

Fδ at di�erent mid-edge vertices.

We take the di�erence of contributions between the north mid-edge and the south mid-edge

in each of the three columns to get Table 6.2. After this, we get Fδ(w), Fδ(m) and Fδ(e) from
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(1a) (1b) (1c)

(2a) (2b) (2c)

(3a) (3b) (3c)

Figure 6.5 – Bijection between con�gurations in a local window chosen above.

Table 6.1 by ignoring terms of order higher than ε; and ∂yFδ(w), ∂yFδ(m) and ∂yFδ(e) by

dividing the quantities in Table 6.2 by ε and then making it go to 0.

The quantities in the �rst and the second lines of Table 6.3 satisfy

(Fδ(e)−Fδ(w)) · i
√
2ρ = ∂yFδ(m). (6.4)

Moreover, those in the �rst and the third line satisfy also the same equation. By summing

over the possible local con�gurations and by gathering them together, we obtain that for

each m ∈Ω[
δ

D
(δ)
Fδ(m) =

1
2

[
Fδ(e)−Fδ(w)

δ
−
∂yFδ(m)

i

]
= 0. (6.5)

Gathering all the above computations and using Proposition 5.34, we obtain the following

proposition about the s-holomorphicity of the observables Fδ and Fδ.

Proposition 6.5. The observables Fδ and Fδ satisfy the following properties.

1. The observable Fδ is s-holomorphic onΩ[
δ.

2. The observable Fδ is s-holomorphic onΩ�δ.
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nw sw nm sm ne se weights

1a 0 0 1 1 0 0

√
2

1b ei
π
2 e− i

π
2 1 1 0 0 ερ

1c 0 0 1 1 e−i
π
2 ei

π
2 ερ

2a 0 0 1 1 e−i
π
2 e−i

π
2

√
2

2b ei
π
2 e−i

π
2 1 1 e−i

π
2 e−i

π
2 ερ

2c 0 0 1 0 e−i
π
2 0 2ερ

3a ei
π
2 ei

π
2 1 1 0 0

√
2

3b ei
π
2 0 1 0 0 0 2ερ

3c ei
π
2 ei

π
2 1 1 e−i

π
2 ei

π
2 ερ

Table 6.1 – Contributions of the exponential term in each con�guration at di�erent positions.

nw − sw nm− sm ne − se

1 2iερ 0 −2iερ

2 2iερ 2ερ −2iερ

3 2iερ 2ερ −2iερ

Table 6.2 – Computation of the di�erence be-

tween the contributions of North and South.

Fδ(w) Fδ(m) Fδ(e)
∂yFδ(w) ∂yFδ(m) ∂yFδ(e)

1

0

√
2 0

2iρ 0 −2iρ

2

0

√
2 − i

√
2

2iρ 2ρ −2iρ

3

i
√
2

√
2 0

2iρ 2ρ −2iρ

Table 6.3 – By considering order 0 and order

1 terms in ε, we get Fδ and ∂yFδ.

By Proposition 5.34, the observables Fδ and Fδ encode the same information. We will

then sometimes work with Fδ, sometimes with Fδ, according to our convenience.

6.2.3 Primitive of F 2
δ

In Section 6.3.2, we will see that the observable Fδ is the solution to some boundary value

problem and we will prove that it converges, when δ→ 0, to its counterpart in the continuum

(Theorem 6.22). To achieve this, we de�ne a primitive of F 2
δ which is “almost” harmonic

(Proposition 6.10) and relate the whole problem to the Dirichlet boundary problem studied

earlier (Section 5.3).

The approach is exactly the same as that in [CS12]

Given v a site on the lattice, we denote by e+v and e−v the mid-edges having v as extremity

on the right side and the left side of v, as illustrated in Figure 6.6. In a similar way, we denote

by e++v and e−−v the second on the right or left.

Let us de�neHδ, a “primitive” of F 2
δ in the following way. Since Fδ and Fδ can be related,

in the de�nitions below we only work with Fδ �rst.

1. If b and b′ are primal vertices such that Reb = Reb′ and [bb′] ⊂Ω�δ, de�ne

Hδ(b
′)−Hδ(b) = 2 · Im

∫ b′

b
Fδ(e

−
v )Fδ(e

+
v )dv (6.6)
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6. Scaling limit of the qantum Ising model

e+v e++
ve−ve−−

v

v

Figure 6.6 – Notations for neighboring mid-edges.

2. If w and w′ are dual vertices such that Rew = Rew′ and [ww′] ⊂Ω�δ, de�ne

Hδ(w
′)−Hδ(w) = −2 · Im

∫ w′

w
Fδ(e

−
v )Fδ(e

+
v )dv. (6.7)

3. If b and w are neighboring primal and dual vertices in Ω�δ, de�ne

Hδ(b)−Hδ(w) = δ|Fδ(bw)|2. (6.8)

Proposition 6.6. The primitive Hδ is well-de�ned up to an additive constant.

Proof. It is su�cient to check that the di�erence of Hδ along cycles is always 0, or equiva-

lently, the di�erence along elementary rectangles is always 0. Let u1, u2, v2, v1 be a rectangle

as shown in Figure 6.7. We denote by emi
the mid-edge between ui and vi for i = 1,2.

u1 w1

u2 w2

W M E

em1

em2

Figure 6.7 – An elementary rectangle u1u2w2w1.

We need to show that the di�erence of Hδ along u1u2, u2w2, w2w1 and w1u1 gives 0.

We apply directly the de�nitions from Equations (6.6), (6.7) and (6.8).

Hδ(u2)−Hδ(u1) +Hδ(w2)−Hδ(u2) +Hδ(w1)−Hδ(w2) +Hδ(u1)−Hδ(w1)

= 2Im
∫ u2

u1

Fδ(e
−
v )Fδ(e

+
v )dv − δ|Fδ(u2w2)|2 +2Im

∫ w2

w1

Fδ(e
−
v )Fδ(e

+
v )dv + δ|Fδ(u1w1)|2

= 2Im
∫ m2

m1

[Fδ(e
−
m)Fδ(em) +Fδ(em)Fδ(e

+
m)]dm− δ(|Fδ(u2w2)|2 − |Fδ(u1w1)|2).
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6.2. Observable and properties

The �rst term can be rewritten as:

2Im
∫ m2

m1

[Fδ(e
−
m)Fδ(em) +Fδ(em)Fδ(e

+
m)]dm = 2Im

∫ m2

m1

[Fδ(e
−
m)−Fδ(e+m)]Fδ(em)dm,

and the second term as:

−δ(|Fδ(u2w2)|2 − |Fδ(u1w1)|2) = −δRe
∫ m2

m1

2∂yFδ(em)Fδ(em)dm

= −Re
∫ m2

m1

2i(Fδ(e
+
m)−Fδ(e−m))Fδ(em)dm

= 2Im
∫ m2

m1

[Fδ(e
+
m)−Fδ(e−m)]Fδ(em)dm

where we use the holomorphic relation (6.5) in the second line. Thus, the quantity we were

looking for is indeed 0.

From the previous proposition, we can �x Hδ(b
w
δ ) to be zero, thus �xing the additive

constant. Now, we can really talk about the primitive Hδ.

We will reformulate the de�nitions above to get relations forHδ between di�erent points

on the same axis (Proposition 6.7) and neighboring points on medial lattice (Proposition 6.8).

This will give us a simpler expression: Hδ = Im
∫ δ

(Fδ(z))2d
δz.

Proposition 6.7. Let p,p′ ∈Ω�δ such that Rep = Rep′ and [pp′] ⊂Ω�δ. Then we have

Hδ(p
′)−Hδ(p) = Im

∫ p′

p
i ·(Fδ(v))2dv. (6.9)

Proof. We �rst assume that p,p′ ∈Ωδ. Given v ∈ [pp′], since Fδ(e−v ) ∈ iνR and Fδ(e+v ) ∈ νR,

we have

Im
[
i ·Fδ(v)2

]
= Re

[
Fδ(e

−
v )

2 +Fδ(e
+
v )

2 +2Fδ(e
−
v )Fδ(e

+
v )

]
= 2Re

[
Fδ(e

−
v )Fδ(e

+
v )

]
= 2Im

[
Fδ(e

−
v )Fδ(e

+
v )

]
.

The same computation for p,p′ ∈Ω?
δ and v ∈ [pp′] leads to

Im
[
i ·Fδ(v)2

]
= −2Im

[
Fδ(e

−
v )Fδ(e

+
v )

]
.

Using Equations (6.6) and (6.6), we get the result.

Proposition 6.8. Let p ∈Ω�δ such that p−,p+ ∈Ω�δ. Then,

Hδ(p
+)−Hδ(p−) = Im[Fδ(p)2(p+ − p−)]. (6.10)

Proof. We can assume that p ∈ Ω?
δ and p−,p+ ∈ Ωδ. The other case when p ∈ Ωδ can be

treated in the same way.
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6. Scaling limit of the qantum Ising model

From the parallelism property, we know that Fδ(e−p ) ∈ νR and Fδ(e+p ) ∈ iνR. A simple

computation gives

Im
[
Fδ(p)2

]
= Im

[
Fδ(e

−
p )

2 +Fδ(e
+
p )

2 +2Fδ(e
−
p )Fδ(e

+
p )

]
= |Fδ(e+p )|2 − |Fδ(e−p )|2.

Since p+ − p− = δ, this completes the proof.

Corollary 6.9. The primitive Hδ is constant on both arcs ∂ab and ∂?ba. Moreover,

Hδ |∂ab = 1 and Hδ |∂?ba = 0. (6.11)

Proof. Proposition 6.4 gives the direction of Fδ and Equations (6.9) and (6.10) give its relation

toHδ on each part of the two arcs. We conclude easily thatFδ(p) is constant on both arcs. The

di�erence of these constants can be obtained by estimating Hδ at, for example, bδ = [bbδb
w
δ ]:

Hδ(b
b
δ) =Hδ(b

b
δ)−Hδ(b

w
δ ) = δ|Fδ(bδ)|

2 = 1.

Proposition 6.10. The primitive Hδ is subharmonic on primal axes and superharmonic on
dual axes, i.e.,

∆(δ)Hδ(u) > 0 and ∆(δ)Hδ(w) 6 0

for all u ∈Ωδ and w ∈Ω?
δ .

Proof. We remind that in a semi-discrete lattice, the Laplacian is de�ned as follows:

∆
(δ)
xxHδ(u) =D

(δ)
xx Hδ(u) +∂yyHδ(u)

for u a vertex in primal or dual axis.

First, we assume that u is a primal vertex. By using the de�nition of Hδ, the second

derivative along x can be reformulated,

D
(δ)
xx Hδ(u) =

1
δ

[
|Fδ(e++u )|2 − |Fδ(e+u )|2 − |Fδ(e−u)|2 + |Fδ(e−−u )|2

]
.

Similarly, the second derivative along y can be rewritten as:

∂yyHδ(u) = 2Im[∂y(Fδ(e
−
u)Fδ(e

+
u ))]

= 2Im[∂yFδ(e
−
u)Fδ(e

+
u ) +Fδ(e

−
u)∂yFδ(e

+
u )]

= 2Im[∂yFδ(e
−
u)Fδ(e

+
u )−Fδ(e−u)∂yFδ(e+u )]

= 2Im
[ i
δ

[
Fδ(e

+
u )−Fδ(e−−u )

]
·Fδ(e+u )−Fδ(e−u) ·

i
δ

[
Fδ(e

++
u )−Fδ(e−u)

]]
=
2
δ
Re[(Fδ(e

+
u )−Fδ(e−−u ))Fδ(e

+
u )−Fδ(e−u)(Fδ(e++u )−Fδ(e−u))]

=
2
δ

[
|Fδ(e+u )|2 + |Fδ(e−u)|2 −Re[Fδ(e−−u )Fδ(e

+
u ) +Fδ(e

−
u)Fδ(e

++
u )]

]
.
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Finally, we notice that

|Fδ(e++u )−Fδ(e−u)|2 + |Fδ(e+u )−Fδ(e−−u )|2

= |Fδ(e++u )|2 + |Fδ(e+u )|2 + |Fδ(e−u)|2 + |Fδ(e−−u )|2

− 2Re
[
Fδ(e

−
u)Fδ(e

++
u ) +Fδ(e

−−
u )Fδ(e

+
u )

]
= δD(δ)

xx Hδ(u) + δ∂yyHδ(u)

= δ∆(δ)Hδ(u).

In consequence, the primitive Hδ is subharmonic on primal axes.

The proof for the superharmonicity on dual axes is similar. We do the same calculation

and obtain the above equation with a minus sign.

6.3 Boundary-value problems

6.3.1 Boundary modi�cation trick

In [CS12], the boundary modi�cation trick is introduced to enlarge an isoradial Dobrushin

domain into an isoradial primal domain; and in the same manner, a function de�ned on a

Dobrushin domain can also be extended to the enlarged primal domain. The goal of this

is to associate a boundary value problem on a Dobrushin domain to its counterpart on the

enlarged primal domain, on which we have a better understanding of such a problem. The

same procedure can also be made in the semi-discrete setting that we describe below.

The primal (resp. dual) domain extended from a Dobrushin domain is given by keeping

the primal boundary ∂ab and by adding an extra layer ∂ba to the dual boundary ∂?ba. More

precisely, on the arc ∂?ba we change the horizontal parts from dual to primal and add one

more primal layer outside (in the sense de�ned below) the original domain. The same proce-

dure applies similarly if we want to get an extended dual domain: we get ∂?ab from ∂ab and

keep ∂?ba. We will denote by Ω̃δ and Ω̃?
δ these two modi�ed domains. See Figure 6.8a and

Figure 6.8b for examples.

In an algebraic way, each dual point p ∈ ∂?ba on the dual boundary possesses two primal

neighbors p− and p+. One of them is in IntΩ�δ and the other is not (although it may lie on

the boundary ∂ab). We include the one which is not in IntΩ�δ, providing us with the new

boundary.

We notice that some points may be added twice (red part in Figure 6.8b) and some points

may overlap the other part of its own boundary ∂ab (red part in Figure 6.8a). In this way, the

boundary of the extended domain is not described by a Jordan curve anymore. However, this

is not a problem: we just keep these double points and consider that they are situated on the

two di�erent sides of the same boundary and all the theorems concerning boundary value

problem will still be valid. We can also see this as a domain minus a slit.

The following lemma tells us how to extend the primitive Hδ to the extended domain

after boundary modi�cation trick, keeping its sub- and superharmonicity properties.

Lemma 6.11. Let w ∈ ∂?ba be a dual vertex on the arc (bδaδ). Assume uint to be the neigh-
boring primal vertex of w which is in the domain Ω�δ and uext the primal one to be added via
the boundary modi�cation trick. Then, if we set Hδ(uext) = Hδ(w), the function Hδ remains
subharmonic at uint . We can also extend Hδ on Ω̃?

δ in a similar way, giving a similar result.
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ab
aw

bb bw

∂ab

∂ba

(a) The enlarged primal domain.

ab
aw

bb bw

∂?
ba

∂?
ab

(b) The enlarged dual domain.

Figure 6.8 – The primal and the dual domains enlarged from the Dobrushin domain illustrated

in Figure 1.5. The red part indicates the overlapping part of the enlarged domain with the

original boundary.

Proof. By abusing the notation, we continue writing Fδ, Fδ and Hδ on the extended domain

Ω̃δ. We notice that if we let Fδ(uextw) = 0 and Fδ(w) = Fδ(wuint), the properties in Propo-

sition 6.5 are still satis�ed. This can be computed by establishing a similar table as Table 6.3

on the boundary. Then, by setting Hδ(uext) = H(w), we get a primitive Hδ which always

satis�es Equations (6.7) and (6.8). In such a way, the Proposition 6.10 still holds.

6.3.2 Riemann-Hilbert boundary value problem

We studied the semi-discrete Dirichlet problem in Section 5.3. In this section, we introduce

the semi-discrete Riemann-Hilbert boundary value problem, which is similar to the Dirichlet

problem, but whose resolution is a bit more technical. However, the boundary modi�cation

trick mentioned in the previous section along with the knowledge of the Dirichlet problem

may help us achieve this.

In a semi-discrete Dobrushin domain (Ω�δ, aδ,bδ), we say that a function Fδ de�ned on

Ω[
δ is a solution to the (semi-discrete) Riemann-Hilbert boundary value problem with respect

to the Dobrushin domain (Ω�δ, aδ,bδ) if the following three conditions are satis�ed:

(A) s-holomorphicity: Fδ is s-holomorphic in Ω�δ;
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6.4. RSW on the quantum model

(B) boundary conditions: for p ∈ (aδbδ)∪ (bδaδ), Fδ(p) is parallel to τ(p)−1/2;

(C) normalization: Fδ(e
δ
b) = Proj[Fδ(bwδ ),ν] =

ν√
δ

,

where Fδ is de�ned via Equation (6.3).

Existence of such a solution has been shown already. In e�ect, the observable we in-

troduced earlier satis�es these three conditions, as shown in Section 6.2.2. When it comes

to uniqueness, we will use the primitive Hδ we constructed in Section 6.2.3 along with the

boundary modi�cation trick.

Proposition 6.12 (Existence of solution). The observable Fδ de�ned in (6.2) is a solution to
the above boundary value problem.

Proof. It is direct from the properties of the observable as shown in Propositions 6.4 and 6.5.

Proposition 6.13 (Uniqueness of solution). For each semi-discrete Dobrushin domain (Ω�δ, aδ,bδ),
the semi-discrete boundary value problem has a unique solution.

Proof. Assume that there are two solutions Fδ,1 and Fδ,2 to the boundary value problem

mentioned above. Let Fδ := Fδ,1 − Fδ,2. Note that Fδ is still s-holomorphic being di�erence

of two such functions. De�ne Fδ as in Equation (6.3). Consider Hδ := Im
∫
(Fδ(z))2dz the

primitive de�ned in Section 6.2.3. The function Hδ is constant on the arcs (aδbδ) and (bδaδ)
respectively due toe the property (B). Moreover, the identity Fδ(e

δ
b) = 0 says that these two

constants should be the same. Apply the boundary modi�cation trick to extend Ω�δ into the

primal domain Ω̃δ.

Extend the primitive Hδ to the new boundary of Ω̃δ as in Lemma 6.11. The lemma also

says thatHδ stays subharmonic in Lδ∩Ω̃δ and superharmonic in L
?
δ∩Ω̃δ. This gives us that

0 > (Hδ)|L?δ∩Ω̃δ
> (Hδ)|L?δ∩Ω̃?

δ
> 0. By uniqueness of the Dirichlet problem (Proposition 5.17),

we know that Hδ is constant everywhere.

The fact thatHδ is constant everywhere tells us that Fδ is zero everywhere on Ω[
δ. Thus,

these two solutions are equal.

6.4 RSW on the quantum model

In Chapter 4, we showed the RSW property on the critical quantum random-cluster model

for 1 6 q 6 4, thus in particular, on the random-cluster representation of the quantum Ising

model. Here, we provide an alternative using the fermionic observable (6.2) and the second--

moment method.

6.4.1 RSW property: second-moment method

In the previous section, we established the conformal invariance of the limit of our semi-dis-

crete observables. To show that the interface can be identi�ed with an SLE curve in the limit

and to determine its parameter, we need the so-called Russo-Seymour-Welsh (RSW) property.

This provides the hypothesis needed in [KS12] which, along with Theorem 6.22, shows the

main Theorem 6.1.

The goal of this section is to show the following property.
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6. Scaling limit of the qantum Ising model

Proposition 6.14 (RSW property). Fixα > 0. Consider the rectangular domainRn,α = [−n,n]×
[−αn,αn] andwriteRδn,α for its semi-discretized counterpart (primal domain). Let ξ be a bound-
ary condition on Rδn,α . Then, there exists c(α) > 0 which is independent of n and δ such that

c 6 P
ξ(Ch(Rδn,α)) 6 1− c,

c 6 P
ξ(Cv(Rδn,α)) 6 1− c,

where Ch and Cv denote the events “having a horizontal / vertical crossing”.

The proof of Proposition 6.14 is based on the use of the same fermionic observable intro-

duced in Section 6.2 and the second moment method to estimate the crossing probabilities.

This is inspired from [DCHN11] where the classical Ising case is treated and here we adapt

the proof to the case of quantum Ising.

To show the RSW property in Proposition 6.14, we only need to show the lower bound for

free boundary condition by duality [DCHN11]. In this section, we will just show the property

for the horizontal crossing, since the proof to estimate the probability of the vertical crossing

is similar.

We recall that (Ω�δ, aδ,bδ) is a Dobrushin domain, meaning that the arc (aδbδ) is wired

and the arc (bδaδ) is free. In Section 6.3.1, we introduced the notion of modi�ed primal and

dual domains of a Dobrushin domain, which are denoted by Ω̃δ and Ω̃?
δ respectively. Let

us write HM• and HM◦ the harmonic functions on modi�ed domains Ω̃δ and Ω̃?
δ having

boundary conditions 1 on the (extended) wired arc (∂ab for Ω̃δ and ∂?ab for Ω̃?
δ ) and 0 on the

(extended) free arc (∂ba for Ω̃δ and ∂?ba for Ω̃?
δ ).

We start by noticing that the connection probability of a vertex next to the free arc (bδaδ)
to the wired arc (aδbδ) can be written in a simple way by using the parafermionic observable.

Proposition 6.15. Let u ∈Ωδ such that {u+,u−} ∩ (bδaδ) , ∅ (equivalently, u is next to the
free arc). Write e for the mid-edge between u and the free arc (bδaδ). Then, we have

P(Ω�δ ,aδ ,bδ)(u↔ (aδbδ))
2 = δ|F(e)|2.

Proof. We take the de�nition of F,

δ|F(e)|2 =
∣∣∣∣∣E(Ω�δ ,aδ ,bδ)

[
exp

( i
2
W (e,bδ)

)
1e∈γδ

]∣∣∣∣∣2
= |E(Ω�δ ,aδ ,bδ)[1e∈γδ ]|

2 = P(Ω�δ ,aδ ,bδ)(e ∈ γδ)
2

where the winding W (e,bδ) is always a constant if e is adjacent to the boundary. We also

notice that e ∈ γδ is equivalent to u connected to the wired arc (aδbδ).

By using harmonic functions HM• and HM◦, we can get easily the following proposition.

Proposition 6.16. Let u ∈Ωδ next to the free arc. Write w ∈ {u+,u−} which is not on the free
arc. We have √

HM◦(w) 6 P(Ω�δ ,aδ ,bδ)(u↔ (aδbδ)) 6
√

HM•(u)

Proof. Write w∂ the neighbor of u which is on the free arc. We have

H(u) =H(u)−H(w∂) = δ|F(e)|2 = P(Ω�δ ,aδ ,bδ)(u↔ (aδbδ))
2.

144



6.4. RSW on the quantum model

Moreover, by Lemma 6.11, H is subharmonic on Ω̃δ, we get H(u) 6 HM•(u). Similarly,

writing e = (uw),

H(w) = δ|F(e)|2 − δ|F(e′)|2 6 δ|F(e)|2 = P(Ω�δ ,aδ ,bδ)(u↔ (aδbδ))
2

and we conclude by superharmonicity of H on Ω̃?
δ .

Now, we are ready to show the RSW property. We keep the same notation as in the

statement of Proposition 6.14. We write ∂− and ∂+ for the left and right (primal) borders of

Rδn,α . We de�ne the random variable N given by the 2D Lebesgue measure of the subset of

∂− ×∂+ ⊂R
2

consisting of points which are connected in Rδn,α . More precisely,

N =
"

x∈∂−
y∈∂+

1x↔ydxdy.

To show Proposition 6.14, we use the second moment method. In other words, by using

Cauchy-Schwarz, we need to show that the lower bound of

P
0(N > 0) = E

0[12N>0] >
E
0[N ]2

E
0[N2]

(6.12)

is uniform in n and δ. First, we get a lower bound for E
0[N ].

Lemma 6.17. There exists a uniform constant c independent of n and δ such that

E
0[N ] > cn.

Proof. We decompose the right boundary into m = bn/δc parts,

∂+ =
m−1⋃
i=0

∂i+ where ∂i+ =
(
{αn} ×

(
−n+ i · 2n

m
,−n+ (i +1) · 2n

m

))
.

We expand the expectation,

E
0[N ] =

"
x∈∂−
y∈∂+

P
0(x↔ y)dxdy

=
∫
x∈∂−

m−1∑
i=0

P
0(x↔ ∂i+)dx.

By Proposition 6.16, each P
0(x↔ ∂i+) can be bounded from below by HM◦(w) where w is

a neighbor of x which is not on the free arc, and the harmonic measure is with respect to

the modi�ed domain Ω̃?
δ where the Dobrushin domain (Ω�δ, aδ,bδ) is given by Ω�δ = R

δ
n,α , aδ

and bδ such that ∂i+ = (aδbδ). Moreover, from the local central limit theorem and gambler’s

ruin-type estimate, we have that HM◦(w) > c(δ/n)2 for a c > 0 uniform in n, δ and i.
Finally, we get

E
0[N ] >

∫
x∈∂−

m ·
√
c
δ
n

dx > c′n

where c′ is a uniform constant.
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To estimate E
0[N2], we need Proposition 6.18, a consequence of Lemma 6.19. Both of

them make use of the so-called exploration path, which is the interface between the primal

wired cluster and the dual free cluster. The proof in the discrete case [DCHN11] can be easily

adapted to the semi-discrete case, since the interface is well-de�ned and we have similar

estimates on harmonic functions, by means of semi-discrete Brownian motion, local central

limit theorem and gambler’s ruin-type estimates. Therefore, we will just give the proof of

Lemma 6.19.

For any given α,n and δ, let us consider Rn,α as before and (Rδn,α , aδ,bδ) the semi-dis-

cretized Dobrushin domain obtained from Rn,α with the right boundary ∂+ = (aδbδ) which

is wired.

Proposition 6.18 ([DCHN11, Proposition 14]). There exists a constant c > 0 which is uniform
in α and n such that for any rectangle Rδn,α and any two points x,z ∈ ∂−, we have

P(Rδn,α ,aδ ,bδ)
(x,z↔ ∂+) = P

0
Rδn,α

(x,z↔ ∂+) 6
c

√
|x − z|n

Lemma 6.19 ([DCHN11, Lemma 15]). There exists a constant c > 0 which is uniform in α, n,
δ and x ∈ ∂− such that for any rectangle Rδn,α and all k > 0,

P(Rδn,α ,aδ ,bδ)
(Bδ(x,k)↔ (aδbδ)) 6 c

√
k
n
.

Proof. Let n,k,δ,α > 0, the rectangular domain Rδn,α and its semi-discrete counterpart, the

Dobrushin domain (Rδn,α , aδ,bδ) where ∂+ = (aδbδ) is the wired arc. Consider x ∈ ∂−. For

k > n, the inequality is trivial, so we can assume k < n.

Since the probabilityP(Rδn,α ,aδ ,bδ)
(Bδ(x,k)↔ (aδbδ)) is non-decreasing inα, we can bound

it by above by replacing α by α +1, which we bound by above by a longer wired arc (cδdδ),
where cδ and dδ are respectively the left-bottom and the left-top points of the rectangular

domain Rδn,α . See Figure 6.9 for notations.

P(Rδn,α ,aδ ,bδ)
(Bδ(x,k)↔ (aδbδ)) 6 P(Rδn,α+1,aδ ,bδ)

(Bδ(x,k)↔ (aδbδ))

6 P(Rδn,α+1,cδ ,dδ)
(Bδ(x,k)↔ (cδdδ))

x

2αn

2n

p

x

bwδ bbδ

bδ

aδ

awδ abδ

x

dwδ dbδ

dδ

cδ

cwδ cbδ

x

dwδ dbδ

dδ

cδ

cwδ cbδ

p
γδ(T )

Figure 6.9 – First: The primal domain Rδn,α . Second: The Dobrushin domain (Rδn,α , aδ,bδ).
Third: The Dobrushin domain (Rδn,α , cδ,dδ). Third: The Dobrushin domain (Rδn,α , cδ,dδ).
Fourth: The exploration path starting at cδ and touching Bδ(x,k) at time T .
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6.4. RSW on the quantum model

Let γδ be the interface as de�ned in Section 1.2.5 and used in Section 6.2 to de�ne the

fermionic observable. The de�nition of γδ tells us that the ball Bδ(x,k) is connected to the

wired arc if and only if γδ goes through a mid-edge which is adjacent to the ball. We param-

eterize γδ by its length and denotes T the hitting time of the set of the mid-edges adjacent

to the ball Bδ(x,k). Therefore, Bδ(x,k) is connected to the wired arc if and only if T <∞.

Write p for the top-most point of Bδ(x,k). We can rewrite the probability of {p↔ (cδdδ)}
by conditioning on γδ[0,T ] and using Markov domain property to obtain

P(Rδn,α+1,cδ ,dδ)
(p↔ (cδdδ)) = E(Rδn,α+1,cδ ,dδ)

[1T <∞P(Rδn,α+1,cδ ,dδ)
(p↔ (cδdδ) | γδ[0,T ])]

= E(Rδn,α+1,cδ ,dδ)
[1T <∞P(Rδn,α+1\γδ[0,T ],γδ(T ),dδ)

(p↔ (cδdδ))].

We estimate this quantity in two di�erent ways to get the desired inequality. Firstly, since

p is at distance at least n from the wired arc, we have

P(Rδn,α+1,cδ ,dδ)
(p↔ (cδdδ)) 6

c1√
n
,

which follows from Proposition 6.16 and the fact that HM• 6
c
n . Secondly, we can write

γδ(T ) as z+(s,−r, s) where 0 6 s 6 k and 0 6 r 6 2k. Thus, the line z+Z×{−r} disconnects

a from the free arc, we estimate the harmonic function and we obtain a.s.

P(Rδn,α+1\γδ[0,T ],γδ(T ),dδ)
(p↔ (cδdδ)) >

c2√
r
>

c2√
2k

which again comes from Proposition 6.16 and the estimate HM◦ >
c
r . This �nal estimate

being uniform in γδ[0,T ], we get

c2√
2k

P(Rδn,α+1,cδ ,dδ)
(T <∞) 6 P(Rδn,α+1,cδ ,dδ)

(p↔ (cδdδ)) 6
c1√
n
.

which implies the statement.

Now, we can complete the proof of the RSW property.

Proof of Proposition 6.14. From Equation (6.12) and Lemma 6.17, we just need to show that

E
0[N2] =

&
P
0(x↔ y,z↔ t)dxdydzdt (6.13)

is O
(
n2

)
.

Consider x,z ∈ ∂−, y, t ∈ ∂+ and l the middle vertical line separating them, we get

P
0(x↔ y,z↔ t) 6 P

0(x,z↔ l)P0(y, t↔ l)

because the left-hand side of l and the right-hand side of l are independent. Therefore, the

integral in Equation (6.13) can be cut into two independent parts, each of whom gives the

same contribution,&
x,z∈∂−
y,t∈∂+

P
0(x↔ y,z↔ t)dxdydzdt

=
("

x,z∈∂−
P
0(x,z↔ l)dxdz

)("
y,t∈∂+

P
0(y, t↔ l)dydt

)
=

("
x,z∈∂−

P
0(x,z↔ l)dxdz

)2
6

("
x,z∈∂−

c
√
|x − z|n

dxdz

)2
6 (4cn)2
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6. Scaling limit of the qantum Ising model

where in the last line we use Proposition 6.18.

The proof is thus complete.

6.5 Convergence of the interface

In this section, we prove Theorem 6.1 which consists of the two following parts:

• Theorem 6.22 determines the limit of the observables Fδ.

• Proposition 6.14 gives an RSW-type estimate on crossing events. Thus, the condition

G2 required in [KS12] is ful�lled and the tightness of the family of interfaces (γδ) is

guaranteed for the weak convergence.

The �rst point can be done by using similar arguments as in [Smi06, Smi10, DCS12, CS12]

and the second point by the second-moment method introduced in [DCHN11]. Once these

two technical points are proven, one may follow the classical argument of martingales to

identify the limiting curve, see [DCS12, DC13].

6.5.1 Convergence theorem

Theorem 6.20 (Convergence theorem for s-holomorphic functions). Let Q ⊂ Ω be a rect-
angular domain such that 9Q ⊂Ω. Let (Fδ)δ>0 be a family of s-holomorphic functions on Ω�δ
and Hδ = Im

∫
F 2
δ . If (Hδ)δ>0 is uniformly bounded on 9Qδ, then (Fδ) is precompact on Qδ.

Remark 6.21. For each z ∈ IntΩ, we can �nd a neighborhood Q of z small enough such

that 9Q ⊂Ω to have precompactness of (Fδ) near z. Then we can use a diagonal argument

to extract a subsequence of (Fδ) converging uniformly on all compacts of Ω.

Proof. It is su�cient to show the second point in Theorem 5.27. We write

δ

∫
Q�δ

|Fδ(v)|2dv = δ
∫
Qδ

|D(δ)
x Hδ(x)|dx+ δ

∫
Q?
δ

|D(δ)
x Hδ(x)|dx

which is exactly the de�nition of Hδ in Proposition 6.8. These two terms can be treated in a

similar way. We will thus just look at the �rst one and show that it is bounded by a constant

uniformly in δ.

On the primal semi-discretized domain 9Qδ, writeHδ = Sδ+Rδ where Sδ is semi-discrete

harmonic with boundary values Hδ |∂9Qδ on ∂9Qδ.

∫
Qδ

|D(δ)
x Sδ(x)|dx 6

∫
Qδ

c1 · sup
9Qδ
|Sδ| 6

c2
δ
· c1 · sup

9Qδ
|Sδ|

=
c1c2
δ

sup
∂(9Qδ)

|Sδ| =
c3
δ

sup
∂(9Qδ)

|Hδ| 6
c4
δ
.

Here, we use Proposition 5.25 in the �rst inequality; the total length of axes in Qδ is propor-

tional to δ−1 in the second; the maximum principle (Proposition 5.15) in the third; Hδ and

Sδ coincide on the boundary ∂9Qδ in the fourth ; and �nally, Hδ is bounded by hypotheses.

Moreover, the constants ci may depend on the domain Ω but are uniform in δ.

We will now do something similar to Rδ. First, we write (Proposition 5.26)

Rδ(x) =
∫
9Qδ

∆(δ)Rδ(y)G9Qδ(x,y)dy.
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6.5. Convergence of the interface

Since H is subharmonic, it is the same for Rδ. Thus, ∆(δ)Rδ > 0 in 9Qδ. Then, we have∫
Qδ

|D(δ)
x Rδ(x)|dx 6

∫
Qδ

∫
9Qδ

∆(δ)Rδ(y)|D
(δ)
x G9Qδ(x,y)|dydx

=
∫
9Qδ

∆(δ)Rδ(y)
∫
Qδ

|D(δ)
x G9Qδ (x,y)|dxdy

6

∫
9Qδ

c5 ·∆(δ)Rδ(y)
∫
Qδ

G9Qδ(x,y)dxdy

= c5

∫
Qδ

∫
9Qδ

∆(δ)Rδ(y)G9Qδ(x,y)dydx

= c5

∫
Qδ

Rδ(x)dx

6 c5 ·
c6
δ

=
c5c6
δ

where we use the triangular inequality in the �rst line; Fubini in the second line (all the terms

are non-negative); Proposition 5.28 in the third; Fubini again in the fourth, Riesz representa-

tion (Proposition 5.26) again in the �fth; and �nally Rδ is bounded in the last one (because

Hδ and Sδ are bounded).

With all what we have done so far, we can determine the uniform limit of Hδ and Fδ
when δ goes to 0. First of all, we need to describe the continuous version of the boundary

value problem. Given a continuous Dobrushin domain (Ω, a,b), we say that a function f
de�ned on Ω is a solution to the Riemann-Hilbert boundary value problem if the following

three conditions are satis�ed:

(a) holomorphicity: f is holomorphic in Ω with singularities at a and b;

(b) boundary conditions: f (ζ) is parallel to τ(ζ)−1/2 for ζ ∈ ∂Ω\{a,b}, where τ(ζ) denotes

the tangent vector to Ω oriented from a to b (on both arcs);

(c) normalization: the function h := Im
∫
(f (ζ))2dζ is uniformly bounded in Ω and

h|(aδbδ) = 0, h|(bδaδ) = 1.

Note that (a) and (b) guarantee that h is harmonic in Ω and constant on both boundary

arcs (ab) and (ba). Thus, if we write Φ the conformal mapping from Ω onto the in�nite strip

R× (0,1) sending a and b to ∓∞, the function h ◦Φ−1 is still harmonic. Moreover, the only

harmonic function on the strip R × (0,1) with boundary condition 1 on R × {1} and 0 on

R × {0} is z 7→ Im(z), we obtain that h(z) = ImΦ(z) And from the de�nition of h in (c), we

get

h(v)− h(u) = Im(Φ(v)−Φ(u)) = Im
∫ v

u
(f (ζ))2dζ

for u,v ∈Ω. At u �xed, since Φ(v)−Φ(u) and

∫ v
u
(f (ζ))2dζ are both holomorphic in v and

have the same imaginary part, they di�er only by a real constant. By taking the derivative,

we can deduce that

Φ ′(v) = f (v)2

or equivalently,

f =
√
Φ ′ .

Since Φ is a conformal map, its derivative is never 0 on Ω, we can de�ne the square root in

a continuous manner (with respect to Ω), and the solution f is well-de�ned up to the sign.
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6. Scaling limit of the qantum Ising model

Moreover, this tells us that f (ζ) = c(ζ)τ(ζ)−1/2 for all ζ ∈ ∂Ω\{a,b} where c keeps the same

sign all along the boundary. Therefore, we can choose the branch of the logarithm such that√
Φ ′ corresponds to c positive and −

√
Φ ′ corresponds to c negative. Actually, if we look

around b, this branch is given by

√
1 = 1.

Theorem 6.22. The solutions Fδ of the semi-discrete boundary value problems are uniformly
close on any compact subset of Ω to their continuous counterpart f de�ned by (a), (b) and (c).
In other words, Fδ converges uniformly as δ→ 0 on all compact sets of Ω to

√
Φ ′ where Φ is

any conformal map fromΩ to R× (0,1) mapping a and b to ∓∞ respectively.

Proof. We start by showing the convergence of the discrete primitiveHδ := Im
∫
δ
(Fδ(ζ))2dζ,

using the boundary modi�cation trick introduced in Section 6.3.1. We extend Hδ on Ω̃δ and

denote its restriction on the primal axes H̃δ
•
. By Lemma 6.11, H̃δ

•
is still subharmonic, thus

it is smaller than the harmonic function h•δ with boundary condition 0 on (aδbδ) and 1 on

(bδaδ). Proposition 5.30 tells that h•δ converges to the solutionH of the continuous Dirichlet

boundary problem with boundary conditions 0 on ∂ab and 1 on ∂ba. We can deduce that

limsup
δ→0

H̃δ
• 6 h

on any compact subset of Ω. In a similar manner, denote H̃δ
◦

the function Hδ extended on

Ω̃?
δ which is restricted on dual axes. As before, this time by superharmonicity, we deduce

that

liminf
δ→0

H̃δ
◦ > h

on any compact subset of Ω. By de�nition (Equation (6.8)), for a sequence of wδ and bδ
neighbors in Ωδ, both approximating u ∈Ω (i.e., wδ→ u, bδ→ u), we have

h(u) 6 liminf
δ→0

H̃δ
◦(wδ) 6 limsup

δ→0
H̃δ
◦(bδ) 6 h(u).

Since the convergence to h on Ω̃δ and Ω̃?
δ is uniform on compact subsets, it is the same for

the convergence of both H̃δ
•

and H̃δ
◦
.

Consider Q ⊂Ω such that 9Q ⊂Ω. By the uniform convergence of Hδ, the family (Hδ)
is bounded uniformly in δ > 0 on 9Q. Theorem 6.20 implies that Fδ is a precompact family

of semi-discrete s-holomorphic functions on Q.

Consider δn a subsequence such that Fδn converges uniformly on all compact subsets of

Ωδ to F . For u,v ∈Ωδ and converging subsequences un→ u and vn→ v, we have

h(v)− h(u) = lim
n→∞

(Hδn(vn)−Hδn(un))

= lim
n→∞

Im
∫ un

vn

Fδn(z)
2
dz

= Im
∫ u

v
F (z)2dz.

Same as the discussion just above, the limit F is given by

√
Φ ′ where Φ is any conformal

map from Ω to R× (0,1) mapping a and b to ∓∞.

Here we give a brief idea to the proof for the vertical crossing. To start with, we need

to establish propositions similar to Propositions 6.15 and 6.16. We will get

√
∂yHM• and
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6.5. Convergence of the interface

√
∂yHM◦ in the statement. And to estimate these harmonic functions, we can use Harnack

Principle (Proposition 5.25) to get the correct orders. Then, the end of the story is the same,

since we can always de�ne the exploration path and get the same estimates (Lemmas 6.17

and 6.18).

6.5.2 Conclusion: proof of the Main Theorem

Now we have all the necessary ingredients to conclude the proof of the Main Theorem:

1. The RSW property shown in the previous section gives the G2 condition mentioned

in [KS12], giving as conclusion that the family of interfaces (γδ) is tight for the weak

convergence.

2. The fact that the fermionic observable (seen as an exploration process) is a martingale

and is conformally invariant allows us to identify the limit via Itô’s formula. More

precisely, if γ is a subsequential limit of the interface parameterize by a Löwner chain

W , from property of martingales and Itô’s formula, we prove that (Wt) and (W 2
t −κt)

are both martingales (κ = 16/3 for quantum FK-Ising). The computation is exactly the

same as in the limit of the classical FK-Ising since we have the same Riemann-Hilbert

Boundary value problem in continuum and same martingales. Readers who are inter-

ested in more details, see [DCS12, DC13].

6.5.3 Going further: quantum random-cluster model

In the paper in preparation [DCLM17], the quantum random-cluster measure with param-

eters λ,µ > 0, cluster weight q > 1 and boundary condition ξ can be de�ned on any open

semi-discrete domain Ωδ. Its de�nition is given by (1.15) that we recall here

dϕξQ,Ωδ
(D,B) ∝ qk

ξ (D,B)
dPQ,Ωδ

(D,B),

where D (resp. B) is a �nite set of points on primal (resp. dual) vertical lines. In the above

de�nition, PQ,Ωδ
is the measure of the family of independent Poisson point processes with

parameter λ on primal vertical lines and parameter µ on dual vertical lines. The quantity

kξ(D,B) counts the number of connected components in the con�guration (D,B) with re-

spect to the boundary condition ξ on the domain Ωδ.

It is proven in the same paper that this model exhibits a phase transition for parameters

λ,µ > 0 such that µ/λ = q. Moreover, for these values, we may write the measure associated

with the loop representation of the model as follows:

dϕξQ,Ωδ
(D,B) ∝ √ql

ξ (D,B)
dPQ,Ωδ

(D,B),

where lξ(D,B) denotes the number of loops in the con�guration (D,B). And if we look at

the model de�ned on a Dobrushin domain (Ω�δ, aδ,bδ) as we studeid in Section 6.2, we get a

collection of loops and an interface γδ going from aδ to bδ.

In particular, using the approach of isoradial graphs [DCLM17, Sec. 1], one can see that

there are reasons to believe that for the following parameters

λ =
4r

δ
√
q(4− q)

and µ =
4r
√
q

δ
√
4− q

, where r =
1
π
arccos

(√q
2

)
,

the quantum random-cluster model is isotropic. Therefore, a result on the conformal invari-

ance of the interface could be expected: γδ should converge to SLEκ withκ = 4π/ arccos(−√q/2)
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6. Scaling limit of the qantum Ising model

as δ goes to 0 as in the discrete setting [Sch07]. This might be achieved by using the so-called

parafermionic observable, which is a modi�ed version of the one used here,

Fδ(e) =
ν
√
δ
·E

[
exp(iσW (e,bδ))1e∈γδ

]
, where σ =

2
π
arcsin

(√q
2

)
. (6.14)

However, as for the discrete setting mentioned in [Smi10], only half of the Cauchy-Rie-

mann relations are known, which is not enough to establish the conformal invariance.
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Appendix A

Computation of residues

For a non-negative integer k and an integer m, de�ne the following meromorphic function

on C,

gk,m(z) :=
1
z

( 1
z+1

+
1

z − 1

)k (z+1
z − 1

)2m
=

2kzk−1

(z − 1)k+2m(z+1)k−2m
.

We notice that the possible singularities are at 0, 1 and −1.

Lemma A.1. When k = 0, we have Res(gk,m,1) = Res(gk,m,−1) = 0 for all integer m.

Proof. We �x k = 0. When m = 0, the result is trivial. For m > 1, the function gk,m does not

have any pole at −1, so it is clear that Res(gk,m,−1) = 0. The residue of gk,m(z) at z = 1 is

the residue of gk,m(y +1) at y = 0. We have

gk,m(y +1) =
1

y +1

(
1+

2
y

)2m
=

∑
k>0

(−y)k

 2m∑
l=0

(
2m
l

)(
2
y

)l ,
where the coe�cient of

1
y is given by

2m∑
l=1

(
2m
l

)
2l(−1)l−1 = −[(1− 2)2m − 1] = 0.

When m is negative, the proof is similar.

Lemma A.2. For k > 1, we have Res(gk,m,1) +Res(gk,m,−1) = 0.

Proof. When k > 1, the singularity at 0 is removable. We observe that |gk,m(z)| behaves like

|z|−k−1 6 |z|−2 when |z| is large, giving

lim
R→∞

1
2π i

∫
∂B(0,R)

gk,m(z)dz = 0.

Moreover, when R > 1, we have

1
2π i

∫
∂B(0,R)

gk,m(z)dz = Res(gk,m,−1) +Res(gk,m,1).

Thus, we get the desired result.
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A. Computation of residues

Lemma A.3. For k > 1 and k 6 2|m|, Res(gk,m,1) = Res(gk,m,−1) = 0.

Proof. The previous lemma tells us that it is enough to show that the residue is zero at either

1 or −1. Ifm is positive, we notice that gk,m(z) does not have any pole at −1, thus the residue

at −1 is zero. If m is negative, the residue at 1 is zero.

Lemma A.4. More generally, for all k ∈ 2N,

Res(gk,m,1) = Res(gk,m,−1) = 0.

Proof. Assume that k = 2l > m > 0 for a positive integer l. Look at the residue of gk,m(z)
around z = 1 is equivalent to looking at the residue of gk,m(y +1) around y = 0,

Res(gk,m(z), z = 1) = Res(gk,m(y +1), y = 0).

We have the following equivalent relations

Res(g2l,m(y +1), y = 0) = 0

⇔ Res
(

(y +1)2l−1

y2l+2m(y +2)2l−2m
, y = 0

)
= 0

⇔
(1 + y)2l−1

(1 + y
2 )

2l−2m [y2l+2m−1] = 0 (A.1)

where the notation R(y)[yk] gives the coe�cient of yk in the Laurent series of R(y).

We expand the rational fraction to evaluate this coe�cient by applying the three follow-

ing identities,

(
2m− 2l
2m+ p

)
= (−1)2m+p

(
2l + p − 1
2m+ p

)
(A.2)(

2l + p − 1
2m+ p

)
=

2l−1∑
q=0

(
p
q

)(
2l − 1

2m+ p − q

)
, (A.3)

n∑
k=0

(
n
k

)(
k
r

)
(−x)k = (−x)r(1− x)n−r

(
n
r

)
. (A.4)

Equation (A.2) comes from the general de�nition of binomial coe�cients, and in our case,

we have 2m− 2l < 0. Equation (A.3) is an easy combinatorial identity and Equation (A.4) a
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simple expansion. Then, the left-hand side of Equation (A.1) equals

2l−1∑
p=0

(
2l − 1
p

)(1
2

)2l+2m−1−p ( 2m− 2l
2l +2m− 1− p

)

(p{ 2l − 1− p) =
2l−1∑
p=0

(
2l − 1
p

)(1
2

)2m+p (2m− 2l
2m+ p

)

=
2l−1∑
p=0

(
2l − 1
p

)(
−1
2

)2m+p (2l + p − 1
2m+ p

)

(Equation (A.3)) =
2l−1∑
p=0

(
2l − 1
p

)(
−1
2

)2m+p 2l−1∑
q=0

(
p
q

)(
2l − 1

2m+ p − q

)

(q{ p − q) =
2l−1∑
p=0

(
2l − 1
p

)(
−1
2

)2m+p 2l−1∑
q=0

(
p
q

)(
2l − 1
2m+ q

)

=
(1
2

)2m 2l−1∑
q=0

(
2l − 1
2m+ q

)2l−1∑
p=0

(
2l − 1
p

)(
p
q

)(
−1
2

)p
(Equation (A.4)) =

(1
2

)2m 2l−1∑
q=0

(
2l − 1
2m+ q

)(
−1
2

)q (1
2

)2l−1−q (2l − 1
q

)

=
(1
2

)2m+2l−1 2l−1∑
q=0

(−1)q
(
2l − 1
2m+ q

)(
2l − 1

2l − 1− q

)
= 0

where the sum in the last line is the coe�cient in front of x2m+2l−1
in (1−x)2l−1(1+x)2l−1 =

(1− x2)2l−1, which is zero because the polynomial only contains monomials of even degree.

Proposition A.5. For ζ = m + i t ∈ L1 with m ∈ 1
2Z and t ∈ R, let fζ as de�ned in (5.22).

Consider C the path de�ned in Proposition 5.18. Then,∫
C
fζ(z)dz = 0.

Proof. We will expand the exponential into series and show that this integral is zero for

all terms. We can do this because the series converges uniformly on all compacts to the

exponential function. Therefore, it makes sense to exchange the integral and the series. After

expanding, we get

fζ(z) =
∑
k>0

(2i t)k

k!
gk,m(z)

and the residue theorem along with Lemma A.1 and Lemma A.2 allows us to conclude.

The previous proposition is important because it shows that the Green’s function as de-

�ned by (5.23) does not depend on the lift of the logarithm.

Proposition A.6. Around ζ =m ∈Z\{0}, the function G is C2|m|.
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A. Computation of residues

Proof. To show this, we need to check that for all k 6 2|m|, we have∫
C
gk,m(z) ln1(z)dz =

∫
C
gk,m(z) ln2(z)dz

where lni is chosen such that lni(1)− lni(−1) = (−1)i iπ. Here, ln1 corresponds to the log-

arithm chosen in the upper half-plan and ln2 in the lower half-plane. From Proposition A.5,

we can �x a lift of the logarithm such that ln1− ln2 is non zero around 1 and −1, for example

ln1(1) = 2iπ, ln1(−1) = 3iπ, ln2(1) = 0 and ln2(−1) = − iπ.

Let I1 be the integral on the left-hand side and I2 be the one on the right-hand side. Since

ln1− ln2 is non zero at 1 and −1, we can write

I1 − I2 = 2iπ[2 iπRes(gk,m(z), z = 1) + 4iπRes(gk,m(z), z = −1)] = 0

due to Lemma A.3.

Proposition A.6 provides us with the regularity of Green’s function; in particular, the

second condition giving in Section 5.4.1 is satis�ed. This comes to complete the proof of

Proposition 5.18.
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Appendix B

RSW theory and applications

In this part of Appendix, we provide proofs concerning di�erent equivalent formulations of

the RSW property. In the case of Bernoulli percolation, these proofs are classical and readers

are referred to [Gri99] for a good reference. In our current case of random-cluster model, the

boundary conditions count, thus more care is needed and proofs are slightly more technical;

however, the main idea remains the same.

We start by proving Lemma 3.10 then Lemma 3.14.

Proof of Lemma 3.10. Fix a doubly-periodic graph G with grid (sn)n∈N, (tn)n∈N.

Let ρ > 1 and ν > 0. Assume that (BXP(ρ, ν)) is satis�ed and we want to show the strong

(Euclidean) RSW property. The converse can be proven in a similar manner, so we omit the

proof here.

We start by saying that we can assume ρ > 2 and ν 6 1. Indeed, if ρ < 2, in the �rst part

of the proof, we show that it is possible to create longer horizontal and vertical crossings,

knowing only (BXP(ρ, ν)), to obtain (BXP(ρ′ ,ν)) for ρ′ > 2. The same method can also be

applied to reduce the value of ν. Finally, we note that this also allows us to deduce (BXP(ρ, ν))

for any value of ρ > 1 and ν > 0.

The �rst step is to show that if (BXP(ρ, ν)) is true for some ρ < 2, then we also have

(BXP(2,ν)). Let δ := δ1(ρ,ν) and K = (ρ − 1
ρ )
−1

. For −K 6 k 6 K , consider

Rvk := R
(
2 kK n,2(

k
K + 1

ρ )n;−n,n
)
, Vk := Cv(Rvk ),

Rhk := R
(
2 kK n,2(

k
K + ρ)n;−n,n

)
, Hk := Ch(Rhk),

where Vk (resp. Hk) is the event that there is an vertical (resp. horizontal) crossing in Rvk
(resp. Rhk). If for all −K 6 k 6 K , both Vk and Hk occur, then there is an horizontal crossing

in the domain R(2n;n). See Figure B.1 for the overlapping between domains that ensures a

longer crossing. Thus, we have

ϕ0
Rn

[
Ch(2n;n)

]
>

K∏
k=−K

ϕ0
Rn
[Hk]ϕ0

Rn
[Vk] > δ2(2K+1),

where Rn = R((2+ν)n; (1+ν)n). The above inequality is a consequence of the FKG inequality,

comparison between boundary conditions and the fact that for all −K 6 k 6 K , the translated

domain R((ρ+ν)n; (ρ+1)n) centered at Rhk or R((1+ ν
ρ )n; (1+

1
ρ )n) centered at Rvk is included

in Rn. The same construction works for the vertical crossing in R(n;2n) with respect to the

measure ϕ0
R′n

where R′n = R((1 + ν)n; (2 + ν)n).
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B. RSW theory and applications

Rh
k−1 Rh

kRv
k

2n

2
ρn

2ρn

Figure B.1 – The overlapping between successive rectangular domains ensures a longer hor-

izontal crossing. Horizontal rectangular domains Rhk−1 and Rhk (in blue) are of size 2n× 2ρn;

the vertical one Rvk (in red) is of size 2n × 2
ρn. To create this overlapping, we shift domains

by 2ρn− 2
ρn =

2
K n each time.

By considering larger domains with crossings in rectangles of same ratio, one can also

reduce the value of ν. We only refer readers to Figure B.2 without providing details here.

2n

4n

8n

6n

16n

8n 12n

20n

Figure B.2 – We apply (BXP(2,2)) in smaller rectangular domains to create (BXP(2, 12 )) in

a bigger rectangular domain. Smaller domains are of the form R(2n;n) with boundary

R(4n;3n) and the bigger one is of the form R(8·2n;8n)with boundary R(8(2+ 1
2 )n;8(1+

1
2 )n).

Now, assume that (BXP(ρ, ν)) is true with ρ > 2 and ν 6 1 and show the strong (Eu-

clidean) RSW property. Let K be a fundamental domain of G which is bordered by s0, sc, t0
and td with s0 and t0 included in K ; sc and td excluded. This implies that (sn) is c-periodic

and (tn) is d-periodic. Moreover, up to a rotation, we may assume that (tn) has asymptotic

direction (1,0), which also means that the graph G is invariant by a horizontal vector.

Let n ∈N. For i, j ∈Z, the cellCi,j is de�ned to be the translated square domain enclosed

by s(2i−1)cdn, s(2i+1)cdn, t(2j−1)cdn and t(2j+1)cdn with the bottom and the left tracks included;

the top and the right tracks excluded. Note that Ci,j contains d (resp. c) periods in the

horizontal (resp. vertical) direction.

For k > 0, let Rk = [−2k,2k] × [−k,k] be a Euclidean rectangular domain. Also write

Rk = [−3k,3k]×[−2k,2k]. The goal then is to show that for k large enough,ϕ0
Rk
[Ch(Rk)] > δ,

where δ is independent of k.

For µ > 0, let R
µ
n = R(µn+2cdn;2cdn) and R

µ
n = R(µn+3cdn;3cdn). Write Ci = Ci,0 and

K = d µ2cd e+ 1. If for −K 6 i 6 K − 1, Ci ∪Ci+1 is crossed horizontally and for −K 6 i 6 K ,
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Ci is crossed vertically, then the event Ch(R
µ
n) occurs. Hence, by the FKG inequality,

ϕ0
R
µ
n

[
Ch(R

µ
n)
]
> δ2K , (B.1)

where δ = δ1(2,1) is provided by BXP(2,1).

Rk

Rk

Rµ
n

R
µ

n

Figure B.3 – The graph G is in grey. Black domains are rectangular domains with respect

to a grid of G; blue domains are Euclidean rectangular domains. Domains with overline are

those in which we de�ne random-cluster measures. A horizontal crossing in R
µ
n induces a

horizontal crossing in Rk .

To conclude, it is su�cient to show that for k large enough (corresponding to speci�c

values of µ and n),

ϕ0
Rk
[Ch(Rk)] > ϕ0

R
µ
n

[
Ch(R

µ
n)
]
. (B.2)

To this end, we need to �x a value of µ such that for all k large enough, we can choose n
properly such that (i) Rk is higher and shorter than R

µ
n and (ii) R

µ
n is included in Rk as shown

in Figure B.3. These conditions can be rewritten as{
k > 2cd`n,
2k 6 µn,

{
2k > 3cd`n,
3k > (µ+6cd`)n.

Thus, we may choose µ = 12cd` and k = 6cd`n.

The above shows that the probability of crossings in R
2

can be bounded from below

uniformly, depending only on the ratio of the rectangle, in both asymptotic directions given

by (sn) and (tn). Then to show that it is the case for any direction, the proof is quite similar

as above and we only refer readers to Figure B.4.

Proof of Lemma 3.14. Fix a > 1 and take b > 3a whose value is to be chosen later. Assume

that the condition (BXP(ρ, ν)) is true for all ρ > 1 and ν > 0. We show (3.5) only for primal

crossings since the proof is exactly the same for dual ones. First of all, we have,

ϕ0
Λ(bn)

[
Cv(an2 ;

an
2 )

]
> ϕ0

R(an; 32an)

[
Cv(an2 ;an)

]
> δ1(2,1),

whenever b > 3
2an.
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B. RSW theory and applications

Figure B.4 – Small rhombi indicate Euclidean domains in which we have the RSW property.

By putting crossings together in this way, we create a horizontal crossing in the bigger box.

Since we the rhombi and the domain can be scaled together, the number of rhombi needed

depends only on the ratio, thus the RSW property.

Then, consider the following rectangles and crossing events (see Figure B.5),

R1 = R(−2an,2an; n2a ,
n
a ), H1 = Ch(R1),

R2 = R(−2an,2an;−na ,−
n
2a ), H2 = Ch(R2),

R3 = R((2a− 1
a )n,2an;−

n
a ,
n
a ), V3 = Cv(R3),

R4 = R(−2an,−(2a− 1
a )n;−

n
a ,
n
a ), V4 = Cv(R4).

We note that ifH1
,H2

, V3 and V4 occur, then so does C(an,2an; na ). Hence,

n
a

2an

an

n
a

R1

R2

R3R4

Figure B.5 – The rectangles R1, . . . ,R4 are hashed and crossing eventsH1
,H2

, V3 and V4 are

drawn in thick red lines.

ϕ0
Λ(bn)

[
Ch(an,2an; na )

]
> ϕ0

Λ(3an)

[
H1 ∩H2 ∩V3 ∩V4

]
> δ1(4a

2,1)2δ1(2,1)
2,

where in the last inequality we use the FKG inequality, comparison between boundary con-

ditions and the following facts:

• The rectangles R1 and R2 are translations of R(2an; n4a ) of ratio 8a2.

• The rectangles R3 and R4 are translations of R( n2a ;
n
a ) of ratio 2.

• Inclusion of rectangles: translated rectangles R((8a2+1) n4a ; (1+1)
n
4a ) having the same

center as R1 and R2 are included in Λ(3an); so are translated rectangles R(na ;
3n
2a ) having

the same center as R3 and R4.

In consequence, we may choose δv =
1
2 min{δ1(2,1),δ1(4a2,1)2δ1(2,1)2}.
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Finally, let us show that as b→∞, we have

ϕ0
Λ(bn)

[
C(3an,bn;bn)

]
→ 1.

Consider b > 3a and an integer k such that 3ak 6 b < 3ak+1. For any j > 0, de�ne the square

domain Λj = Λ(3ajn), the annulus Aj = Λj+1\Λj and the event C∗j = {∂Λj
∗←→ ∂Λj+1 in Aj},

where

∗←→ denotes the connection in the dual model. Then, we have

ϕ0
Λ(bn)

[
Ch(3an,bn;bn)c

]
= ϕ0

Λ(bn)

[
R(3an;0)

∗←→ ∂Λ(bn)
]

6 ϕ0
Λk

[ k−1⋂
j=0

C∗j
]

=
k−1∏
j=0

ϕ0
Λk

[
C∗j

∣∣∣ ⋂
j<i<k

C∗i
]

6
k−1∏
j=0

ϕ0
Aj

[
C∗j

]
,

where in the last line we use again the argument of exploration from outside and the com-

parison between boundary conditions. The complement of C∗j is exactly the event Aj that

there exists a (primal) circuit in the annulus Aj . Consider four rectangles Rij with i = 1, . . . ,4

and associated crossing events H1
j = Ch(R

1
j ), H

2
j = Ch(R

2
j ), V

3
j = Cv(R3j ) and V4j = Cv(R4j ) as

shown in Figure B.6.

Λj+1

Λj

R1
j

R2
j

R3
jR4

j

R
1

j

2 · 3aj+1n

Figure B.6 – The annulus Aj and the four crossings eventsH1
j ,H2

j , V3j and V4j creating Aj .

Note that if the crossing events H1
j , H2

j , V3j and V4j occur, then so does Aj . More-

over, we may also �nd R
i
j (having the same center as Rij ) which are included in Λj+1 such

that (BXP(ρ, ν)), for some �xed ρ > 1 and ν > 0 independent of j , can be applied on them.

These rectangular domains Rij and R
i
j can also be chosen such that from scale j to scale j +1,

they are enlarged by factor a. Thus, for j > j0, where j0 is a threshold provided by the RSW

property,

ϕ0
Aj
[Aj ] > ϕ0

Aj

[
H1
j ∩H

2
j ∩V

3
j ∩V

4
j

]
> δ1(ρ,ν)

4 =: c, (B.3)
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B. RSW theory and applications

where c only depends on ρ and ν which are chosen to depend only on a. In the above

inequality, we use the FKG inequality and the comparison between boundary conditions. In

summary, we have

ϕ0
Λ(bn)

[
Ch(3an,bn;bn)c

]
6
k−1∏
j=j0

(1− c) 6 exp
[
ln(1− c)

(
lnb−ln3

lna − j0
)]
→ 0,

as b→∞. This concludes the proof.
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Appendix C

Proof of phase transition for

1 6 q 6 4: Theorem 3.1 and

Corollary 3.3

We give details of the proof of Theorem 3.1. To show the �rst point of the theorem, the

uniqueness of the measure, we can for instance adapt the proof from [DC13, Cor. 4.40], where

only the condition ϕ1
G

[
0↔∞

]
= 0 is needed. This is also explained in the upcoming Propo-

sition C.1, with a sketch of proof. This condition is an immediate consequence of the second

point of the theorem.

The second point concerning the polynomial decay. Actually, we show that there exist

A,B,α,β > 0 such that for all n large enough,

An−α 6 ϕ0
G

[
0↔ ∂Λ(n)

]
6 ϕ1

G

[
0↔ ∂Λ(n)

]
6 Bn−β . (C.1)

Then, we can pick A = B = 1 by adjusting constants α and β.

Finally, the last point of the theorem, the RSW property, can be deduced from Corol-

lary 3.12.

Proposition C.1. If ϕ1
G,β,q

[
0↔∞

]
= 0, then ϕ0

G,β,q = ϕ
1
G,β,q.

Proof. LetA an increasing event depending on a �nite number of edges of G. We can assume

that these edges are all in Λ(k) for a certain k. For N > n > k,

ϕ1
Λ(N ),β,q

[
A∩ {∂Λ(k)= ∂Λ(n)}

]
= ϕ1

Λ(N ),β,q

[
A
∣∣∣∂Λ(k)= ∂Λ(n)

]
ϕ1
Λ(N ),β,q

[
∂Λ(k)= ∂Λ(n)

]
6 ϕ0

Λ(n),β,q[A] ·ϕ
1
Λ(N ),β,q

[
∂Λ(k)= ∂Λ(n)

]
where in the last line we compare the boundary conditions by using the fact that {∂Λ(k)=
∂Λ(n)} is exactly the event that there exists a dual circuit in the annulus Λ(n)\Λ(k).

Taking N →∞, we get

ϕ1
G,β,q

[
A∩ {∂Λ(k)= ∂Λ(n)}

]
6 ϕ0

Λ(n),β,q[A] ·ϕ
1
G,β,q

[
∂Λ(k)= ∂Λ(n)

]
.

Then, taking n→∞ and using the fact that ϕ1
G,β,q

[
∂Λ(k)↔∞

]
= 0 (recall that k is �xed),

we obtain

ϕ1
G,β,q[A] 6 ϕ

0
G,β,q[A],
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C. Proof of phase transition for 1 6 q 6 4: Theorem 3.1 and Corollary 3.3

which implies ϕ1
G,β,q = ϕ

0
G,β,q.

Then, we go to the proof of the polynomial decay, or equivalently, (C.1). The upper bound

is shown by saying that if a path can go to the boundary ∂Λ(n), then it also crosses all the

annuli Λ(2j )\Λ(2j−1) for 1 6 j 6 blnnc. The lower bound is shown by making crossings of

boxes of ration 2 which garantee the existence of a path going to the boundary ∂Λ(n). More

details are given below.

Proof of (C.1). Fix n and consider an integer k such that 2k 6 n < 2k+1. For j > 1, de�ne

Euclidean annuliAj =Λ(2j )\Λ(2j−1) and crossings of annuli Cj = {∂Λ(2j )↔ ∂Λ(2j ) in Aj}.
Then, we have

ϕ1
G

[
0↔ ∂Λ(n)

]
6 ϕ1

G

[ k⋂
j=1

Cj
]
=

k∏
j=1

ϕ1
G

[
Cj

∣∣∣∣ ⋂
i>j

Ci
]
6

k∏
j=1

ϕ1
Aj

[
Cj

]
,

where in the last inequality we use again the argument of exploration from outside and the

comparison between boundary conditions. The complement of Cj is exactly the event that

there exists a (primal) circuit in the annulus Aj . Hence, from Lemma 3.19, there exists a

constant c > 0 such that for j > J , where J is a constant,

ϕ1
Aj

[
Cj

]
6 1− c.

In conclusion, we have,

ϕ1
G

[
0↔ ∂Λ(n)

]
6 exp

[
ln(1− c)

(
lnn
ln2 − J +1

)]
.

Hence, we may take β = − ln(1−c)ln2 .

For the lower bound, let Ri = [0,2i−1]× [0,2i] for i odd and Ri = [0,2i]× [0,2i−1] for i
even. We also write Ci = Cv(Ri) for i odd and Ci = Ch(Ri) for i even. The RSW property (3.1)

gives δ such that for i > I0, we have

ϕ0
2Ri

[
Ci

]
> δ.

Take n > 0 and integer k such that 2k−1 6 n < 2k . If Ci occurs for all I0 6 i 6 k, then

we have a crossing from v to ∂Λ(2k) with |v| 6 2I0 . Hence, by the FKG inequality and the

comparison between boundary conditions

ϕ0
G

[
0↔ ∂Λ(n)

]
>

k∏
i=I0

ϕ0
2Ri

[
Ci

]
> exp

[
lnδ

(
lnn
ln2 − I0 +1

)]
.

To �nish the proof, we choose α = − lnδln2 .

Proof of Corollary 3.3. We prove the corollary for 1 6 q 6 4. Since ϕ1
G,1,q[0↔∞] = 0 from

Theorem 3.1, we also have ϕ1
G,β,q[0↔∞] = 0 for all β < 1. Then Proposition C.1 implies

the uniqueness of the measure for β 6 1. For β > 1, we use the duality ϕξ
G,β,q = ϕ

1−ξ
G
∗,1/β,q

for ξ = 0,1 and apply what we just said above to G
∗
. Hence, the uniqueness also follows for

β > 1.

For the two remaining points, we use the fact that the unique measure ϕ0
G,1,q = ϕ

1
G,1,q

satis�es the RSW property. Then, we can follow the same strategy as in [GM13b, Prop. 4.1

and 4.2]: the polynomial decay, Russo’s formula and the theory of in�uence.

164



Appendix D

Separation Lemma and

Consequences

Fix η > 0 small enough and below we de�ne the η-separated k-arm event using a grid of G.

Cut the top boundary of ∂Λ(n) into 2k +1 parts I
η
1 , . . . , I

η
2k+1 from left to right such that

the intervals of the same parity have the same length: even ones are of length 2ηn and odd

ones
1−2kη
k+1 n. Repeat the same procedure to the top boundary of ∂Λ(N ) by replacing n byN

and denote the resulting intervals by J
η
1 , . . . , J

η
2k+1.

The η-separated k-arm event Aηk (n,N ) is the eventAk(n,N ) with the following additional

constraints:

• Each Pi connects I
η
2i to J

η
2i . We write (xi ,N ) ∈ Jη2i for the endpoint on the outer bound-

ary ∂Λ(N ).

• In the box [xi −ηN,xi +ηN ]× [(1+η3/4)N, (1+√η)N ] there is a horizontal crossing

of the same type as Pi .

• The two above crossings are connected in (xi ,N ) +Λ(
√
ηN ).

• The same thing for the inner boundary.

The �rst item says that we can decide the position of each path Pi on the inner and the outer

boundaries of the annulus A(n,N ); the second and the third say that these crossings have

a η-fence that will allow us to extend the arm events outwards; the last one states the same

thing but inwards. This is illustrated in Figure D.1.

The following lemma says that the η-separated k-arm event is comparable to the k-arm

event in probability. We remind that the random-cluster measure onG is unique for 1 6 1 6 4
at β = 1, so we will simply write ϕ

G
without any boundary conditions. However, on any

�nite domain R, there is not uniqueness: ϕ0
R , ϕ

1
R.

Lemma D.1 (Separation Lemma). Fix k ∈N and η ∈ (0,1). Then there exists c > 0 such that
for all N > n large enough, we have

ϕ
G
[A
η
k (n,N )] > cϕ

G
[Ak(n,N )].

To show the above separation lemma, we start by stating the following proposition about

the extension of arms in larger boxes.
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∂Λ(n) ∂Λ(N)

2ηN

√
ηN

η3/4N

Figure D.1 – The η-separated 2-arm event that we draw only in the upper half-plane. The

primal arm is drawn in red and the dual arm in blue. The η-fences on the exterior boundary

are drawn but on the interior boundary, only the primal one is drawn, the dual one is omitted.

Proposition D.2 (Arms-extension Lemma). There exists c > 0 such that for N > 2n large
enough,

ϕ
G
[Ak(n,2N )] > cϕ

G
[Ak(n,N )],

ϕ
G
[Ak(

n
2 ,N )] > cϕ

G
[Ak(n,N )].

The proof of the Arms-extension Lemma is given below, and that of the Separation

Lemma later. We note that in the case of the random-cluster model, we do not have indepen-

dence between disjoint regions, but by comparing boundary conditions, we can still get rid

of this constraint and proceed in a similar way as for the classical Bernoulli percolation.

Proof of Proposition D.2. We just show the �rst point, the second being similar.

Consider, for 1 6 i 6 k, the two following domains

Ri = (12 J
η
2i)× [(1 + η

3/4)N,2N ] and

R′i = J
η
2i × [N, (2 + η

3/4)N ].

Then, write Vi for the event that there exists a primal (for i odd) or a dual (for i even) vertical

crossing inRi . In other words, Vi = Cv[Ri] for i odd and Vi = C∗v[Ri] for i even. See Figure D.2

for an illustration of the case k = 2.

Moreover, if A
η
k (n,N ) and Vi for 1 6 i 6 k all occur, then so does Ak(n,2N ) due to the

η-fences provided by A
η
k (n,N ) that grow on the boundary. Then,

ϕ
G
[Ak(n,2N )] > ϕ

G

[
A
η
k (n,N )∩ (V1 ∩ · · · ∩ Vk)

]
= ϕ

G
[A
η
k (n,N )] ·

k∏
i=1

ϕ
G

[
Vi

∣∣∣∣Aηk (n,N )∩
⋂
j<i

Vj
]
. (D.1)

By comparing boundary conditions and the RSW property, we get

ϕ
G

[
Vi

∣∣∣∣Aηk (n,N )∩
⋂
j<i

Vj
]
> ϕ0

R′i
[Vi] > c1, for i odd; (D.2)

ϕ
G

[
Vi

∣∣∣∣Aηk (n,N )∩
⋂
j<i

Vj
]
> ϕ1

R′i
[Vi] > c1, for i even, (D.3)
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∂Λ(n)

∂Λ(N)2ηN

∂Λ(2N)

Figure D.2 – From the η-separated 2-arm event A
η
2(n,N ), we can add one vertical primal

(darkred) and one vertical dual (darkblue) crossings such that A2(n,2N ) is realized. In the

�gure we only draw the upper-half plane.

where c1 > 0 does not depend on i. From Lemma D.1, we get c2 > 0 such that

ϕ
G
[A
η
k (n,N )] > c2ϕG

[Ak(n,N )]. (D.4)

We replace (D.2)–(D.4) in (D.1) to conclude that

ϕξ
G
[Ak(n,2N )] > ck1c2ϕ

ξ
G
[Ak(n,N )].

The proof of the Separation Lemma (Lemma D.1) is based on the RSW property. It is

almost identical to the one in the case of Bernoulli percolation, with the main di�erence that

the random-cluster measure is not a product measure, thus no independence between disjoint

domains. However, we can overcome this problem by means of the RSW property and the

comparison between di�erent boundary conditions. We start by introducing some notations

and lemmas before showing Lemma D.1 in the end of this section.

Write BN = [0,8N ] × [0,N ]. For η > 0, the box BN is said to be η-separable if any

sequence of disjoint bottom-top crossings (Γi)i of alternating colors in BN can be modi�ed

into (̃Γi)i such that

• Each Γ̃i has the same bottom-endpoint as Γi and is a bottom-top crossing of the same

type as Γi .

• The endpoints of Γ̃i are separated by at least

√
ηN from each other and from corners.

• At the top-endpoint of each Γ̃i , there is a η-fence. The de�nition of a η-fence is the

same as above.

Unlike the de�nition of the η-separated k-arm event A
η
k (n,N ), we do not ask the crossings

to land in some particular intervals.

To show Lemma D.1, we start with the following lemma.
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Lemma D.3. For ν > 0, there exists η′ = η′(ν) > 0 and N0 = N0(ν) ∈ N such that for any
boundary conditions ξ and all N >N0,

ϕξ2BN

[
BN is η′-separable

]
> 1− ν

4
.

We note that the boundary conditions ξ here may be random, as in Lemma 3.13.

LemmaD.4. There existC1,C2 > 0 such that for ν > 0 and η′ = η′(ν) as given by Lemma D.3,
for N > n >N0(ν) and ξ = 0,1, we have

ϕ
G

[
Ak(2

n,2N )
]
6 C1ϕG

[
A
η′

k (2
n,2N+1)

]
+ νϕ

G

[
Ak(2

n,2N−1)
]

and

ϕ
G

[
Ak(2

n,2N )
]
6

∑
06j<N−n

C1ν
jϕ

G

[
A
η′

k (2
n,2N−j+1)

]
6

∑
06j<N−n

C1C
j
2ν

jϕ
G

[
A
η′

k (2
n,2N+1)

]
. (D.5)

Proof. This lemma includes Lemmas 2.3.5–2.3.8 from [Man12].

We cut the event Ak(2n,2N ) into two disjoint subsets A1
k and A2

k . The subset A1
k is such

that one of the four rectangles forming the annulus A(2N−1,2N ) is not η′-separable. We

write

R1 = [−2N+1,2N+1]× [3 · 2N−1,2N+1],

R2 = [−2N+1,2N+1]× [−2N+1,−3 · 2N−1],
R3 = [3 · 2N−1,2N+1]× [−2N+1,2N+1],

R4 = [−2N+1,−3 · 2N−1]× [−2N+1,2N+1].

See Figure D.3.

R3R4

R1

R2

2N

2N+1

2n

2R1

Figure D.3 – Boxes Ri are shaded in red. Each arm coming from ∂Λ(2n) should go through

one of Ri before reaching ∂Λ(2N ).
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This gives

ϕ
G
[A1
k] = ϕG

[one of R1, . . .R4 is not η′-separable and Ak(2
n,2N )]

6 4ϕ
G
[R1 is not η′-separable and Ak(2

n,2N )]

= 4ϕ
G
[Ak(2

n,2N )]ϕ
G
[R1 is not η′-separable |Ak(2n,2N )]

6 νϕ
G
[Ak(2

n,2N )],

where we apply Lemma D.3 in the last line, by choosing ξ the boundary conditions induced

by ϕ
G

on R1 knowing Ak(2n,2N ).
Concerning A2

k , it is the event that all the four rectangles R1, . . . ,R4 are η′-separable,

but the endpoints of the arms might not distributed as we wish as in A
η′

k (2
n,2N ). How-

ever, [Man12, Lem. 2.3.6] is a combinatorial lemma, allowing us to pick a sequence of inter-

vals in which the endpoints have the highest probability to land in. Then, from this sequence,

one can extend the arms to the next scale and ask the position of these endpoints to be dis-

tributed as in A
η′

k (2
n,2N+1) [Man12, Lem. 2.3.7]. The second step is basically what we did

in the proof of Proposition D.2. These two steps together give the constant C1 > 0. The �rst

inequality has been shown.

For the recurrence step, one uses the same technique to extend arms to get C2 > 0 which

is the cost to make the arms distributed as in A
η′

k at all the scales. This is Lemma 2.3.8

from [Man12].

Proof of Lemma D.3. Fix ν > 0 and we show the lemma in three steps:

• with high probability, the number of crossings cannot be too large;

• the crossings can be made to be far from each other and from the corners;

• we can construct fences from the endpoints of the crossings.

The proof is based on circuits in concentric annuli and more precisely, on Lemma 3.19.

Let I be the number of disjoint horizontal crossings of BN with alternating colors. Write

E1, . . . ,EI for the existence of such crossings from left to right. If they exist, denote the cross-

ings by Γ1, . . . ,ΓI and their right endpoints z1, . . . , zI . Then, we can write

ϕξ2BN [I > T ] 6 ϕ
ξ
2BN

[ T⋂
i=1

Ei
]
=

T∏
i=1

ϕξ2BN

[
Ei

∣∣∣∣ i−1⋂
j=1

Ej
]
.

We estimate the probability in the product above as follows. We start by exploring the cross-

ings from the left of BN knowing ∩i−1j=1Ej . Assume for example that Ei is a primal crossing.

Then,

ϕξ2BN

[
Ei

∣∣∣∣ i−1⋂
j=1

Ej
]
6 ϕ1

2BN
[Ei] 6 1− c,

where c > 0 is a uniform constant in i provided by the RSW property. See Figure D.4 for an

illustration. Hence,

ϕξ2BN [I > T ] 6 (1− c)T .

Take T > T0(ν) =
lnν

ln(1−c) so we have (1− c)T 6 ν.
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?

ξ

(a)

?

ξ

(b)

?

1

(c)

Figure D.4 – (a) (b) We explore the horizontal crossings from the bottom of BN . Explored

area is shaded in grey. In any of these two cases, the induced boundary conditions are less

favaroable than that in (c).

Denote Z− (resp. Z+
) the upper left (resp. upper right) corner of BN . Now we show the

two following points.

• With high probability, the corners Z− and Z+
are far from all the other endpoints zi .

• Let ν′ = ν
T . The probability that each crossing of BN may be made into a η-fence is

greater than 1− ν′ .
The proofs work exactly in the same way as in the case of the Bernoulli percolation once

Lemma 3.19 is at our disposition. We will just give a sketch here.

For η > 0, we say that Z− is η-protected if there exist one primally-open and one dual-

ly-open path both at distance at least

√
ηN from Z−, separating Z− from the bottom of BN .

See Figure D.5 for an illustration. The same de�nition also applies to Z+
with Z− replaced.

√
ηN

BN BN

zi

√
ηN

ηN

zi+1

Γi

Γi+1

Z+

Z−

Γ

Γ∗

Figure D.5 – Left: The corner Z− is η-protected. Right: The endpoint zi is η-protected and

there is a η-fence for the path Γi .
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Write Ai = Z− +A(
√
ηN2i ,

√
ηN2i+1) for the annulus centered at Z− with outer radius

√
ηN2i+1 and inner radius

√
ηN2i . The number of such annuli is given by maximal K such

that

√
η2K+1 < 1, or K = −12

lnη
ln2 −1. We also denote by Γ and Γ ∗ the outmost primal and the

dual circuit at distance at least

√
ηN from Z−. This gives

ϕξ2BN

[
Z− is not η-protected

]
6 ϕξ2BN

[
Γ does not exist

]
+ϕξ2BN

[
Γ ∗ does not exist

]
.

Consider c > 0 as given by Lemma 3.19. We explore the con�guration from outside

annulus by annulus and use the classic argument of conditioning, then we get

ϕξ2BN

[
Γ does not exist

]
6 (1− c)K .

For K large enough (η small enough), this quantity can be made smaller than ν. More pre-

cisely, we need the following condition

η 6 exp
[
− 2lnν
ln(1− c)

ln2− 2ln2
]
=: η1(ν)

The same bound can also be obtained for the non-existence of Γ ∗. In conclusion, we have

ϕξ2BN

[
Z+

is not η-protected

]
6 2ν and

ϕξ2BN

[
Z− is not η-protected

]
6 2ν.

We come to the endpoints of vertical crossings Γi . Recall that ν′ = ν
T and we will show

that for η small enough, the probability that each Γi can be made into a η-fence is greater

than 1− ν′ .
For K ∈N to be chosen later, an endpoint zi is said to be η-protected if:

• One of the annuli A(ηN2k ,ηN2k+1), K2 6 i 6 K , contains a circuit of the same color

as Γi . See the inner-most annulus around zi on the right-hand side of Figure D.5.

• There are two annuli among A(√ηN2k ,
√
ηN2k+1), 1 6 i 6 K such that one contains

a primally-open (resp. dually-open) path connecting Γi to {N } ×R.

We will take η and K such that

√
η2K+1 < 1 <

√
η2K+2. As such, if zi is η-protected, the

�rst point guarantees that there is a circuit of the same color as Γi inA(η3/4N,√ηN ), which

creates a η-fence. Then, the second point ensures that di�erent zi ’s are separated by distance

larger than

√
ηN .

As before with an exploration process from below and the comparison between boundary

conditions, we can show that

ϕξ2BN

[
zi is not η-protected

]
6 3(1− c)K ,

where c > 0 is again given by Lemma 3.19 which only depends on the RSW property. Finally,

choose

η 6 exp
[
− 2lnν′

ln(1− c)
ln2− 2ln2

]
=: η2(ν),

and we have

ϕξ2BN

[
zi is not η-protected

]
6 3ν′ ,

171



D. Separation Lemma and Conseqences

In summary, we have

ϕξ2BN [BN is not η-separable] 6 ϕξ2BN [I > T ]

+ϕξ2BN
[
Z+

is not η-protected

∣∣∣ I 6 T ]
+ϕξ2BN

[
Z− is not η-protected

∣∣∣ I 6 T ]
+ϕξ2BN

[
one of the zi ’s is not η-protected

∣∣∣ I 6 T ]
6 ν +2ν +2ν +3ν′T = 7ν.

Now we are ready to show the separation lemma in the case of the random-cluster model.

Proof of Lemma D.1. It is a consequence of Lemma D.4. We take C1,C2 > 0 as given in the

lemma. Pick ν = C2
2 and η′ as given by Lemma D.3. Then, Equation (D.5) gives

ϕ
G

[
Ak(2

n,2N )
]
6 2C1ϕG

[
A
η′

k (2
n,2N+1)

]
.
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